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Abstract—Learning from demonstration (LfD) is a well-
established method of movement demonstration; however, the per-
formance of different LfD approaches during a fine movement
generation is still unknown. In this study, we compare kinesthetic
teaching, teleoperation, and cooperative robot tool approaches on
two different tasks, where a submillimeter accuracy is required.
Additionally, we analyze the influence of a visual enhancement
feature on each of the approaches and the influence of a spatial
scaling feature on the teleoperation approach. The participants are
a well-balanced group (regarding age, gender, and expertise), with
65% having no previous experience using robots. In our study,
we found that all approaches achieved a submillimeter median
positioning error. However, when no additional features are used,
the cooperative robot tool (CRT) approach outperforms other ap-
proaches since it consistently achieves the lowest positioning error.
Besides the positioning error, the generated velocity and the par-
ticipants’ feedback (via a questionnaire) also indicates that it is the
most suitable approach for an accurate submillimeter movement
generation. We also concludes that the visual enhancement feature
and the spatial scaling feature has a significant influence on the
performance of all approaches. When the two features are used, the
generated positioning error drops considerably. When the visual
enhancement feature is used, kinesthetic teaching performs in some
cases as good as the CRT approach, while the teleoperation with
the spatial scaling feature approach in some cases even outperforms
the CRT approach. However, we still consider the CRT to be the
best approach for fine movement generation since these features
cannot be used in every possible scenario.

Index Terms—Cooperative robot tool (CRT), kinesthetic
teaching, learning from demonstration (LfD), submillimeter
accuracy, teleoperation, visual enhancement.

I. INTRODUCTION

L EARNING from demonstration (LfD) is a concept of robot
task learning, where the task is learned through a human

demonstration [1], [2]. The often-used methods to perform a
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demonstration are kinesthetic teaching and teleoperation. The
two approaches allow users to teach robots in ways that are
usually faster and more intuitive than the conventional robot
programming [3].

Teleoperation is a method that requires an input (usually hap-
tic) device, through which the robot movement is controlled [4].
Kinesthetic teaching, on the other hand, does not require an
input device, since the robot movement is controlled directly
by the user grabbing and moving individual segments [5], [6].
In comparison with teleoperation, kinesthetic teaching turns out
to be faster and easier to use [3], [7]. The quality of demon-
strations is similar between the two approaches, although the
type of the input device does influence the performance of
teleoperation [3].

Depending on the task, the demonstration can contain discrete
keyframes (through which the robot motion is planned), a tra-
jectory (that robot will follow), or a combination of the two [8].
While trajectory demonstrations are more intuitive for naïve
users and allow complicated skills to be taught, it might be hard
for users to manipulate a high degree-of-freedom (DoF) robot,
while sustaining a smooth trajectory. Keyframe demonstrations,
on the other hand, allow for a more generalized description of a
task, which makes it easier to adapt the task to new situations [9].

However, the comparison of different LfD approaches has
been made on tasks, composed of coarse movements. With these
movements, the required accuracy of the demonstration is still
small enough for users to successfully transfer the desired move-
ment on a robot, using kinesthetic teaching. Some examples of
coarse movements are stacking blocks on top of one another [8],
scooping [7], placement of a circuit board [10], hitting a table
tennis ball with a racket [11], and writing tasks [12],[13].

None of the studies so far focused on the comparison of LfD
approaches for fine movements. Compared to coarse move-
ments, the fine movements require submillimeter accuracy.
These types of movements are often required in the field of sur-
gical robotics [14],[15]. Teleoperation [4],[16]–[18] and cooper-
ative robot tools [19],[20] are the two established approaches for
the demonstration of fine movements. In the case of cooperative
robot tools (CRTs), the user manipulates the mechanism’s end
effector. The mechanism itself is a non-backdrivable system,
which is controlled with an admittance control scheme. The
movement of the mechanism is defined by the forces with which
the user manipulates the end effector. This approach allows for
a fine movement generation since it reduces the influence of the
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user’s tremor and scales the input forces to accordingly small
movements [21], [22].

Despite many benefits of kinesthetic teaching, it is still not
clear how well can a user demonstrate a fine movement. In
this study, we compared kinesthetic teaching, with two well-
established LfD approaches that are often used during the fine
movement demonstration (e.g., teleoperation and CRT). The
demonstrations were done with Franka Emika Panda 7-DoF
robot, for which we purposely designed an end-effector tip that
enabled the user to assume robot’s position with submillimeter
accuracy. We compared the LfD approaches on two different
tasks. The keyframe demonstration task required the user to
move the robot’s end effector from the start toward the target
position and place the end effector within a 0.5-mm radius of
the target position. The trajectory demonstration task, on the
other hand, required the user to move the robot’s end effector
along the target, 0.5-mm wide, trajectory from the beginning
until the end. With the first task, we were able to test the ability to
precisely position the robot’s end effector, while with the second,
we were able to test the ability to precisely generate the desired
movement. For both tasks, the visual references (e.g., target
position and target trajectory) were displayed on a horizontally
placed LCD monitor. As part of our research, we also tested
the influence of visual enhancement and spatial scaling on the
user’s accuracy. We designed the visual enhancement feature, in
order to enable the user to magnify the area under the robot’s end
effector, and in turn, increase the user’s visual sensitivity. The
spatial scaling feature was used as part of the teleoperation ap-
proach and allowed for a variable spatial scaling factor between
the user’s and the robot’s movement. This, in turn, influenced
the robot’s sensitivity to the user’s generated movement. Both
the experimental setup and the tasks are described in detail in
Sections II-A and II-B, respectively. In order to improve the
accuracy of the robot manipulator, we performed a kinematic
model calibration. The kinematic model calibration is described
in detail in chapter I of the supplementary file. Besides the
objective measures (e.g., positioning error, movement velocity,
movement smoothness, etc.), we took into consideration also
some subjective measures (e.g., ease of use, sense of accuracy,
and room for improvement) by letting users fill out a ques-
tionnaire after the end of the experiment. This enabled us a
broader discussion comparing different LfD approaches. The
questionnaire is described in detail in Section II-F.

