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Abstract: This study focuses on the feasibility of collaborative robot implementation in a med-
ical microbiology laboratory by demonstrating fine tasks using kinesthetic teaching. Fine tasks
require sub-millimetre positioning accuracy. Bacterial colony picking and identification was used
as a case study. Colonies were picked from Petri dishes and identified using matrix-assisted laser
desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry. We picked and identified
56 colonies (36 colonies of Gram-negative Acinetobacter baumannii and 20 colonies of Gram-positive
Staphylococcus epidermidis). The overall identification error rate was around 11%, although it was
significantly lower for Gram-positive bacteria (5%) than Gram-negative bacteria (13.9%). Based on
the identification scores, it was concluded that the system works similarly well as a manual operator.
It was determined that tasks were successfully demonstrated using kinesthetic teaching and general-
ized using dynamic movement primitives (DMP). Further improvement of the identification error
rate is possible by choosing a different deposited sample treatment method (e.g., semi-extraction,
wet deposition).

Keywords: learning from demonstration; kinesthetic teaching; sub-millimetre accuracy; mass
spectrometry; MALDI; colony picking

1. Introduction

Clinical microbiology laboratories play a critical role in preventing, diagnosing and
treating infectious diseases caused by microorganisms (e.g., bacteria, fungi). In order to
identify which bacteria cause an infection, microbiologists often cultivate clinical samples on
solid media in Petri dishes, after which they pick and prepare bacterial colonies according
to the chosen identification method. In the past two decades, mass spectrometry (MS)
became the commonly used methodology for identifying bacteria and fungi, since it is
accurate, faster, and less labour-intensive than other methods [1]. Matrix-assisted laser
desorption/ionization (MALDI) time-of-flight (TOF) has been established as the prominent
MS method due to its high workflow efficiency (i.e., low turnaround time and reduced
cost per identification) [2,3]. This is also partially achieved through direct deposition of
microorganism colonies on the MALDI target plate, where they are overlaid by a matrix
solution without requiring additional sample manipulation.

Colony picking and depositing have traditionally been done manually with loops,
toothpicks, or pipette tips [4,5]. However, since mistakes may not be apparent until much
later, experienced technicians are usually required for picking the right colony. Different
automated systems have been developed to reduce the burden on these technicians [6].
Automated systems allow greater sample throughput and reduce the error rate [7,8]. Al-
though multiple colony-picking robot designs were proposed in the past, most focused
on sample deposition in microtiter wells [9–12], while only a few focused on deposition
on target plate required for MALDI-TOF analysis [8]. Some automated systems are room-
sized, expensive, and provide high sample throughput, which most laboratories might
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not require [6]. Even the tabletop designs [8], which are cheaper and smaller, have the
downside of being designed only for a specific task (e.g., colony picking and deposition).

The developments in the field of collaborative robots present new opportunities for
laboratory automation. Collaborative robots are designed for safe robot applications within
the operator’s proximity. Their integrated force sensors detect possible collisions and enable
the operator to move the robot by grabbing it and moving individual segments. Therefore,
operators can teach the robot a new task by demonstrating it instead of programming it.
This approach is called kinesthetic teaching and is one of the learning-from-demonstration
(LfD) approaches [13,14]. Most research focuses around coarse tasks where the required
accuracy of the demonstration is still small enough for users to successfully transfer the
desired movement on a robot, using kinesthetic teaching [15–18]. However, in the labo-
ratory environment, many tasks require fine movements, where sub-millimetre accuracy
is required. Teleoperation [19–22] and cooperative robot tools (CRT) [23,24] are the two
established approaches for the demonstration of fine movements. However, they require
additional input devices to control the robot, which inexperienced operators cannot use
sufficiently. Additionally, it has been shown that although the two approaches perform
better, it is possible to achieve sub-millimetre accuracy with the kinesthetic teaching as
well [25]. Therefore it might be possible to successfully integrate collaborative robots
into the laboratory environment by teaching different tasks (e.g., colony picking) using
kinesthetic teaching.

