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Abstract: Inertial sensor-based step length estimation has become increasingly important with the
emergence of pedestrian-dead-reckoning-based (PDR-based) indoor positioning. So far, many refined
step length estimation models have been proposed to overcome the inaccuracy in estimating distance
walked. Both the kinematics associated with the human body during walking and actual step lengths
are rarely used in their derivation. Our paper presents a new step length estimation model that
utilizes acceleration magnitude. To the best of our knowledge, we are the first to employ principal
component analysis (PCA) to characterize the experimental data for the derivation of the model.
These data were collected from anatomical landmarks on the human body during walking using
a highly accurate optical measurement system. We evaluated the performance of the proposed
model for four typical smartphone positions for long-term human walking and obtained promising
results: the proposed model outperformed all acceleration-based models selected for the comparison
producing an overall mean absolute stride length estimation error of 6.44 cm. The proposed model
was also least affected by walking speed and smartphone position among acceleration-based models
and is unaffected by smartphone orientation. Therefore, the proposed model can be used in the
PDR-based indoor positioning with an important advantage that no special care regarding orientation
is needed in attaching the smartphone to a particular body segment. All the sensory data acquired by
smartphones that we utilized for evaluation are publicly available and include more than 10 h of
walking measurements.

Keywords: gait model; inertial sensors; open-source dataset; smartphone; step length estima-
tion model

1. Introduction

Over the past few decades, gradual advances in the development of microelectrome-
chanical systems (MEMS) technology have laid the foundations for bulk inertial sensors
production and the subsequent penetration of those sensors to the market [1]. Their
demand is currently not only predominant in the Internet-of-Things (IoT) sector but is
extending to Industry 4.0 as well [2]. A vast array of promising applications is readily
emerging for location-based services and healthcare due to the integration of MEMS-based
inertial sensors into IoT wearables and smartphones. So far, authors have studied the
gait of patients with certain diseases or conditions that impact the walking pattern, e.g.,
stroke [3,4], Parkinson’s disease [5–8], or Huntington’s disease [9,10]. Other such studies
monitor a person’s activity and movement in urban areas using approaches, such as activity
recognition [11–13], gait authentication [14–16], and PDR-based indoor positioning [17–22].

PDR-based approaches calculate current position based on the change in the previous
position by using the information on step length and heading. Proposed techniques for
step length estimation vary in terms of the implementing means of deriving step length.
For example, machine learning techniques are often utilized in the derivation process in
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combination with various statistical estimation methods to improve the estimation accu-
racy, i.e., Bayesian filters such as the Kalman filter [23,24], the particle filter [25–27], and
grid-based approaches [28]. Similarly, artificial neural networks [29] are also known to
be employed. The aforementioned techniques often require extensive training prior to
utilization. Step length is calculated by integrating the acceleration in walking direction
over time as well [8,30,31]. It usually requires the elimination of drift during the calculation
process and the placement of sensors on the shank, on the foot, or on the center of body
mass to achieve the optimal step length estimation accuracy. Moreover, step length is also
estimated by a model [18–21], often as the linear combination of inertial sensor outputs,
such as step frequency or acceleration. Due to its applicability, this approach is most com-
monly used for smartphone-based step length estimation in PDR-based approaches [32].
This is the main reasoning for the idea presented herein.

Some step length estimation models exploit the direct empirical correlation between
inertial sensor outputs and step length by including tunable constants. Of note, Wein-
berg [33] based the model on the difference between the maximum and minimum vertical
acceleration values within the step while Kim et al. [34] based their model on mean absolute
acceleration value in walking direction within the step. Alvarez et al. [35] exploited the
linear relationship between step frequency and step length. Similar to Alvarez et al. [35],
Renaudin et al. [36] and Zhang et al. [37] also exploited the linear relationship between
step frequency and step length in their models, whilst also incorporating the user’s height
(Renaudin et al. [36]) and leg length (Zhang et al. [37]). Tian et al. [21] based their model
on the square root of step frequency and user’s height, whereas Sharp and Yu [38] based
their model on the user’s height, step frequency, and the difference between maximum in
minimum vertical acceleration values within the step. Shin and Park [39] proposed a model
that estimates step length as the linear combination of step frequency and acceleration
variance within the step. Similarly, Sun et al. [40] based their model on the variance of
vertical acceleration and step frequency.

Another basis for the derivation of the models could potentially utilize physical models
of gait. For example, the inverted pendulum model [41] could be used for determining the
displacement of the pelvis during walking. Zijlstra and Hof [42] used vertical displacement
of the center of body mass within the step and user’s leg length as the basis of the model and
included one tunable constant. Do et al. [19] and Lan and Shih [43] used the same basis as
Zijlstra and Hof [42] in their models, and they did not include any tunable constants. On the
contrary, Diaz and Gonzales [44] exploited the linear relationship between the step length
and the maximum angle between legs within the step by including two tunable constants
in the model. Some authors also extended existing models to improve the accuracy of step
length estimation. As such, Mikov et al. [45] extended the Weinberg model [33] with the
inverse of step frequency, whereas Kang and Han [20] extended the Weinberg model [33]
with an additional tunable constant and included another equation, in which they replaced
the fourth principal root with a logarithm. Zhu et al. [46] extended the Weinberg model [33]
with the acceleration variance and step frequency. Guo et al. [47] extended the model
proposed by Kim et al. [34] with a tunable constant, whereas Bylemans et al. [18] extended
the model proposed by Kim et al. [34] with step frequency and the difference between the
maximum and minimum vertical acceleration values within the step.