II. MATERIALS AND METHODS

A. Experimental Setup

The experimental setup consisted of robot manipulator Panda
(Franka Emika, GmbH), haptic interface Phantom Premium
1.5 (3D Systems, Inc.), force sensor Nano17 (ATI Industrial
Automation, Inc.), a 1-DoF joystick, and a horizontally placed
LCD monitor (see Fig. 1, top left). The Panda robot was used
as a manipulator, while also serving as an input device during
the kinesthetic teaching. For the teleoperation and the CRT
approach, the haptic interface Phantom and the force sensor
Nano17, respectively, served as input devices. During the teleop-
eration approach, users also used the 1-DoF joystick as an input

Fig. 1. (Top) Experimental setup overview. (Bottom) Corresponding
schematic overview.

device, with which they controlled the spatial scaling between
the input motion (Phantom), and the generated motion (Panda).
The horizontally placed LCD monitor served as a user interface,
as it rendered the target positions and trajectory (depending on
the task), indicated the current spatial scaling value, while also
enabling the visual enhancement feature.

For a better understanding, we grouped the aforementioned
devices into different functional units such as Panda robot
control unit, teleoperation control unit, CRT control unit, and
user interface unit (see Fig. 1, right). For these units to work
as a whole, a high-level control was created using MATLAB
Simulink 2019b (The MathWorks, Inc.). Besides connecting the
individual units, it was also used for high-level decision making
(e.g., switching the control modes) and saving the measured
data. Recorded data contained all relevant sensor information
from the Panda robot (end-effector position and orientation,
joint positions, joint velocities, etc.), Phantom haptic interface
(end-effector position and velocity), Nano17 force sensor (3-D
force and torque vectors), and 1-DoF joystick (joystick angle).
The data from each sensor were acquired with 1-kHz sampling
frequency and sent to MATLAB in real time using UDP commu-
nication. Each functional unit will be presented in the following
paragraphs.

1) Robot Manipulator Panda: The experiments were done
by manipulating 7-DoF collaborative robot Panda. Its controller
was connected via Ethernet cable to a PC (Ubuntu 16.04 with a
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real-time kernel), which was used to execute a low-level control
program taking care of the robot’s motion planning. Motion
planning depended on the demonstration type. During kines-
thetic teaching, the generated motion was based on the robot’s
compensated dynamical model. In contrast, during teleoperation
and CRT, the generated motion was based on the reference
positions calculated by the teleoperation or CRT control units.

We designed a custom end-effector with a narrow tip that
enabled the user to assume end-effector’s position with submil-
limeter accuracy. The Nano17 force sensor was also integrated
as part of the end effector since that allowed an optimal CRT
experience (see Fig. 1, top left). Throughout the experiment, the
robot’s end-effector orientation was constant, and the movement
was limited to a horizontal plane. The constraints were done in
order to simplify the comparison between different demonstra-
tion types. The frequency of the robot’s control loop was 1 kHz.

A crucial issue that also had to be overcome was the robot’s
kinematic model accuracy. Due to tolerances in mechanical
construction and assembly, small errors in end-effector pose can
occur. Errors distributed along the arm are amplified due to the
robot’s open chain kinematic structure. During testing, it turned
out that end-effector position errors as large as 5 mm occurred
when moving the robot to the same desired end-effector position
under different joint configurations. Therefore, a calibration
of the kinematic model was required. In our case, after the
calibration, the average error of the robot’s end-effector position
was reduced to 0.1 mm. The calibration procedure is described
in detail in chapter I of the supplementary file.

2) Teleoperation Control Unit: For the teleoperation control,
we used Phantom Premium 1.5 haptic interface, a backdrivable
3-DoF robot manipulator, as an input device. It was controlled
using an industrial PC and MATLAB Simulink Real Time. The
control sampling frequency was 5 kHz.

We controlled the Phantom’s position on a horizontal plane in
order to limit the user’s movement in the vertical direction. We
also introduced a spatial scaling factor KS ∈ (0,1) in order to set
the spatial scaling between the user’s input and Panda robot’s
generated motion. It was set by the user, using a 1-DoF joystick.
The KS value equaled 0 when the joystick was in the neutral
pose and increased toward 1 with an increased offset from the
joystick’s neutral pose.

The desired Panda robot’s position xR(t) was, therefore,
defined as

xR(t) = KS(t)

∫
ẋP(t)dt (1)

where ẋP(t) represented Phantom robot’s movement velocity,
and KS(t) the spatial scaling factor value.

3) CRT Control Unit: For the Panda robot to function as
a CRT, precise force measurements were required. We used
Nano17 high sensitivity force and torque sensor. Its values were
sampled using a DAQ interface, connected to the aforemen-
tioned industrial PC.

We defined the Panda robot’s desired position as

xR(t) =

∫ (∫
FS − bẋR

m
dt

)
dt (2)

Fig. 2. Depiction of the user interface—The keyframe (top left) and the trajec-
tory (top right) task, the visual enhancement (bottom left), and the teleoperation
spatial scaling indicator (bottom right).

with FS representing measured forces, while m and b param-
eters represent inertia and damping of the admittance control
[12], [13]. We defined m and b as a 3-D vector, since we set the
inertia and damping for each direction in the cartesian space. By
modifying the parameter values, we influenced the dynamics
between the measured forces and the reference trajectory in
order to optimize the user’s control of the Panda robot when
using a force sensor as an input device. Since we wanted Panda
robot’s movement to be constrained to a horizontal plane, we set
mZ = ∞.