However, the demonstration must be generalized to adapt the task to different condi-
tions (e.g., different start/end positions, via points). Many different methods tackle task
generalization [26–29]. Dynamic movement primitives (DMP) is a method that generalizes
the task trajectory in the form of a second-order differential equation, for which only one
demonstration is needed [26]. Although it cannot adapt the task trajectory to interme-
diate via points, it can adapt it to any starting and end position (i.e., in the case of the
colony-picking task, the trajectory end position is adjusted based on the selected bacterial
colony position).

An important thing to consider when adapting the collaborative robot to different
tasks is its end-effector tool. Due to considerable differences in tasks, it is necessary to
have specialized robot manipulator end-effector tools that can be replaced when needed.
For example, the colony-picking task requires an end-effector that allows precise colony
position detection, picking, and deposition.

In our study, we analyzed whether collaborative robots could be used in the laboratory
environment to execute fine tasks, demonstrated by the operator using kinesthetic teaching.
As a case study, the colony picking and depositing for MALDI-TOF MS analysis was chosen.
We developed a specialized end-effector tool capable of precise colony detection, picking
and deposition. Precise colony position detection was enabled by a combination of an
RGB camera and a high-precision 2D laser profile measurement system that allowed the
construction of accurate colony 3D models. A stainless steel needle was used to pick and
deposit the colonies. We used the DMP method to generalize the picking and deposition
task. We picked and deposited 56 bacterial colonies and identified them using Bruker
Biotyper MALDI-TOF mass spectrometer to determine the system’s performance. Based
on the identification scores, we determined the system’s error rate.

2. Materials and Methods
2.1. Experimental Setup

The experimental setup consisted of robot manipulator Panda (Franka Emika, GmbH,
Munich, Germany), mass spectrometer MALDI Biotyper (Bruker, Inc., Billerica, MA, USA),
a thermal sterilizer SteriMax smart (WLD-TEC, GmbH, Arenshausen, Germany), and
disposable MALDI target plates MBT Biotarget 96 (Bruker, Inc.). The end-effector tool
attached to the robot manipulator consisted of an RGB camera a2A3840-45ucPRO (Basler,
GmbH, Ahrensburg, Germany), a 2D laser profile measurement system ZG2-WDS8T
(Omron Industrial Automation, Inc., Hoffman Estates, IL, USA), force sensor Nano17 (ATI
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Industrial Automation, Inc., Apex, NV, USA), a feedback 360° high-speed servo motor
(Parallax, Inc., Rocklin, CA, USA), and a stainless steel needle (Figure 1).

The Panda robot was used as a manipulator while also serving as an input device dur-
ing kinesthetic teaching. Using both the RGB camera and the 2D laser profile measurement
system, we detected the bacterial colony and determined its position with sub-millimetre
accuracy. The RGB camera acquired an image of the Petri dish (Figure 2a), based on which
the operator could determine an approximate position of the selected bacterial colony.
The area around the approximate position was then scanned with the 2D laser profile
measurement system, which provided the operator with a detailed 3D model of the area
(Figure 2b), including the bacterial colony. The scan area dimension was 8 × 4 mm. The 2D
laser profile measurement system resolution is 13 µm in x direction and 1 µm in z direction.
Defined by the robot movement, the generated 3D model resolution in y direction was
40 µm. The generated 3D model provided the operator with the colony’s exact position.
The colonies were picked and deposited using a stainless steel needle (Figure 2c). For the
picked colonies to be analyzed with MALDI Biotyper mass spectrometer, they first had
to be deposited on MBT Biotarget 96 target plates (Figure 2d). However, the contact forces
were significant due to the target plate’s stiffness. Therefore a force sensor was used to
adjust the deposition trajectory in a vertical direction based on the measured forces. For
successful deposition, it was also necessary to rotate the needle. This was achieved by
using a 360° servo motor with position feedback. The position feedback was necessary
for an accurate picking of bacterial colonies. After each colony deposition, the needle was
sterilized using 96% denatured ethyl alcohol and a thermal sterilizer SteriMax smart.