Even though certain models performed well on the datasets prepared according to the
specific evaluation protocol, we have already demonstrated that their performances change
under different evaluation protocols [32]. Certain models are affected by smartphone
position or walking speed, acceleration-based models in particular, yet they are well
established for step length estimation in PDR-based approaches. However, kinematics
associated with different body segments during walking in combination with measured
step lengths are rarely used in the derivation processes of these models. By considering
the aforementioned reasons, we designed a study for the derivation and evaluation of an
acceleration-based step length estimation model using an optical measurement system and
several off-the-shelf smartphones. Firstly, we aimed to investigate the kinematics of the
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human body during walking to identify key characteristics of the movement of anatomical
landmarks. Gaining insights into their similarities would enable us to derive a step length
estimation model, suitable for various smartphone positions, such as in a pocket, in a
hand, or on the upper arm. In the derivation process, we, therefore, utilized PCA that
provides enhanced insight into data by reducing the dimensionality of the dataset whilst
retaining a large degree of variation from the original dataset [48–50]. To the best of our
knowledge, we were the first to utilize PCA to derive a step length estimation model.
So far, PCA has been successfully employed in gait analysis to support the kinematic
design of the wearable walking assistive device for use by hemiplegics [51]. PCA was
also used to examine movement behavior in children [52] identifying key facets of human
movement. For example, Hinkel-Lipsker and Hahn [53] employed PCA to reduce the
number of dimensions in studying gait kinematics.

The next aim of the work presented herein was to evaluate the proposed model on
smartphones for different walking speeds and typical positions. We used four off-the-shelf
smartphones in the evaluation reproducing scenarios of typical smartphone users while
using an optical measurement system to track the smartphones’ spatial positions. Therefore,
smartphones were attached to the upper arm, the pelvis, the hand, and to the thigh to
simulate typical scenarios, e.g., putting a smartphone in a sports bag attached to the upper
arm or pelvis while walking or carrying the smartphone in a hand or pocket while walking.

We propose a new step length estimation model that utilizes acceleration magnitude
as the main input. This is an important advantage over the compared acceleration-based
models that no special care regarding orientation is needed when attaching the smartphone
to a particular body segment. We evaluated the performance of our proposed model for
four typical smartphone positions on the user’s body for several walking speeds during
long-term walking. We obtained promising results: the proposed model outperformed
the compared acceleration-based models in terms of the overall accuracy of estimated
walked distance, with the mean absolute stride length error being 6.44 cm. Furthermore,
our proposed model was also least affected by walking speed and smartphone position
among acceleration-based models.

The rest of the paper is structured as follows. Section 2 presents the derivation of the
model where the design of the study, evaluation protocol, data analysis, the formulation of
our proposed model by means of PCA, and the evaluation are described. Section 3 presents
the results, while Section 4 discusses them. Finally, Section 5 concludes the paper.

2. Methods

The formulation of a step length estimation model follows an established approach
consisting of a study for deriving the model and experiments for evaluating it. The study
usually includes experiments to acquire sensor data from a particular position on a person’s
body and the analysis of these data exploiting the correlation between step length and
certain inertial sensor outputs. The formulated model is, thereafter, evaluated on another,
larger dataset that includes the sensor data acquired in the experiments conducted under
different circumstances, where usually walking speed, the duration, terrain, or sensor
position vary in each trial.

Instead of adopting the described standard approach for the derivation of the model,
we shifted towards a more unconventional one. We did not exploit the direct correlation
between step length and certain inertial sensor outputs but used the reference data collected
from anatomical landmarks on the human body instead. After the initial data acquisition,
we employed PCA to identify patterns and the correlations between the walked distance
and the minimum number of input parameters [48–50]. Based on our findings, we proposed
a new step length estimation model and evaluated it on another dataset.

2.1. Design of the Study

This work aimed to derive and evaluate a new acceleration-based step length estima-
tion model. Herein, we planned an outline of our study as shown in Figure 1. The first part
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was focused on the derivation of the step length estimation model, whereas the second
part was dedicated to the evaluation of the proposed model.
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Figure 1. Design of the study for the derivation and evaluation of the step length estimation model.

Firstly, we studied the motion of the human body during long-term walking for
several walking speeds and its impact on the walked distance when walking on a treadmill.
The motion on one side of the human body was investigated, since the walking of a non-
elderly healthy person can be considered symmetrical regardless of gender [54]. Therefore,
walking was analyzed on the level of gait cycles of one limb. A gait cycle is the interval
between successive foot contacts on the same limb [55]. Stride lengths were measured
for each gait cycle and used in the study. The positions of anatomical landmarks on the
human body were measured during slow, normal, and fast walking using the optical
measurement system Optotrak Certus (Northern Digital Inc., Waterloo, ON, Canada). The
Optotrak system tracked the spatial positions of infrared markers Mi = (xi(t), yi(t), zi(t)),
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1 ≤ i ≤ 8, with an accuracy up to 0.1 mm. The markers were attached to anatomical
points of the shoulder (acromion process), elbow (lateral epicondyles), wrist (ulnar styloid
process), between hip (greater trochanter) and pelvis (upper iliac crest), knee (lateral
femoral condyle), ankle (lateral malleolus), heel (lateral process of calcaneal tubercle), and
toes (metatarsophalangeal joint). The acquired data were characterized by employing PCA.
This enabled the identification of relevant parameters common to all anatomical landmarks
that met the following criteria: on one hand, they had the greatest impact on the motion of
the human body during walking, but on the other hand, they could be used as a basis for a
light-weight accurate acceleration-based solution for step length estimation, suitable for
smartphones. Applying these criteria would, therefore, result in proposing a step length
estimation model that requires the minimum number of input parameters to minimize the
pre-processing while including one of the acceleration-based parameters that vary the most
within the step as the basis. After, we employed principal component regression to obtain
the correlation between stride length and certain parameters, which formed a new model.