4) User Interface Unit: The user interface unit was used
to project the required task to the user, and to show relevant
information regarding the ongoing experiment.

Besides displaying reference keyframes and trajectories (de-
scribed in Section II-B), a visual enhancement feature was also
implemented (see Fig. 2, right). Its purpose was to visually
enlarge the area under Panda robot’s end effector (3x magni-
fication) in order to increase user’s positioning error detection,
and therefore, influence the accuracy of a demonstration. It was
created using the Unity game engine (Unity Software Inc.). An-
other essential feature of the user interface unit was teleoperation
spatial scale indicator (see Fig. 2, bottom). It was used to inform
the user about the current KS . The indicator had a green and
an orange zone. The green zone indicated the desired KS value
range (KS = 0.25± 0.05), when greater accuracy was required,
while the orange zone represented the appropriate value range
(KS = 0.70± 0.05) when larger movements were desired. The
environment was projected on a horizontally placed 28-in LCD
monitor.

B. Tasks

As part of our experiment, we defined two different tasks
on which to compare the LfD approaches. Following Akgun
et al. [8], we designed a keyframe and a trajectory demonstration
task. Both tasks will be explained in detail in the following
paragraphs.
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1) Keyframe Demonstration: Keyframe demonstrations are
useful when it is necessary to set start, end, and intermediate
positions to define a task, with the generated path between the
set positions being irrelevant. In some cases, the task requires
a rather precise definition of a keyframe position. An example
from a microbiological environment is a bacterial colony picking
task, where the colonies with an approximately 1 mm in diameter
have to be accurately picked.

Therefore, we designed a task to determine whether it is
possible to position the robot’s end effector with sufficient
accuracy using different LfD approaches. The target position
was defined as a circle with a 1-mm diameter (see Fig. 2, left).
The user was required to move the robot’s end effector from the
start position and position it over the target position. Besides the
circle, each target position also contained a line that indicated
the desired direction from which the user should approach the
area. Since the users tried to follow the line, we could not only
analyze whether the user reached the target position, but also
analyze how they approached the target. During the experiment,
the target position was projected on five different positions, with
each having a different orientation. Multiple goal destinations,
in turn, allowed us a more generalized analysis.

2) Trajectory Demonstration: Trajectory demonstrations are
useful when a specific movement has to be demonstrated. In
this task, we tested the influence of the target trajectory’s spatial
dimensions on the accuracy of a demonstration. We designed a
reference trajectory with gradually smaller spatial dimensions
(see Fig. 2, middle). It was based on a sine wave, whose ampli-
tude decreases with each period

yi = Aisin(ωixi), A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.06

0.02

0.01

0.005

0.0025

⎞
⎟⎟⎟⎟⎟⎟⎠

m. (3)

In order to ensure a smooth trajectory, the ωi had to be scaled
accordingly

ωi =
Ai−1

Ai
ωi−1, ω0 = 0.01256. (4)

During this task, the user had to move the robot’s end effector
along the target trajectory, while trying to follow the line as
accurately as possible. A gradual decrease in amplitude allowed
for a smooth transition from coarse to fine movements. The
target trajectory represented a fine movement during the last two
periods (A4, A5). We will refer to parts of the trajectory with
the same Ai as trajectory segments (i.e., trajectory segment A3

represents the part of trajectory where Ai = A3).

C. Experiment Protocol

The tasks were performed by 31 participants (20 male, 11
female; 11 robotic experts, 20 robotic non-experts; average age
32± 9.8 years). Before the experiment started, each had an ap-
proximately 20-min training session, testing all LfD approaches,
visual enhancement feature, and spatial scaling factor influence.
Preliminary studies showed that the amount of training needed
to minimize the learning effect during the experiment varied

Fig. 3. Examples of a demonstration for each (left) keyframe task and (right)
trajectory task.

from participant to participant based on their motoric skills and
previous experience. Therefore, enough time was given to each
participant in order for them to feel comfortable with controls. A
set of small tests helped us indicate whether participants are still
improving or started to stagnate, and are therefore, ready to start
with the experiment. A training session lasted approximately
20 min.

After the training, the experiment started with the keyframe
demonstration task. For each of the LfD approaches (kinesthetic,
teleoperation, and CRT), the user moved from the start position
to each of the five target positions. This was repeated four times
with the visual enhancement turned OFF and four times with the
visual enhancement turned ON. For the trajectory demonstration
task, the user had to follow the reference trajectory for each of
the LfD approaches. This was repeated four times with the visual
enhancement turned OFF and four times with the visual enhance-
ment turned ON. To test the influence of spatial scaling during
teleoperation, we modified the aforementioned protocol. Users
still performed four repetitions under each condition. However,
three of these repetitions were done using a variable spatial scale,
and one was done with a fixed spatial scale (KS(t) = 1). In the
end, the user had to fill out a questionnaire, which consisted
of a seven-point Likert-scale evaluation for each of the LfD
approaches, and two open-ended questions. The questionnaire
is described in detail in Section II-F.

Each participant required 2–3 hours for the whole experiment.

D. Data Analysis

1) Keyframe Demonstration Task: The goal of the keyframe
demonstration was to analyze the positioning error during the
departure from the start keyframe, and approach to the target
keyframe. In our study, we acquired 3720 keyframe demonstra-
tions.