Figure 1. Overview of the experiment setup (left) and the end-effector tool (right).

High-level control was managed using MATLAB Simulink 2019b (The MathWorks,
Inc., Natick, MA, USA). It was used to connect individual units (e.g., robot manipulator,
RGB camera, 2D laser profile measurement system), handle the experiment workflow, and
save the measured data from Panda robot (end-effector position and orientation, joint
positions, joint velocities, etc.), Nano17 force sensor (force and torque vectors), RGB camera
(acquired image), and 2D laser profile measurement system (3D model). The data from the
Panda robot and the force sensor was acquired with a 1 kHz sampling frequency.

A crucial issue that also had to be overcome was the robot’s kinematic model accuracy.
We calibrated the robot’s Denavit-Hartenber parameters in order to reduce the average
end-effector’s positioning error to 0.1 mm [25].
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Figure 2. Overview of the experiment workflow: an image of a petri dish acquired with RGB
camera (a), a 3D model of the selected bacterial colony generated from 2D laser profiles (b), the
bacterial colony picking process (c), and the bacterial colony deposition process (d).

2.2. Learning from Demonstration and Trajectory Generation

Learning from demonstration is an approach where the operator demonstrates the
task instead of programming it. So-called movement primitives are used to learn from the
demonstrations. Dynamic movement primitives (DMP) is one of many different methods
that can be used [26]. It generalizes the motion by encoding the trajectory as a second-order
spring-damper system with an additional non-linear function that determines the shape of
the trajectory:

τp̈D(t) = αP(βP(g − pD(t))− τṗD(t)) + f (x), (1)

where τ represents the temporal scaling term, pD(t), ṗD(t), and p̈D(t) represent the DMP’s
position, velocity, and acceleration, g a point attractor of the second-order spring-damper
system, and parameters αP and βP defining the dynamics of the spring-damper system.
f (x) is the non-linear function representing the forcing term and determines the shape of
the trajectory. It approximates the demonstrated trajectory with a linear combination of
multiple Gaussian basis functions and their corresponding weights, where the weights are
taught from a demonstration using linear regression. To avoid explicit time-dependency, it
is a function of a phase variable x. Phase variable monotonically decreases towards 0, at
which point the forcing term diminishes. Therefore we can be sure that for any starting
position, the system will generate a trajectory that is forced by a forcing term f (x), that the
trajectory will be smooth, and that it will finish at g when the forcing term vanishes. DMP
can encode arbitrary movement information (e.g., position, orientation). However, for our
study, it was sufficient to encode only the movement position as seen in Figure 3.
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There were two main reasons why we decided to use a DMP. Firstly, it requires
only one demonstration. This is necessary for the collaborative robots in the laboratory
environment since the tasks should be taught in as little time as possible. Secondly, it is
possible to adapt the learned task to different start and end positions while generating
a smooth trajectory. In our case study, we use this to adapt the end position during the
picking process and the start and end position during the deposition process (Figure 3).

Figure 3. Using DMP to generalize demonstrated trajectories of the picking (left) and deposition
(right) task. In order to demonstrate the quality of generalization, the end position of the picking
process is modified, whereas both the start and end position are modified for the deposition process.

During the colony deposition, however, the DMP-generated trajectory was addition-
ally compensated in order to avoid significant contact forces. Since the contact forces had
to be small (e.g., bellow 1 N), we additionally compensated the trajectory in the vertical
direction based on the input from the force sensor placed on the end-effector as seen in
Equation (2) to achieve satisfactory deposition.

pR(t) = pD(t) + K
∫

f(t) dt; K =

 0
0

KZ

, (2)

where pR(t) represents the robot position, pD(t) the DMP-based reference position, and
f(t) representing the force input measured by the Nano17 sensor. K represents an force
control gain.