In the second part of our work, we evaluated the proposed model with the selected
performance metrics for two types of walking modes: (i) walking on a treadmill and
(ii) walking on a rectangular-shaped test polygon. Both walking modes were evaluated for
long-term human walking with a range of different walking speeds and four smartphone
positions, i.e., smartphone attached to the upper arm, hand, pelvis, and thigh. These
positions were chosen as we tried to reproduce scenarios of typical smartphone users while
using the optical measurement system to track the spatial positions of smartphones. The
performance of the proposed model was compared to the performances of the related
acceleration-based models. The data used in the evaluation are part of our open benchmark
repository [56].

2.2. Experimental Protocol

Different walking speeds were tested on the treadmill for the derivation and evaluation
of the step length estimation model, the values of which were determined as the average
values of self-selected persons’ slow, normal, and fast walking speeds from our previous
work [32]. As a result, 3.3, 4.6, and 5.9 km/h were tested for slow, normal, and fast
walking speeds, respectively. An additional set of experiments were conducted on a
21.64-meter-long rectangular-shaped test polygon where the person self-selected their
walking speed. They were asked to choose their preferred walking speed and to maintain
it while walking. Both sets of experiments lasted for approximately 15 min for each
walking speed. Altogether 10 individuals (six men and four women) participated in the
experiment, all selected from a group of healthy adults aged from 19 to 32 years (mean
value of 26.3 ± 4.6 years) at the time of the experiment. Their height ranged from 1.60 to
1.83 m (mean value of 1.77 ± 0.10 m), whereas their leg length varied from 0.90 to 1.14 m
(mean value of 1.05 ± 0.07 m).

Four off-the-shelf smartphones (Samsung S8, Samsung S7 edge, and two Samsung S2)
were used as shown in Figure 1 to acquire linear acceleration sensor data on the upper arm,
hand, pelvis, and thigh. On the treadmill, linear accelerations were measured along with
positions of 12 infrared markers placed on smartphones Mi = (xi(t), yi(t), zi(t)), 9 ≤ i ≤ 20.
The reference lengths of strides were calculated from the positions of the infrared marker
M7 attached to the heel.

The supervisor monitored the experiment to enforce the proper execution according
to the following protocol. At first, the treadmill and Optotrak cameras were set up and the
experimental area denoted by the yellow tape on the floor. In the experiment, two Optotrak
cameras were used at different view angles, thus forming the redundant configuration and
minimizing the possibility and duration of the marker’s occlusion. The Optotrak system
was calibrated, and cameras aligned according to the selected triaxial cartesian coordinate
system as shown in Figure 2. The direction of the y-axis was aligned with the direction
of walking on the treadmill and with one side of the test polygon. The z-axis represented
the vertical direction while the x-axis represented the direction perpendicular to both the
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direction of walking and the vertical direction. The experimental area was secured with
rope barriers.
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Figure 2. Test polygon for treadmill and rectangular path walking with the defined coordinate system
of Optotrak.

Twenty infrared markers were attached to four smartphones and anatomical land-
marks on a body as shown in Figure 3. Three infrared markers were attached to anatomical
landmarks on the upper extremity (shoulder, elbow, and wrist) and five infrared markers
to anatomical landmarks on the lower extremity (between hip and pelvis, knee, ankle, heel,
and big toe joint). In addition, three infrared markers for assessing phone position and
orientation were attached to the frontal plane of each smartphone. Smartphones’ linear
acceleration sensor data were acquired at the maximum sampling frequency. Altogether,
95% of the sampled data were found to be within an inter-sampling interval between 77
and 111 Hz.

To ensure the synchronization of measurements between smartphones and the op-
tical measurement system, a video camera was used for recording the experiments and
measuring time. Slow, normal, and fast walking speeds were measured during the first
set of experiments. For each walking speed, a person was asked to step onto a treadmill
and stand still. The video camera was then turned on and recording began. Next, Optotrak
data acquisition was started along with time measurement. Data acquisition on all four
smartphones was subsequently enabled. The person was asked to stand still for approx-
imately 10 s, jump in place, and stand still for approximately 10 s afterward. The peaks
of the linear acceleration signals recorded by the smartphones, acquired when the heel
of the person touched the floor, were used to synchronize the measured signals from the
smartphones and the Optotrak system. After the treadmill was turned on and the selected
walking speed set, the person walked on the treadmill for a few seconds, so that they could
adjust, before starting to count down the time of 15 min. Thereafter, the walking speed on
the treadmill was decreased to a stop and the person was asked to stand still so that the
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data acquisition was manually turned off. Only the preferred walking speed was tested
during the second set of experiments aimed for evaluation.
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An experimental procedure similar to that used in the first set of experiments was
followed for data acquisition in the second set of experiments. The person was asked
to stand still at the starting point of the test polygon. After measurement initialization,
the person walked 15 min along the marked test polygon with a self-selected preferred
constant walking speed. When 15 min elapsed, the person was asked to stop walking
anywhere within a few steps after the starting point. The average walking speed of the
participants was found to be 4.4 ± 0.6 km/h.

2.3. Data Analysis

The data generated were analyzed and processed by using MATLAB (version R2018a
9.4.0.813654), and a clear indication was given when using the MATLAB implementations
of functions. Otherwise, the procedures were implemented by authors. The Optotrak
markers’ positions were sampled at 100 Hz and pre-processed using a fourth-order low-
pass Butterworth filter with a 5 Hz cut-off frequency. The invalid samples due to the
short-term marker’s occlusions were prior interpolated with spline interpolation. The
MATLAB implementation of the Butterworth filter was used. Smartphone linear accelera-
tion measurements were resampled using linear interpolation to 100 Hz and pre-processed
to eliminate errors by employing wavelet denoising, since it has no negative impact on
acceleration patterns [57]. The MATLAB implementations of interpolation and wavelet
denoising were used. Optotrak’s and smartphone measurements were synchronized with
respect to acceleration peaks. The reference positions of the infrared markers attached to the
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frontal plane of the smartphones were used for aligning the smartphones’ local coordinate
systems with the Optotrak’s coordinate system. Of note, a rotation transformation was
derived, implemented, and applied for each smartphone to align its coordinate systems to
the Optotrak’s coordinate system. On the treadmill, strides were detected by analyzing
the displacement of the infrared marker attached to the heel in the walking direction. The
MATLAB function findpeaks was used to identify the occurrence of the heel touching
the surface of the treadmill, i.e., local maximums. By determining the local minimum
within the consecutive detected heel strike events, stride lengths were calculated. Stride
detection on smartphones for the treadmill experiments was generated on the smartphones’
outputs by means of the heel strike events determined by the data from the Optotrak’s
system. Whereas, on rectangular-shaped test polygon, stride detection was conducted on
the smartphones’ outputs by employing the acceleration peak detection algorithm. In a
similar way, the MATLAB function findpeaks was used.