When the robot was positioned within a 1-cm radius of the
start or target keyframe (see Fig. 3, left), the positioning error
was determined as the smallest distance from the robot’s end
effector to the keyframe approach/departure line.

Movement velocity and smoothness were also analyzed. The
velocity depended on the movement’s trajectory path and the
time required to perform the movement. Movement smoothness
was determined using a well-established spectrum arc length
(SAL) method [23]. The smoothness is based on the move-
ment’s velocity Fourier magnitude spectrum and its spectral
arc-length since the arc-length decreases with the increased
motion smoothness. The author defined SAL as a negative value
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of the arc-length. Therefore, a movement is smoother if it has
a less negative SAL value. Movement velocity and smoothness
were analyzed for the intermediate movement (coarse movement
between the start and target keyframe) and the target keyframe’s
fine approach.

2) Trajectory Demonstration Task: The goal of the trajectory
demonstration was to determine the accuracy with which the user
can follow the reference trajectory. In our study, we acquired
744 trajectory demonstrations. In order to compare measure-
ments with the reference, a time-alignment preprocessing was
necessary. For this purpose, we used a well-established method
dynamic time warping [24]. The method determines the optimal
match between two given sequences by nonlinearly transform-
ing the time dimension of each sequence.

The time alignment allowed us to compare each demonstrated
trajectory with the reference and calculate the positioning error
that occurred along the demonstration. The positioning error
was determined as the Euclidean distance between the robot’s
position and the reference position. The errors were calculated
along the whole trajectory and grouped based on the trajectory
segment they were a part of (see Fig. 3, right).

Movement velocity and smoothness analysis were also carried
out. They were calculated for each of the trajectory’s segments.
The movement velocity depended on the movement trajectory’s
path, and the time required to get from one segment to the other.
The movement smoothness was again determined using the SAL
method [23], additionally explained also in Section II-D.1.

E. Statistical Analysis

A correct statistical method had to be chosen, to determine
if there is a statistically significant difference between demon-
strations under different conditions (LfD method, use of visual
enhancement, and use of spatial scaling). Since the same group
of participants executed the experiments under different condi-
tions, a paired statistical test is appropriate. Due to repetitive vio-
lation of sphericity [25] and occurrence of outliers in the dataset,
we decided nonparametric tests should be used [26],[27]. A two-
tailed Wilcoxon signed-rank test [28] was used to compare two
conditions, whereas Friedman’s test [29] was conducted when
more than two conditions were compared simultaneously. If the
null hypothesis of Friedman’s test was rejected, a two-tailed
Wilcoxon signed-rank test was used for multiple comparisons.
The significance threshold was set to 0.05. In order to prevent
Type-I error inflation due to multiple comparisons, we used
the Bonferroni correction [30]. The results of the statistical
significance are presented in chapter II of the supplementary
file.

F. Questionnaire

The questionnaire was designed with a purpose to get ad-
ditional insight into each of the LfD approaches, visual en-
hancement feature, and variable spatial scaling. The users were
asked to grade each task on a seven-point Likert scale based
on the ease of use, perceived accuracy, and possible room for
improvement. Ease of use represented the difficulty with which
the user accurately positioned the robot’s end effector, with
1 representing “highest difficulty” and 7 representing “lowest

difficulty.” Perceived accuracy represented the user’s opinion
about the achieved accuracy using each of the LfD approaches,
with 1 representing “lowest accuracy” and 7 representing “high-
est accuracy.” Room for improvement represented the user’s
opinion about the possible improvement with a certain LfD ap-
proach if they would have more time to train, with 1 representing
“no improvement” and 7 representing “a lot of improvement.”

Besides the seven-point Likert scale, we also asked two open-
ended questions. The first question stated, “Which of the LfD
approaches would you choose if you would have to accurately
demonstrate a task and why?” The second question stated,
“Did you find visual enhancement useful? Please elaborate the
answer.” The answers to these two questions gave us additional
insight into each of the LfD approaches and the visual enhance-
ment feature.

III. RESULTS

In the following chapter, we present the results, which are
relevant for the discussion. The results are presented with box
and whiskers plots, and in order to describe them we used median
(Med), 25th Percentile (Q1), 75th Percentile (Q3), minimum
(Min), and maximum (Max) values. In order to improve the
readability of the following chapter, authors omitted detailed
description for some experiment condition results. A compre-
hensive overview of results is provided in chapter III of the
supplementary file. All comparisons were statistically evaluated.
The results of the statistical analysis are presented in chapter II
of the supplementary file.

During the data analysis, we determined that the results of
each LfD approach did not significantly differ depending on
the target keyframe (keyframe demonstration task). Therefore,
we combined the results of all target keyframe demonstrations
performed under the same experimental conditions (e.g., LfD
approach and use of features). We focused on differences in per-
formance between different LfD approaches. For both tasks, we
also found no significant difference in demonstrations depending
on the gender (male/female) or expertise (robotic expert/non-
expert). This allowed us to combine all participants in one single
statistical population. Sufficient and flexible training procedure
and the fact that the experiment required from participants
good motoric skills instead of extensive experience with robots
could be two reasons behind finding no significant difference in
participants based on their expertise.

Moreover, for the trajectory task, we determined that the
results from segments A1 and A2 did not deviate from what we
observed in segments A3, A4, and A5. Therefore, we omitted the
results from the first two segments in order to focus on segments
that required motion generation of smaller spatial dimensions.