Using the DMP method and the force compensation allowed us to achieve satisfactory
picking and deposition of a bacterial colony.

2.3. Experiment Protocol

For our experiment, we picked and deposited 56 colonies of two different bacterial
species (Gram-negative Acinetobacter baumannii, Gram-positive Staphylococcus epidermidis)
cultured on blood agar. At the start of the experiment, the operator demonstrated the
picking process, while the deposition process was generated programmatically. Both
demonstrations were then generalized using a DMP (Figure 3). Then, before each picking
process, the operator selected the colony to be identified from an image. After its 3D model
was generated, it determined its exact position by selecting the colony’s peak. The selection
process could be automated but was performed manually for the purposes of this study.
The operator defined the spot on the target plate on which the extracted colony should
be deposited, after which the robot manipulator picked and deposited the colonies. The
end-effector needle was also rotated around its axis during the deposition task to ensure as
uniform a deposition as possible. Then, the needle was sterilized using 96% denatured ethyl
alcohol and a thermal sterilizer. One deposition was made for each pick. They were then
manually overlaid with the matrix solution. After a short drying period, the target plate
was placed in the MALDI Biotyper mass spectrometer, and identification of each target was
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performed. Each spot was given, together with the identification, a corresponding score,
indicating the reliability of the identification.

3. Results

In the following chapter, we present the results, which are relevant for the discussion.
We present separate results for the picking, deposition and identification process. While the
identification process results will provide us with the overall performance of our system,
the picking and the deposition process will give us additional insight into the performance
of those crucial steps, which will help us evaluate the system additionally.

3.1. Picking Process

In order to evaluate the picking process, we acquired multiple colony 3D models
before and after the picking process. We plotted these models using a top-down heatmap
(Figure 4). While each pixel position represents a different coordinate on a 3D model’s x-y
plane with the dimensions of 8 mm × 4 mm, its color represents the 3D model’s z value in
each coordinate. The color changes from blue to yellow depending on the z value, where
deep blue depicts the lowest z values, and bright yellow depicts the highest z values. We
omitted color legends that would provide exact z values to increase the figure’s clarity. We
believe the absolute z values, in this case, are not so relevant since we are more interested
in the overall change in shape. However, as a reference, the colony, which was by far
the biggest and much bigger than the rest (Figure 4, top–left), had maximum dimensions
of 1.7 × 2.1 × 0.5 mm.

Figure 4. Overview of the picking process. Multiple different colonies are plotted before (top) and
after (bottom) the picking process.

To evaluate the picking process, we also calculated the difference in the colony volume.
We defined an area under which the volume should be calculated for each colony. The
calculations were done on six different colonies, which were a good representation of the
whole population. In Figure 4 and in Table 1, they were sorted from left to right based on
the initial volume.

Table 1. Estimated colony volume change before and after the picking process.

ID 1 2 3 4 5 6

Initial volume [mm3] 1.44 0.78 0.46 0.11 0.06 0.02
Final volume [mm3] 0.41 −0.04 0.04 0.05 0.007 −0.02
Relative change [%] −72 −105 −91 −54 −99 −193

3.2. Deposition Process

The deposition quality depended heavily on the contact force between the end-effector
needle and the MALDI target plate. Position compensation was implemented in the
vertical axis to limit the contact force. On the left plot of Figure 5, the contact force is plotted
alongside the z position. Both are presented with a variance plot since the data was taken
from all 56 depositions. The mean force rarely exceeds 1 N, mostly during the initial contact.
After the initial contact is compensated (trajectory phase greater than 0.3), the mean force is
0.29 N ± 0.35 N. The corresponding mean pose compensation is around 0.5 mm.
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Figure 5. The contact force between the end–effector needle and MALDI target plate and the
corresponding compensated z position (left), and an image of deposited colonies on the MALDI
target plate after being covered with the matrix solution (right).