2.4. Derivation of the Step Length Estimation Model

PCA, a technique that provides enhanced insight into data, was employed in the
derivation process of the step length estimation model on the acquired dataset as indicated
in Figure 1. The use of PCA reduces the dimensionality of the data, thus limiting the search
space, while retaining a large degree of variation from the original dataset [48–50]. For
each infrared marker attached to the anatomical landmark on the human body, relevant
parameters were identified, and their main common characteristics were determined. Next,
the correlation between the parameters and stride length was exploited by employing
principal component regression. Prior to discussing these steps in more detail, preliminaries
that refer to the movement of infrared markers during walking are presented.

2.4.1. Preliminaries

The motion of an infrared marker attached to an anatomical landmark on the human
body during walking can be represented with a curve in space [58]. The current position
of the infrared marker in space is defined as the vector

⇀
r with three components that

represent position coordinates in the x-, y-, and z-direction. These coordinates change with
respect to time (t) during walking:

⇀
r =

⇀
r (t) = (x(t), y(t), z(t)). (1)

The displacement between two consecutive samples d
⇀
r is defined as

d
⇀
r =

⇀
r (ti)−

⇀
r (ti−1), (2)

where
⇀
r (ti) represents the position of the infrared marker measured at the time ti, and

⇀
r (ti−1) represents the preceding position of the infrared marker measured at the time ti−1.
For a small enough time difference

dt = ti − ti−1, (3)

the vector of velocity is defined as:

⇀
v =

d
⇀
r

dt
=

.
r (4)

with the components

vx =
dx
dt

, vy =
dy
dt

, and vz =
dz
dt

. (5)
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Vector
⇀
v has the direction of the tangent on the curve in every time instant. The difference

between velocities in two consecutive samples is defined as

d
⇀
v =

⇀
v (ti)−

⇀
v (ti−1). (6)

For a small enough difference (dt) defined as in (3), the acceleration vector is defined as

⇀
a =

d
⇀
v

dt
=

.
v, (7)

with the components

ax =
dvx

dt
, ay =

dvy

dt
, and az =

dvz

dt
. (8)

The respective velocity and acceleration vectors were calculated for infrared markers
by employing finite difference formulas to approximate numerical derivatives, i.e., the
central difference for interior data points and single-sided differences for endpoints. All the
derivatives were filtered with a moving average filter over 10 data points. The MATLAB
implementations of finite difference formulas (gradient function) and moving average filter
(movmean function) were used.

2.4.2. PCA and Principal Component Regression

PCA transforms the matrix of input data into principal components—eigenvectors that
are essentially orthogonal linear combinations of input parameters—along with eigenvalues
that provide information regarding the distortion of the input data [50,59]. The principal
component with the highest eigenvalue, therefore, represents the direction where the
variance in the dataset is the largest. The main advantage of this technique is reducing
the number of interrelated parameters into a small set of representative and uncorrelated
parameters while retaining as much of the variability present in the original dataset as
possible [49,50].

Firstly, the input data for the PCA were prepared. A matrix X ∈ Rnxp, where n repre-
sents the overall number of strides and p represents the number of potential parameters,
was constructed. Each row of matrix X, which corresponds to one stride, was filled with
the following parameters: the duration of the stride and traveled path in a single stride
in x-, y-, and z-directions of the infrared marker. Mean, median, and range values of
acceleration and velocity vectors were calculated in x-, y-, and z-directions, as well as for
their magnitudes.

Secondly, the PCA was used on the matrix X. The MATLAB implementation of the
PCA was utilized and yielded the output matrices Z ∈ Rnxp of principal component scores
and A ∈ Rpxp that represent an orthonormal matrix whose columns are the eigenvectors
of the covariance matrix of X ordered in the descending order of principal component
variances—eigenvalues of the covariance matrix of X.

The following relation applies between the principal component scores and the in-
put data:

Z = X̃A, (9)

where X̃ ∈ Rnxp is the matrix in which each column mean is subtracted from the corre-
sponding column in the matrix X so that the columns total zero means. The derivation of
the model is based on the following property [50]. Suppose that X̃ is defined as above and
that the corresponding regression equation is:

y = X̃β + ε, (10)

where y represents the vector of n observations on the dependent variable—stride lengths—
measured around the sample mean, β represents the vector of parameters that are yet to
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be determined in the model, and ε represents the error terms. The principal component
regression [50] is defined as

y = Zγ + ε, (11)

where y, Z, and ε are defined as above, and γ is the vector of parameters defined as:

γ = ATβ. (12)

The least squares estimator for γ is defined as:

γ̂ =
(

ZTZ
)−1

ZTy, (13)

where Z and y are defined as above.
This property implies that the predictor variables in regression analysis could be

replaced by their first few principal components [50]. This may not be the best choice to
represent the relationship between stride lengths and input parameters, as these values
do not meet the criterion set for the new step length estimation model, i.e., the minimum
number of input parameters.