A. Keyframe Demonstration Task

In Fig. 4, we use box and whiskers plots to present the
positioning error users made during the departure from the start
keyframe (white background) and during the target keyframe
approach (gray background). The figure depicts the performance
of each LfD approach with and without the influence of the visual
enhancement feature and the spatial scaling feature (teleopera-
tion only).
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Fig. 4. Positioning error during the start keyframe departure and the target
keyframe approach.

When the visual enhancement feature was not used dur-
ing the departure from the start position, kinesthetic teach-
ing (Med = 0.33 mm; Q1 = 0.23 mm; Q3 = 0.47 mm;
Min = 0.12 mm; and Max = 1.43 mm) performed similarly as
CRT and teleoperation with the spatial scaling feature, providing
no statistically significant difference. Teleoperation without the
spatial scaling feature performed worse than the kinesthetic
teaching and CRT. However, no statistically significant dif-
ference was found between the two teleoperation approaches.
During the target approach, the CRT generated the lowest posi-
tioning error (Med = 0.28 mm; Q1 = 0.19 mm; Q3 = 0.39 mm;
Min = 0.07 mm; and Max = 0.87 mm), followed by kinesthetic
teaching, teleoperation with the spatial scaling feature, and
teleoperation without the spatial scaling feature.

When the visual enhancement feature was used during the
departure from the start position, CRT (Med = 0.22 mm;
Q1 = 0.17 mm; Q3 = 0.29 mm; Min = 0.09 mm; and
Max = 0.79 mm) and teleoperation with the spatial scaling
feature performed similarly, providing no statistically signifi-
cant difference. These were followed by kinesthetic teaching
and teleoperation without the spatial scaling feature. During
the target approach, kinesthetic teaching (Med = 0.23 mm;
Q1 = 0.19 mm; Q3 = 0.31 mm; Min = 0.08 mm; and
Max = 0.84 mm), CRT, and teleoperation with the spatial
scaling feature performed similarly, providing no statistically
significant difference. Teleoperation without the spatial scaling
feature generated a higher positioning error compared to other
approaches.

In all cases, the visual enhancement feature provided statisti-
cally significant improvement in the positioning error.

In Fig. 5, we use box and whiskers plots to present the move-
ment velocity, and smoothness for each of the LfD approaches.
The results were plotted separately for the intermediate move-
ment and the target keyframe approach movement. Furthermore,
the figure also depicts the influence of the visual enhancement
feature and the spatial scaling feature (teleoperation only).

When the visual enhancement feature was not used during the
target keyframe approach movement, the CRT (Med=5.6 mm/s;
Q1 = 4.7 mm/s; Q3 = 6.3 mm/s; Min = 2.8 mm/s; and
Max = 9.7 mm/s) proved to be the fastest, followed by teleop-
eration without the spatial scaling feature, kinesthetic teaching,
and teleoperation with the spatial scaling feature. Regarding the

Fig. 5. Movement velocity and smoothness during the intermediate movement
and the target approach movement.

movement smoothness, the CRT (Med = −2.46; Q1 = −2.69;
Q3 = −2.28; Min = −4.49; and Max = −2.00) generated the
smoothest movement, followed by kinesthetic teaching, teleop-
eration without the spatial scaling feature, and teleoperation with
the spatial scaling feature. During the intermediate movement,
kinesthetic teaching (Med = 29.3 mm/s; Q1 = 19.6 mm/s;
Q3= 41.2 mm/s; Min= 7.8 mm/s; Max= 64.7 mm/s) turned out
to be the fastest, followed by CRT and teleoperation without the
spatial scaling feature, with no statistically significant difference
between the two. Teleoperation with the spatial scaling fea-
ture generated the slowest movement. Regarding the movement
smoothness, kinesthetic teaching (Med = −2.05; Q1 = −2.20;
Q3 = −1.96; Min = −3.43; Max = −1.79) generated the
smoothest movement, followed by the CRT, teleoperation with-
out the spatial scaling feature, and teleoperation with the spatial
scaling feature. There was no statistically significant difference
between the two teleoperation approaches.

When the visual enhancement feature was used during the
target keyframe approach movement, the CRT (Med=4.6 mm/s;
Q1 = 4.0 mm/s; Q3 = 5.1 mm/s; Min = 2.6 mm/s; and
Max = 7.7 mm/s) proved to be the fastest, followed by teleop-
eration without the spatial scaling feature, kinesthetic teaching,
and teleoperation with the spatial scaling feature. Regarding the
movement smoothness, the CRT (Med = −2.66; Q1 = −2.93;
Q3 = −2.48; Min = −4.07; Max = −2.06) generated the
smoothes movement, followed by kinesthetic teaching, teleoper-
ation without the spatial scaling feature, and teleoperation with
the spatial scaling feature, where the latter two provided no sta-
tistically significant difference. During the intermediate move-
ment, kinesthetic teaching (Med= 30.6 mm/s; Q1= 20.7 mm/s;
Q3 = 39.8 mm/s; Min = 4.9 mm/s; and Max = 70.2 mm/s)
proved to be the fastest, followed by the CRT, teleoperation
without the spatial scaling feature, and teleoperation with the
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Fig. 6. Overview of positioning error, movement velocity, and smoothness
along different trajectory segments.

spatial scaling feature. Regarding the movement smoothness,
kinesthetic teaching (Med =−1.98; Q1 =−2.09; Q3 =−1.92;
Min=−2.78; and Max=−1.68) produced the smoothest trajec-
tory, followed by CRT, teleoperation without the spatial scaling
feature, and teleoperation with the spatial scaling feature, where
the latter two provided no statistically significant difference.

The visual enhancement feature significantly reduced the
velocity of the target approach movement and reduced the
movement smoothness. However, it had a minor effect during the
intermediate movement, with no statistically significant change
in velocity for kinesthetic teaching and teleoperation without the
spatial scaling feature.