The final result of deposition can be observed on the right image of Figure 5. The
image was taken before the identification process when the samples had already hardened,
and the layer of matrix solution was put over them.

3.3. Identification

The picked and deposited colonies have been identified with MALDI Biotyper mass
spectrometer. Each deposition got an identification of the organism and a corresponding
score indicating the level of confidence in the identification. While scores above 2.0 are
considered highly reliable, identification is considered invalid when scores are lower than
1.7, even if some organism is identified [8].

For our experiment, we extracted 56 bacterial colonies in total. Of these, 36 were
A. baumannii and 20 S. epidermidis, and 6 were considered invalid (5 A. baumannii and
1 S. epidermidis) as their scores were too low. The average scores with the corresponding
standard deviation are presented in Table 2. The scores were presented separately for
successfully identified samples and all samples since the low scores of invalid samples
skewed the average score and, therefore, the picture of general performance.

Table 2. Identification process results.

Acinetobacter baumannii Staphylococcus epidermidis

No. of samples 36 20
No. of “score below 1.70” 3 1
No. of “no peaks found” 2 0

No. of total errors 5 1
Total errors [%] 13.9 5

Average identification score w/o errors 2.05 ± 0.21 2.06 ± 0.13
Average identification score with errors 1.94 ± 0.54 2.04 ± 0.16

4. Discussion

In our study, we tested whether collaborative robots, together with kinesthetic teaching,
are a viable option for tasks that require sub-millimetre positioning accuracy. Our case
study was a colony picking and identification process where individual bacterial colonies
are picked from the Petri dish, deposited on the MALDI target plate and identified with a
MALDI-TOF mass spectrometer. The study, therefore, consisted of multiple independent
problems. Not only was it a question of whether the task can be demonstrated and
generalized accurately enough, but also whether the available sensors and end-effector
design will allow for a good adaptation of tasks to different conditions. The overall success
can be measured with the number of successful identifications. However, results from the
picking and deposition process give us additional insight.
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The picking process was analyzed on six different colonies. In order to analyze them,
we used the generated 3D models of bacterial colony area before and after the picking.
It can be seen that in all cases, the colony almost completely disappears (Figure 4). Only
in the case of the biggest colony, its shape is still visible, although reduced in size. The
initial dimensions of that colony were too big for its whole volume to be picked in one
iteration. Moreover, in most cases, the area where the colony used to be is not darker than
its immediate neighbouring area. That means that the picking was done accurately, without
any unnecessary picking of the agar layer under the colony. All this can be additionally
confirmed by the measured volumes (Table 1). In all cases, the bacterial colony volumes
were significantly reduced, where only in some cases there was some extraction of the agar
layer as well, but in insignificant volumes. This is also the case for the bacterial colony with
the smallest volume, where its dimensions were so small that it was physically impossible
not to pick some of the agar layer as well. The absolute differences in picked volumes can
be explained by the structure of the bacterial colonies themselves since they are prone to
stick together due to their viscosity. All in all, the picking process results show that it is
possible to demonstrate a fine task movement and successfully generalize it using a DMP.