Since the matrix A represents an orthonormal basis, principal component regression
can be defined in the reduced form also:

y = Zmγm + εm, (14)

where γm represents a vector of m elements that are a subset of elements of γ, Zm ∈ Rnxm

is a matrix whose columns are the corresponding subset of columns of Z, and εm is the
appropriate error term [50]. The number of input parameters in principal component
regression can, therefore, be arbitrary, hence the value of m was chosen to be one so that the
proposed model would include the minimum number of input parameters. When choosing
the subset elements in (14), one has to eliminate large variances due to multicollinearities.
This is accomplished by deleting the principal components whose variance inflation factors
are large [50]. A variance inflation factor for the j-th variable is defined as the j-th diagonal

element of
(

X̃TX̃
)−1

. In the case of uncorrelated variables, the values of variance inflation
factors are one.

For each parameter, the variance inflation factors were calculated and the parameters
that corresponded to the large values of variance inflation factors were excluded from the
study. Then, the absolute values of the sums of error terms ε1 were calculated for each
remaining parameter, and the parameter that had the minimum value was chosen for use
as the basis of the model. The parameter was the range of the acceleration magnitude. The
chosen relation between the stride length and the range of acceleration magnitude within
the stride is as follows:

dest = a0.1
rangeβ+ ε, (15)

where dest represents the estimated stride length, arange stands for the range of acceleration
magnitude, β ∈ R+ represents the tunable constant, and ε represents the error term. Since
the walking of a non-elderly healthy person can be considered symmetrical in terms of
both spatial and temporal parameters regardless of gender [54], the proposed model can
be used for step length estimation as well.

2.5. Evaluation

The proposed model was evaluated on the dataset, which contains the measure-
ment outputs of four off-the-shelf smartphones for different walking speeds for long-term
walking on the treadmill and on the polygon. The same subjects participated in these
experiments as in those for the derivation of the model. The performance of the proposed
model was compared to the performances of the selected models in terms of accuracy of
stride length estimation and accuracy of estimated walked distance.
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The criteria for the selection of the models used for comparison were based on the pres-
ence of an adequate description for the implementation, the basis of the model, and subse-
quently, the input of the model. As one of the aims of this work was to advance knowledge
and gain more insight into acceleration-based models, a number of representative-related
acceleration-based models was included in the comparison. In particular, those with the
equation for step length estimation similar to the proposed model were selected, so that
all models could be tuned in the same way. As a consequence, the models proposed by
Weinberg [33], Kim et al. [34], and Zijlstra and Hof [42] were selected for the comparison.
In addition, the step-frequency-based model proposed by Tian et al. [21] was included in
the comparison as a reference, since it has the same form of the equation for step length
estimation as the proposed model and achieved steady performance. Table 1 summarizes
the characteristics of the models.

Table 1. Step length estimation models selected for the comparison, their properties, and information about the participants.

Model Input Equation Basis Number of
Subjects

Height of
Subjects

Weinberg [33]

Maximum vertical
acceleration values
within a step amax,
minimum vertical
acceleration values
within a step amin,
tunable constant K

K· 4
√

amax − amin
Inverted

pendulum model Not reported Not reported

Kim et al. [34]

Mean absolute
acceleration value

in walking
direction within a
step amean, tunable

constant K

K· 3
√

amean

Approximate third
root relation of

step length with
mean acceleration

in walking
direction within

a step

1 1.75 m

Zijlstra and
Hof [42]

Vertical pelvis
displacement

within a step V
that is calculated

using double
integration of

acceleration, user’s
leg length L

2·K·
√

2·L·V −V2 Inverted
pendulum model

15 (treadmill
walking), 10 (over
ground walking)

Not reported

Tian et al. [21]
Step frequency F,
user’s height h,

tunable constant K
K·h·
√

F

Approximate
square root

relation of step
length with

step frequency

10 In the range of 1.56
to 1.83 m

The first part of the evaluation was carried out on the data collected during the
experiments on the treadmill where different walking speeds (slow, normal, and fast)
were assessed. Since all the models include tunable constants, the first 5 min of the data
acquired in each assessment track were used for the tuning and the last 10 min of the data
acquired in each assessment track for the performance evaluation. All models were tuned
with personalized constants calculated by employing the least squares estimator as shown
in (13). Personalized constants calculated for each person per smartphone and assessment
track were utilized for the performance evaluation of stride length estimation on the second
part of the same assessment track, resulting in 120 personalized constants calculated for
each model.

The second part of the evaluation was carried out on the data collected on a rectangular
test polygon. Again, all models were tuned with universal constants calculated by merging
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the first 5 min of the data acquired in each assessment track on the treadmill and employing
the least squares estimator as shown in (13). One universal constant was calculated for
each model and employed to calculate the walked distance on the polygon.

For the experiments on the treadmill, in which the models were tuned with person-
alized constants, the performance of the models in terms of the accuracy of stride length
estimation was calculated as the absolute difference between the estimated stride length
and measured stride length. For the experiments on the test polygon, the performance of
the model was calculated as the accuracy of estimated walked distance p as

p =
|dest − d∗|

d∗
·100% (16)

where dest represents the walked distance estimated by the model, and d∗ the exact walked
distance. The accuracy of the estimated walked distance was calculated for the models
tuned with universal constants.

3. Results

In this section, the results of the evaluation of the proposed model are shown in
comparison to the selected models. Firstly, the results of the evaluation on the treadmill
are presented, where the stride length estimation errors for each walking speed per sensor
position are listed. Next, the results of the evaluation on the rectangular-shaped test
polygon are presented, where the path length estimation errors for each of the selected
models are listed.

3.1. Treadmill Experiment
3.1.1. Overall Results

Mean absolute errors (MAEs) and standard deviations (SDs) for the overall stride
length estimation are shown in Table 2. MAEs of stride lengths estimated by the models
range from 6.44 to 10.38 cm, and their SDs vary from 4.68 to 8.31 cm. Results indicate that
the proposed model estimated stride lengths more accurately than other models selected
for the comparison, i.e., approximately 0.5 cm per stride than the model proposed by
Weinberg [33] that yielded the second-best results.