B. Trajectory Demonstration Task

In Fig. 6, we use box and whiskers plots to present the demon-
strated movements positioning error, velocity, and smoothness
for each of the LfD approaches. The results are plotted sepa-
rately for each of the last three trajectory segments (A3, A4,
and A5). Furthermore, the figure also depicts the influence of
the visual enhancement feature and the spatial scaling feature
(teleoperation only).

When the visual enhancement feature was not used, CRT
(Med = 0.42 mm; Q1 = 0.38 mm; Q3 = 0.49 mm;
Min = 0.27 mm; and Max = 0.75 mm) approach generated
the lowest positioning error in the segment A3. It was fol-
lowed by kinesthetic teaching, teleoperation with the spatial
scaling feature, and teleoperation without the spatial scaling
feature. However, there was no statistically significant differ-
ence between kinesthetic teaching and teleoperation with the

spatial scaling feature. There was also no statistically sig-
nificant difference between the two teleoperation approaches.
The generated movement velocity was the highest with CRT
(Med = 7.2 mm/s; Q1 = 6.2 mm/s; Q3 = 8.9 mm/s;
Min = 3.3 mm/s; Max = 17.8 mm/s), followed by teleoperation
without the spatial scaling feature, kinesthetic teaching, and
teleoperation with the spatial scaling feature. There were no
statistically significant differences between teleoperation with-
out the spatial scaling feature and kinesthetic teaching or CRT.
Regarding the movement smoothness, CRT (Med = −3.53;
Q1 = −3.78; Q3 = −3.03; Min = −4.37; Max = −2.38)
generated the smoothest trajectory, followed by kinesthetic
teaching, teleoperation without the spatial scaling feature, and
teleoperation with the spatial scaling feature, with no statistically
significant difference between the latter two. In segment A4,
the CRT (Med = 0.37 mm; Q1 = 0.35 mm; Q3 = 0.44 mm;
Min = 0.24 mm; Max = 0.75 mm) generated the lowest
positioning error, followed by teleoperation with the spatial
scaling feature, kinesthetic teaching, and teleoperation without
the spatial scaling feature. The generated movement velocity
was the highest with CRT (Med = 5.0 mm/s; Q1 = 4.1 mm/s;
Q3 = 6.7 mm/s; Min = 2.5 mm/s; and Max = 12.7 mm/s),
followed by kinesthetic teaching and teleoperation without
spatial scaling feature, with no statistically significant differ-
ence between the two. The movement was the slowest using
teleoperation with the spatial scaling feature. The generated
movement was the smoothest with the CRT (Med = −3.21;
Q1 = −3.42; Q3 = −2.76; Min = −4.24; and Max = −2.17),
followed by kinesthetic teaching, and teleoperation without
the spatial scaling feature, with no statistically significant dif-
ference between the two. Teleoperation with the spatial scal-
ing feature generated the roughest movement. In segment A5,
CRT (Med = 0.31 mm; Q1 = 0.29 mm; Q3 = 0.41 mm;
Min = 0.26 mm; and Max = 0.79 mm) achieved the lowest
positioning error, followed by teleoperation with the spatial
scaling feature, kinesthetic teaching, and teleoperation without
the spatial scaling feature. The generated movement velocity
was the highest with kinesthetic teaching (Med = 2.3 mm/s;
Q1 = 1.8 mm/s; Q3 = 2.9 mm/s; Min = 0.7 mm/s; and
Max = 6.2 mm/s), followed by teleoperation without the spatial
scaling feature, CRT, and teleoperation with the spatial scaling
feature. However, there was no statistically significant difference
between CRT and teleoperation with the spatial scaling feature.
Kinesthetic teaching (Med =−3.45; Q1 =−3.83; Q3 =−3.14;
Min =−5.48; and Max =−2.47) also generated the smoothest
movement, followed by the CRT, teleoperation with the spatial
scaling feature, and teleoperation without the spatial scaling
feature. There was no statistically significant difference between
the two teleoperation approaches.