Regarding the deposition process, we can see from the plot (Figure 5, left) that the force
compensation works well. Throughout the process, the z position is actively compensated.
Smaller contact forces allowed better deposition and prevented the damaging of equipment.
During the initial contact, the contact force exceeds 1 N but is consistently compensated
so that the mean force after the initial contact is approximately 0.3 N. However, if we
look at the image of the deposited colonies (Figure 5, right), we can see that although
the samples are all within their designated spots, they are deposited differently. Most are
distributed uniformly over the whole spot, while some remain concentrated in smaller
areas. The concentrated areas are not desirable since they can cause poorer identification
results. However, after a visual analysis, we could not determine the features that could
reliably predict poor identification results. For example, samples A1 and A2 achieved
excellent identification scores with their samples being uniformly distributed, while at the
same time, sample A4 was not identified, although it achieved similar levels of uniformity.
On the other hand, samples C3 and C4 obtained excellent scores without achieving similar
levels of uniformity as A1 and A2. That means that additional factors besides the sample
distribution might influence the final identification process. Since the deposition process
was consistent (e.g., movement trajectory, forces), the variation in deposition quality can
be partially attributed to the physical structure of colonies and their placement on the
picking needle. We mitigated the second issue by modifying the shape of the deposition
trajectory and rotating the needle around its axis throughout the deposition process. We
modified the deposition trajectory by defining it programmatically instead of using a human
demonstration. During the testing, demonstrations were used to define the deposition
trajectory as well. However, since the deposition process was unreliable, we decided to
use a well-defined trajectory in order to reduce the number of potential influences on the
quality of deposition. This trajectory was then used also during the main experiment.
Although a pre-programmed trajectory was used as a demonstration, DMP still proved to
be an appropriate method to generalize a movement since it adapted the taught movement
to different start and end positions.

Furthermore, the identification results could be improved by additional deposition
sample treatment. In their study, Chudejova et al. significantly reduced the identification
error rate with additional treatment of deposited sample by applying 1 microliter of 70%
formic acid. Whether they deposited the sample first and covered it with formic acid (e.g.,
semi-extraction), or they first pipetted the formic acid and then suspended the colony
sample in the acid (e.g., manual wet deposition), the identification error rate dropped
significantly. Therefore, we could expect an additional decrease in the identification error
rate by adopting either the semi-extraction or the manual wet deposition method. When
using the direct spotting method (no additional formic acid), we achieved the identification
results presented in Table 2, where almost 11% of the samples could not be identified (13.9%
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of A. baumannii and 5% of S. epidermidis). However, these results are comparable to the
manual direct spotting of Chudejova et al. We conclude that our system can consistently
pick and deposit bacterial colonies, with final identification results comparable to the
manual deposition. However, the identification results could be additionally improved by
choosing the semi-extraction or wet-deposition method.

5. Conclusions

We used a collaborative robot to study whether it is possible to use kinesthetic teaching
for tasks where sub-millimetre accuracy is required. We chose a medical microbiology
laboratory application for the case study, specifically a bacterial colony picking and iden-
tification process using mass spectrometry. We designed a specialized robot end-effector
that, besides the picking and deposition, also enabled the localization of bacterial colonies,
creation of their 3D model and control of contact forces. The tasks were demonstrated by
an operator and then generalized using a DMP. Although the workflow of colony detec-
tion, picking and deposition worked well, the overall identification error rate was almost
11% (13.9% of A. baumannii and 5% of S. epidermidis). The error rate is comparable to the
manual deposition, however, it could be additionally reduced by applying semi-extraction
or wet deposition method. We conclude that we successfully demonstrated fine tasks in
the microbiological laboratory environment using kinesthetic teaching and generalizing
them using DMPs. However, further system improvements are possible by modifying the
deposited sample treatment.

Author Contributions: Conceptualization, A.B., K.S. and M.M. (Matjaž Mihelj); Data curation, A.B.;
Formal analysis, K.S. and M.M. (Matjaž Mihelj); Methodology, A.B., K.S. and M.M. (Matjaž Mihelj);
Supervision, M.M. (Marko Munih); Writing—original draft, A.B.; Writing—review & editing, A.B. All
authors have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge the financial support from the Slovenian Research Agency
(research core funding No. P2-0228).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

LfD learning from demonstration
MS mass spectrometry
MALDI matrix-assisted laser desorption/ionization
TOF time of flight
CRT cooperative robot tool

References
1. Leber, A.L. Clinical Microbiology Procedures Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2020.
2. Buchan, B.W.; Ledeboer, N.A. Emerging technologies for the clinical microbiology laboratory. Clin. Microbiol. Rev. 2014, 27,

783–822. [CrossRef] [PubMed]
3. Patel, R. Matrix-assisted laser desorption ionization–time of flight mass spectrometry in clinical microbiology. Clin. Infect. Dis.