Table 2. MAEs and SDs for overall stride length estimation.

Models MAE [cm] SD [cm]

Acceleration-based

Proposed model 6.44 4.68
Weinberg [33] 6.93 5.49
Kim et al. [34] 8.46 7.37

Zijlstra and Hof [42] 10.38 7.54

Step-frequency-based Tian et al. [21] 9.37 8.31

Figure 4 shows the percentage shares of overestimated and underestimated stride
lengths for the selected models. All models investigated generally tend to underestimate the
majority of stride lengths, and the percentage share of the proposed model is comparable
to the results of the other models selected for comparison.

Figure 5 demonstrates MAEs and the corresponding SDs of the overestimated and un-
derestimated stride lengths. MAEs range from 6.07 to 10.70 cm, whereas the corresponding
SDs vary from 4.50 to 10.58 cm. Results indicate that the proposed model slightly outper-
formed all the selected models in terms of accuracy of stride length estimation. It produced
an MAE of underestimated stride lengths of 6.63 cm, which is 0.48 cm less than the model
proposed by Weinberg [33]. Similarly, the proposed model outperformed all of the other
models in terms of overestimated stride lengths. More specifically, it produced an MAE
of 6.07 cm, which is 0.56 cm less than the model proposed by Weinberg [33]. This model
again yielded the second-best results. The largest difference between the MAEs of the over-
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estimated and underestimated stride lengths was observed with the model proposed by
Kim et al. [34], whereas the smallest difference was observed with the model proposed by
Weinberg [33]. Their values were found to be 1.60 and 0.48 cm, respectively. The difference
between the MAEs of the overestimated and underestimated stride lengths in our proposed
model was 0.56 cm, which is the second lowest amongst all the models compared.
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Figure 4. Percentage shares of overestimated and underestimated stride lengths for the se-
lected models.
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Figure 5. MAEs and SDs of overestimated and underestimated stride lengths for the selected models.
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Since the proposed model produced comparable results to the selected models in
terms of the percentage shares, MAEs, and differences between the overestimated and
underestimated stride lengths, only the overall MAEs of estimated stride lengths per sensor
position and walking speed are listed going forward.

3.1.2. Smartphone at Upper Arm

Figure 6 lays out the results achieved from the models where sensor inputs from
the smartphone attached to the upper arm were analyzed. It includes MAEs and SDs
of stride length estimation for slow, normal, and fast walking speeds. For slow walking
speed, MAEs range from 6.20 to 8.31 cm, and the corresponding SDs vary from 4.60 to
7.16 cm. MAEs range from 6.53 to 7.86 cm and from 6.33 to 12.82 cm for normal and fast
walking speeds, respectively. Furthermore, the values of SDs are in the range of 4.63 to
6.53 cm for normal walking speed and from 4.83 to 11.96 cm for fast walking speed. The
proposed model produced MAEs of 6.20, 6.53, and 6.33 cm for slow, normal, and fast
walking speeds, respectively. It was concluded that our proposed model generated the
best results, outperforming all the models selected for comparison. These models except
the model proposed by Zijlstra and Hof [42] produced MAEs greater by no more than
approximately 3 cm for tested walking speeds. The model proposed by Weinberg [33]
performed very similarly to the proposed model, yet it produced slightly worse results.
The models proposed by Kim et al. [34], Zijlstra and Hof [42], and Tian et al. [21] performed
the worst for fast walking speed.
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Figure 6. MAEs and SDs of the models for the smartphone attached to the upper arm for slow,
normal, and fast walking speeds.

3.1.3. Smartphone at Hand

Figure 7 shows the results of the models when sensor inputs from the smartphone
attached to the hand were analyzed. It represents MAEs and SDs of the stride length
estimation for slow, normal, and fast walking speeds. MAEs range from 6.41 to 11.97 cm
for slow walking speed, whereas for normal and fast walking speeds they range from 7.04
to 18.23 cm and 6.67 to 20.84 cm, respectively. The corresponding SDs range from 4.52 to



Sensors 2021, 21, 3527 15 of 22

9.68 cm, from 4.87 to 16.04 cm, and from 4.92 to 20.40 cm for slow, normal, and fast walking
speeds, respectively. The proposed model produced MAEs of 6.41, 7.04, and 6.67 cm for
slow, normal, and fast walking speeds, respectively. It outperformed all the models selected
for the comparison. The Weinberg model [33] produced the next best results with MAEs
observed to be greater by 0.49, 0.72, and 0.86 cm for slow, normal, and fast walking speeds,
respectively. The models proposed by Kim et al. [34] and Tian et al. [21] performed very
similarly for tested walking speeds. Notably, the model proposed by Zijlstra and Hof [42]
performed the worst.
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Figure 7. MAEs and SDs of the models for the smartphone attached to the hand for slow, normal,
and fast walking speeds.

3.1.4. Smartphone at Pelvis

Figure 8 shows the results of the models where sensor inputs from the smartphone
attached to the pelvis were investigated. It includes MAEs and SDs of stride length
estimation for slow, normal, and fast walking speeds. For slow walking speed, MAEs
range from 6.01 to 7.95 cm, and the corresponding SDs vary from 4.26 to 5.80 cm. MAEs
range from 6.39 to 7.84 cm and from 5.94 to 7.66 cm for normal and fast walking speeds,
respectively. Whereas, the values of SDs are in the ranges of 4.64 to 7.16 cm for normal
walking speed and 4.43 to 6.24 cm for fast walking speed. Acceleration-based models
performed quite similarly for all walking speeds outperforming the step-frequency-based
model proposed by Tian et al. [21]. The proposed model produced MAEs of 6.01, 6.47, and
6.31 cm for slow, normal, and fast walking speeds, respectively. It outperformed all the
models selected for comparison for slow walking speed. Whereas, for normal and fast
walking speeds, the models proposed by Kim et al. [34] and Weinberg [33] outperformed
the proposed model. They produced MAEs of 6.39 and 5.94 cm, respectively. The proposed
model yielded performances similar to those observed when attached to the hand.
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Figure 8. MAEs and SDs of the models for the smartphone attached to the pelvis for slow, normal,
and fast walking speeds.