When the visual enhancement feature was used in the segment
A3, the CRT (Med = 0.32 mm; Q1 = 0.29 mm; Q3 = 0.39 mm;
Min = 0.20 mm; and Max = 0.59 mm) and teleoperation with
the spatial scaling features (Med = 0.31 mm; Q1 = 0.26 mm;
Q3 = 0.41 mm; Min = 0.18 mm; and Max = 0.67 mm)
achieved a better positioning error than kinesthetic teaching and
teleoperation without spatial features. No statistically significant
difference was observed between the CRT and teleoperation with
the spatial scaling features. The generated movement velocity
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was the highest with the CRT (Med= 5.7 mm/s; Q1= 4.7 mm/s;
Q3 = 7.3 mm/s; Min = 3.1 mm/s; and Max = 15.3 mm/s) and
teleoperation without the spatial scaling feature, followed by
kinesthetic teaching and teleoperation with the spatial scaling
feature. There was no statistically significant difference be-
tween CRT and teleoperation without the spatial scaling fea-
ture. Regarding the movement smoothness, CRT generated the
smoothest movement (Med=−3.49; Q1=−3.98; Q3=−3.14;
Min = −5.42; and Max = −2.54), followed by kinesthetic
teaching, teleoperation without spatial scaling feature, and tele-
operation with spatial scaling feature. However, there was no
statistically significant difference between kinesthetic teaching
and teleoperation without spatial scaling feature, and also no dif-
ference between both teleoperation approaches. In segment A4,
teleoperation with the spatial scaling feature (Med = 0.29 mm;
Q1 = 0.26 mm; Q3 = 0.38 mm; Min = 0.19 mm; and
Max = 0.58 mm), and the CRT achieved the lowest positioning
error, followed by kinesthetic teaching and teleoperation without
the spatial scaling feature. No statistically significant difference
was observed between the CRT and teleoperation with the spatial
scaling features. The highest movement velocity was generated
by the CRT (Med = 3.1 mm/s; Q1 = 2.7 mm/s; Q3 = 4.0 mm/s;
Min = 1.7 mm/s; and Max = 7.8 mm/s), followed by teleop-
eration without the spatial scaling feature, kinesthetic teaching,
and teleoperation with the spatial scaling feature. Regarding the
movement smoothness, the CRT (Med = −4.01; Q1 = −4.21;
Q3 = −3.72; Min = −4.89; and Max = −3.09) generated the
smoothest movement, followed by kinesthetic teaching, tele-
operation without the spatial scaling feature, and teleoperation
with the spatial scaling feature. However, there was no statis-
tically significant difference between kinesthetic teaching and
teleoperation without the spatial scaling feature. There was also
no statistically significant difference between both teleoperation
approaches. In the segment A5, teleoperation with the spatial
scaling feature (Med=0.29 mm; Q1=0.25 mm; Q3=0.35 mm;
Min = 0.22 mm; and Max = 0.62 mm) achieved the lowest
positioning error, followed by the CRT, kinesthetic teaching, and
teleoperation without the spatial scaling feature. There was no
statistically significant difference between the CRT and kines-
thetic teaching. The highest movement velocity was achieved
by the CRT (Med = 1.8 mm/s; Q1 = 1.6 mm/s; Q3 = 2.3 mm/s;
Min= 0.9 mm/s; and Max= 4.0 mm/s), followed by kinesthetic
teaching, teleoperation without the spatial scaling feature, and
teleoperation with the spatial scaling feature. However, there was
no statistically significant difference between kinesthetic teach-
ing and teleoperation without the spatial scaling feature. There
was also no statistically significant difference between both tele-
operation approaches. Regarding the movement smoothness, the
CRT (Med =−3.74; Q1 =−3.94; Q3 =−3.51; Min =−4.74;
and Max =−2.72) achieved the smoothest movement, followed
by kinesthetic teaching, teleoperation with the spatial scaling
feature, and teleoperation without the spatial scaling feature.

C. Questionnaire

In Fig. 7, we use box and whiskers plots to present the re-
sults of a questionnaire. Participants scored the LfD approaches
(with and without the visual enhancement, and spatial scaling

Fig. 7. Overview of subjective measures about the LfD approaches, and the
influence of the visual enhancement feature and the spatial scaling feature. Red
+ signs represent data outliers (i.e., values that are more than 1.5 times the
interquartile range away from the bottom or top of the box).

features) based on the ease of use, the achieved accuracy, and
the possibility for improvement on a seven-point Likert scale.

When the visual enhancement feature was not used, users
found the CRT easiest to use, followed by kinesthetic teaching,
teleoperation with the spatial scaling feature, and teleoperation
without the spatial scaling feature. They presumed that they were
the most accurate with the CRT, followed by teleoperation with
the spatial scaling feature, kinesthetic teaching, and teleopera-
tion without the spatial scaling feature. However, they had the
most room for improvement with teleoperation with the spatial
scaling feature approach, followed by teleoperation without the
spatial scaling feature, kinesthetic teaching, and CRT.

When the visual enhancement feature was used, users found
the CRT easiest to use, followed by kinesthetic teaching, teleop-
eration with the spatial scaling feature, and teleoperation without
the spatial scaling feature. They presumed that they were the
most accurate with the CRT, followed by teleoperation with the
spatial scaling feature, kinesthetic teaching, and teleoperation
without the spatial scaling feature. However, they had the most
room for improvement with teleoperation with the spatial scaling
feature approach, followed by teleoperation without the spatial
scaling feature, kinesthetic teaching, and CRT.

The majority of users stated in answer to the first open-ended
question that they would use the CRT approach if they would
have to demonstrate a fine movement. They would use it because
it allowed them to generate a smooth movement using insignifi-
cant input forces. Furthermore, the majority of users also stated
in answer to the second open-ended question that they found
the visual enhancement feature useful since it allowed them a
greater positioning accuracy. However, a significant number of
answers also stated that the visual enhancement feature slightly
increased the complexity and psychological stress due to the
increased positioning error detection.

IV. DISCUSSION

In our study, we compared kinesthetic teaching, teleoperation,
and CRT on two different tasks in order to determine their per-
formance during fine movement generation. We implemented a
visual enhancement feature, which was used with each approach,
and a spatial scaling feature, which was used with the tele-
operation approach only. Different approaches were compared
based on the positioning error, movement velocity, movement
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smoothness (SAL), and the questionnaire results. Although the
positioning error was the most important measure on which
we compared the approaches, other measures also provided us
with important and interesting insight. Movement velocity and
smoothness, for example, provided us with information about
the level of control participants had over the Panda robot, using
different control approaches. Less negative values of SAL (i.e.,
a smoother movement), and higher levels of velocity, would
indicate that it was easier for participants to achieve their desired
positioning precision using the selected control approach.