3.1.5. Smartphone at Thigh

Figure 9 shows the results of the models with sensor inputs from the smartphone
attached to the thigh. It includes MAEs and SDs of stride length estimation for slow,
normal, and fast walking speeds. MAEs range from 6.21 to 7.95 cm for slow walking
speed, whereas they range from 6.64 to 7.75 cm and from 6.31 to 7.84 cm for normal and
fast walking speeds, respectively. The corresponding SDs range from 4.52 to 6.15 cm,
from 4.68 to 5.56 cm, and from 4.76 to 5.97 cm for slow, normal, and fast walking speeds,
respectively. Results indicate that all the models performed very similarly. Our proposed
model produced MAEs of 6.21, 6.75, and 6.31 cm for slow, normal, and fast walking speeds,
respectively. It outperformed all the models selected for the comparison for slow walking
speed, whereas the model proposed by Kim et al. [34] outperformed all the models for
normal walking speed producing an MAE of 6.64 cm. The proposed model and the model
proposed by Kim et al. [34] produced the same results for fast walking speed. The proposed
model performed in a comparable manner as when in the hand and at the pelvis.

3.2. Evaluation of Walking in the Test Polygon

Table 3 presents results from the evaluation of walking in the test polygon for the
selected models when smartphones were attached to the upper arm, hand, pelvis, and
thigh. It includes MAEs that range from 4.48 to 21.98% and SDs that range from 2.86 to
14.09%. The rightmost column includes overall MAEs and corresponding SDs of the models
for all tested smartphone positions. The proposed model produced an overall MAE of
8.27% outperforming all acceleration-based models selected for the comparison in terms of
overall MAEs. This result indicates that our proposed model was least affected by walking
speed and smartphone position among acceleration-based models. More specifically, our
proposed model performed better when smartphones were attached to the upper arm and
hand. The model proposed by Weinberg [33] performed similarly for these smartphone
positions. However, it performed worse than our proposed model for the pelvis and
thigh positions resulting in an overall MAE of 10.01%. In contrast, the model proposed
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by Kim et al. [34] performed better for the pelvis and thigh positions than the upper arm
and hand positions. It produced an overall MAE of 12.46%, which was quite similar to the
overall MAE of the model proposed by Zijlstra and Hof [42]. Notably, the step-frequency-
based model proposed by Tian et al. [21] outperformed all the acceleration-based models
by producing an overall MAE of 4.75%. This model had the advantage on the test polygon,
possibly due to the inclusion of the user’s height.
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Figure 9. MAEs and SDs of the models for the smartphone attached to the thigh for slow, normal,
and fast walking speeds.

Table 3. MAEs and SDs of walked distances estimated by the selected models for smartphones attached to the upper arm,
hand, pelvis, and thigh.

Models
Upper Arm Hand Pelvis Thigh Overall

MAE [%] SD [%] MAE [%] SD [%] MAE [%] SD [%] MAE [%] SD [%] MAE [%] SD [%]

Acceleration-
based

Proposed model 5.85 4.45 6.83 3.76 8.42 4.44 11.99 5.37 8.27 4.96
Weinberg [33] 6.84 5.91 5.94 6.31 8.69 5.15 18.58 9.97 10.01 8.51
Kim et al. [34] 16.86 7.52 19.43 14.09 5.07 4.58 8.47 5.41 12.46 10.29

Zijlstra and
Hof [42] 7.00 3.89 21.98 13.30 11.89 7.07 9.60 6.37 12.62 9.91

Step-
frequency-

based
Tian et al. [21] 4.70 3.09 5.26 3.66 4.48 2.86 4.54 2.98 4.75 3.05

4. Discussion

In this section, the results and findings are discussed starting with the functional
comparison of the proposed model with the other models. Results obtained during the
evaluation on the treadmill and test polygon are discussed prior to presenting limitations
of this study and future research directions.

4.1. Functional Comparison

Herein, a new step length estimation model that utilizes acceleration magnitude as
the main input has been proposed. It is, therefore, unaffected by smartphone orientation.
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This offers an important advantage over several models that include acceleration and
need properly oriented smartphone placement on the body, e.g., the models proposed
by Weinberg [33], Kim et al. [34], and Zijlstra and Hof [42]. The inputs used in these
models include acceleration in walking direction (Kim et al. [34]) and vertical acceleration
(Weinberg [33] and Zijlstra and Hof [42]). Similar to the proposed model, step-frequency-
based models are also unaffected by smartphone position.

Moreover, the proposed model does not include any user-specific parameters, such
as the user’s height or leg length, unlike several other models. For example, the model
proposed by Tian et al. [21] includes the user’s height, whereas the model proposed by
Zijlstra and Hof [42] includes the user’s leg length. Including such parameters in the model
requires users to enter them prior to starting the process of step length estimation.

One tunable constant was included in the proposed model. Similar to the proposed
model, one tunable constant is also included in all the models selected for the comparison,
i.e., the models proposed by Tian et al. [21], Weinberg [33], Kim et al. [34], and Zijlstra
and Hof [42]. Moreover, the equation for step length estimation in these models has a
similar form, so all models can be tuned in a similar way by utilizing the least squares
estimator. The tuning of models that include more than one tunable constant would
be more computationally complex when compared to the tuning of the model with one
tunable constant. In general, it depends on the placement of the tunable constant in the
step length estimation equation.