During the keyframe demonstration task, it is evident from the
positioning error distribution (see Fig. 4) that all LfD approaches
generated a submillimeter median positioning error. When no
features were used during the target approach, the CRT ap-
proach generated the lowest positioning error (Med = 0.28 mm;
Q1 = 0.19 mm; Q3 = 0.39 mm; Min = 0.07 mm; and
Max = 0.87 mm). If we compare the two teleoperation ap-
proaches, the generated positioning error was lower when the
spatial scaling feature was used. This is due to a better motoric
sensitivity of the robot’s movement. Furthermore, it is evident
that the visual enhancement feature significantly reduced the
generated error for all LfD approaches. This was due to an
enhancement, which improved the user’s positioning error de-
tection. However, it could also be that by increasing the error
detection, the users became more cautious about the achieved
accuracy, and consequently, increased their effort. The generated
errors during the start of the demonstration were generally higher
than the ones during the target approach. The reason could be
that users perceived the start movement with lesser caution since
it was followed by an intermediate movement, which required
no positioning accuracy. With the use of the visual enhancement
feature, however, the error dropped considerably, indicating that
users took greater care at being accurate already from the start
of the demonstration.

An advantage of kinesthetic teaching can be observed during
the intermediate movement (see Fig. 5) since the generated
movements had higher velocity compared to other approaches.
This is because it allows a relatively easy generation of larger
movements. It also generated the smoothest movement. Higher
movement velocity generated larger momentum, which in turn
decreased the inference of higher frequency movements, and
consequently, improved the movement smoothness. However,
during the target approach, the CRT achieved higher velocity
and smoother movement than kinesthetic teaching. Therefore,
when higher positioning accuracy was required, the kinesthetic
teaching approach no longer excelled in the generated velocity.
Teleoperation with the spatial scaling feature generated the slow-
est movement, which is due to the increased motoric sensitivity.
Using the visual enhancement feature during the target approach
reduced the generated movement velocity, due to users being
more cautious about the achieved accuracy. However, visual
enhancement had a minor effect on the velocity and smoothness
of the intermediate movement, which was due to the lack of
a movement reference. Therefore, nothing could be visually
enhanced.

The difference in the generated positioning error is more
evident during the trajectory demonstration task (see Fig. 6).
Throughout the last three segments (A3, A4, and A5), the

CRT achieved the lowest positioning error. Kinesthetic teach-
ing generated a submillimeter positioning error but performed
significantly worse than the CRT. In comparison to the keyframe
demonstration task, the difference is more evident because of the
task’s increased complexity. Each segment required a movement
of smaller spatial dimensions, which was more challenging
for users to generate. Consequently, the movement velocity
dropped significantly from one segment to the next in order
to achieve similar accuracy. Greater positioning accuracy was
achieved by using the visual enhancement feature and the spatial
scaling feature. Without the spatial scaling feature, teleoperation
performed worse than kinesthetic teaching. However, when the
spatial scaling feature was used, the positioning error dropped
significantly. The increased motoric sensitivity allowed a more
accurate demonstration throughout the whole trajectory. The
improvement in teleoperation is even more evident when the
visual enhancement feature was also used since it slightly outper-
forms the CRT with the visual enhancement feature. Kinesthetic
teaching with the visual enhancement feature also achieved
similar improvement, as it performed as good as CRT with
the visual enhancement feature. It is interesting how the visual
enhancement feature provided little benefit to the CRT. It could
be that the users reached a certain plateau of accuracy, and
therefore, the influence of the visual enhancement feature on
the CRT is not as significant as in other approaches.

From a practical standpoint, the results achieved in this study
are also on the limit of the possible achieved accuracy, due to
external factors such as nonnegligible reference trajectory width,
end-effector tip width, robot manipulator size, and the kinematic
model errors.

Overall, the CRT achieved the highest levels of accuracy while
allowing relatively fast and smooth movements. Its performance
is also reflected from the questionnaire results (see Fig. 7)
since it achieved the best score for ease of use and perceived
accuracy. It was also the preferred LfD approach based on the
first open-ended question since users found this approach to gen-
erate a smooth movement without a struggle, using insignificant
input forces. Kinesthetic teaching, due to the imperfect dynamic
model compensation, required more effort for accurate robot
positioning, which is the reason why it received a lower score
for ease of use and achieved a lower perceived accuracy. None
of the teleoperation approaches scored high regarding the ease
of use, which is due to the higher complexity of the approach.
The influence of the spatial scaling feature was also noticeable
since the teleoperation with the spatial scaling feature achieved
a higher perceived accuracy score as the one without. Both
teleoperation approaches also scored high regarding the pos-
sible room for improvement. The users thought that they could,
through time, still improve the positioning accuracy for both
teleoperation approaches. This was not the case for kinesthetic
teaching and CRT. This is again due to the higher complexity
of both teleoperation approaches. The majority of users also
confirmed the usefulness of the visual enhancement feature.
Based on the second open-ended question, the benefit of the
increased positioning error detection outweighed the increased
complexity to most users.

Among the participants, there was a similar male/female and
expert/nonexpert representation. The overall performance was
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not gender dependant, but moreover, it was not qualification
dependant. This means that these results can be achieved by an
operator that has no previous experience in robotics.

V. CONCLUSION

In our study, we compared three different LfD approaches
(kinesthetic teaching, teleoperation, and cooperative robot tool)
on two different tasks (keyframe demonstration and trajectory
demonstration) to determine whether these approaches are suit-
able for a movement generation where submillimeter accuracy
is required. All approaches achieved a submillimeter median
accuracy when no additional features were used. However, we
conclude that the CRT is the most suitable approach to achieve
submillimeter accuracy since it consistently achieved a median
positioning error lower than 0.5 mm even when the visual
enhancement feature was not used. Teleoperation and kinesthetic
teaching achieve similar accuracy when additional features are
used (visual enhancement and spatial scaling). The suitability of
the CRT for fine movement demonstration is further confirmed
by users, who graded the CRT the highest in terms of ease of
use and achieved accuracy.
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