To sum up, the proposed model calculates step length by utilizing acceleration magni-
tude as the main input offering an important advantage over compared acceleration-based
models that need properly oriented smartphone placement on the body. In addition, it
also includes one tunable constant making it less computationally complex to tune when
compared to the models that include two or more tunable constants. Moreover, it does
not include any user-specific parameters, such as the user’s leg length or height. Due to
these characteristics, the proposed model could present an appealing alternative amongst
acceleration-based models that could be used for step length estimation.

4.2. Treadmill Experiment
4.2.1. Overall Results

Results shown in Table 2 indicate that the proposed model outperformed all the models
(acceleration-based and step-frequency-based) in terms of the overall accuracy of stride
length estimation by producing an MAE of 6.44 cm. Results presented in Figure 5 indicate
that the proposed model performed in a comparable manner in terms of overestimated and
underestimated stride lengths. The acceleration-based model proposed by Weinberg [33]
performed similar to our proposed model, yet slightly worse. The model proposed by
Kim et al. [34] produced a slightly larger error of underestimated stride lengths. All models
that include user-specific parameters, i.e., the models proposed by Tian et al. [21] and
Zijlstra and Hof [42], performed the worst. All models selected for comparison generally
tend to underestimate the majority of stride lengths.

4.2.2. The Impact of Smartphone Position and Walking Speed

The results obtained from Figures 6–9 indicate that the walking speed and smart-
phone position did not affect the performance of the proposed model: the MAEs of stride
length estimation ranged from 6.01 to 7.04 cm indicating a steady performance in different
circumstances when tuned with personalized constants.

When the smartphone was attached to the upper arm, the proposed model outper-
formed all the models selected for the comparison regardless of walking speed. Our
proposed model performed in a comparable manner when smartphones were attached to
the hand, pelvis, and thigh. Notably, the model proposed by Zijlstra and Hof [42] exhibited
a less favorable performance for normal and fast walking speeds when attached to the
hand or the upper arm. This model was derived by observing the vertical displacement
of the center of body mass during walking, thus not emulating the motion of the hand
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during walking. The model proposed by Tian et al. [21] yielded steady performance for all
tested smartphone positions, but it was outperformed by the model proposed by Wein-
berg [33]. The latter performed in a manner comparable to our proposed model, yet worse
on average. The model proposed by Kim et al. [34] also yielded steady performance for all
tested smartphone positions, especially when smartphones were attached to the thigh and
pelvis. Nevertheless, this model was affected by walking speed for the hand and upper arm
positions similar to the models proposed by Tian et al. [21] and Zijlstra and Hof [42]. When
smartphones were attached to the pelvis and thigh, the models were mostly unaffected by
walking speed, as the MAEs were found to be in the range of 5.94 to 7.95 cm.

4.3. Evaluation in the Test Polygon

Overall, the results in Table 3 indicate that the proposed model outperformed all
compared acceleration-based models. Furthermore, results also indicate that our proposed
model was the least affected by walking speed and smartphone position amongst the
acceleration-based models, i.e., the models proposed by Weinberg [33], Kim et al. [34],
and Zijlstra and Hof [42], when tuned with one universal constant. Nevertheless, the
performance of the proposed model was worse when compared to the step-frequency-
based model proposed by Tian et al. [21], which outperformed all the models selected for
comparison. This model yielded steady performance for all smartphone positions. It also
includes the user’s height, and this information might have given the model an advantage
on the test polygon where participants selected the walking speed to their preference.

4.4. Limitations and Future Directions

The results of the proposed model are very promising and on par with the previously
discussed acceleration-based models making it an appealing alternative that warrants
future research. Before presenting future directions, several limitations of this study
are discussed.

Firstly, more subjects could be included in the experiments. In addition, these experi-
ments could also include scenarios of typical smartphone users, e.g., the smartphone placed
in a pocket or held in the hand so that the user is reading the content on the smartphone’s
screen. By forgoing the tracking of smartphones using the optical measuring system, these
scenarios could be simulated, and obtained results would reflect the performance of the
models under more real-life circumstances. Secondly, including the minimum number of
input parameters in the proposed model limited the search space of the model. By allowing
more than one input parameter or more than one tunable constant in the model, a more
accurate solution could be obtained.

The results indicate that our proposed model outperformed all acceleration-based
models selected for the comparison. It also outperformed the step-frequency-based model
proposed by Tian et al. [21], but only in the experiments on the treadmill, where it was tuned
with personalized constants. One direction for future research would be to investigate the
link between the values of tunable constant under different experimental circumstances.
The result of this research could be the generation of an algorithm for automatically
tuning the model. Another direction for future research could be to extend the proposed
model with additional parameters, e.g., the user’s height or step frequency, to improve
the performance.

5. Conclusions

In this paper, we presented a novel step length estimation model based on acceleration
magnitude input. To the best of our knowledge, we were the first to employ PCA for the
derivation of the model, which is based on the kinematics of motion of the human body
during walking. The proposed model is unaffected by smartphone orientation. This is an
important advantage over compared acceleration-based approaches that all need properly
oriented smartphone placement at the body.
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We evaluated the proposed model at four typical smartphone positions in slow, nor-
mal, and fast walking speeds on the treadmill, where we monitored stride length estimation
error, and on the rectangular-shaped test path where we monitored the estimated walked
distance for self-selected walking speed. Altogether, 10 persons participated in the experi-
ment doing 15-min-long walks. Results indicate that the proposed model outperformed all
acceleration-based models selected for comparison. Furthermore, it was least affected by
walking speed and smartphone position amongst acceleration-based models.

All the data used for evaluation are openly available in a repository that we have
already established [56] to promote the best practices, increase the comparability of eval-
uation results, and foster collaboration to share and exchange information. All the other
researchers are, therefore, kindly invited to use the data and to contribute to the repository.
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