2013, 57, 564–572. [CrossRef] [PubMed]
4. Dadoun, R. Case study: Automation’s impact on productivity and turnaround time. MLO Med. Lab. Obs. 2002, 34, 36–38.

[PubMed]
5. Bizzini, A.; Durussel, C.; Bille, J.; Greub, G.; Prod’Hom, G. Performance of matrix-assisted laser desorption ionization-time of

flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J. Clin.
Microbiol. 2010, 48, 1549–1554. [CrossRef] [PubMed]

6. Croxatto, A.; Prod’hom, G.; Faverjon, F.; Rochais, Y.; Greub, G. Laboratory automation in clinical bacteriology: What system to
choose? Clin. Microbiol. Infect. 2016, 22, 217–235. [CrossRef] [PubMed]

7. Dauwalder, O.; Landrieve, L.; Laurent, F.; De Montclos, M.; Vandenesch, F.; Lina, G. Does bacteriology laboratory automation
reduce time to results and increase quality management? Clin. Microbiol. Infect. 2016, 22, 236–243. [CrossRef] [PubMed]

http://doi.org/10.1128/CMR.00003-14
http://www.ncbi.nlm.nih.gov/pubmed/25278575
http://dx.doi.org/10.1093/cid/cit247
http://www.ncbi.nlm.nih.gov/pubmed/23595835
http://www.ncbi.nlm.nih.gov/pubmed/12024702
http://dx.doi.org/10.1128/JCM.01794-09
http://www.ncbi.nlm.nih.gov/pubmed/20220166
http://dx.doi.org/10.1016/j.cmi.2015.09.030
http://www.ncbi.nlm.nih.gov/pubmed/26806135
http://dx.doi.org/10.1016/j.cmi.2015.10.037
http://www.ncbi.nlm.nih.gov/pubmed/26577142


Sensors 2022, 22, 2862 10 of 10

8. Chudejova, K.; Bohac, M.; Skalova, A.; Rotova, V.; Papagiannitsis, C.C.; Hanzlickova, J.; Bergerova, T.; Hrabák, J. Validation of
a novel automatic deposition of bacteria and yeasts on MALDI target for MALDI-TOF MS-based identification using MALDI
Colonyst robot. PLoS ONE 2017, 12, e0190038. [CrossRef] [PubMed]

9. Jones, P.; Watson, A.; Davies, M.; Stubbings, S. Integration of image analysis and robotics into a fully automated colony picking
and plate handling system. Nucleic Acids Res. 1992, 20, 4599–4606. [CrossRef] [PubMed]

10. Briner, D.R.; Sardhara, A.D.; Sugar, T.G. A Multi-Pin End-Effector for a Robotic Colony Picker. In Proceedings of the 2009 ASME
Early Career Technical Conference, Tuscaloosa, AL, USA, 2–3 October 2009; pp. 222–228.

11. Huang, C.; He, K.; Liu, C.; Fu, X.; Du, R. A colony picking robot with multi-pin synchronous manipulator. In Proceedings of the
2018 IEEE International Conference on Information and Automation (ICIA), Fujian, China, 11–13 August 2018; pp. 7–12.

12. Fabritius, A.; Ng, D.; Kist, A.M.; Erdogan, M.; Portugues, R.; Griesbeck, O. Imaging-based screening platform assists protein
engineering. Cell Chem. Biol. 2018, 25, 1554–1561. [CrossRef] [PubMed]

13. Ravichandar, H.; Polydoros, A.S.; Chernova, S.; Billard, A. Recent advances in robot learning from demonstration. Annu. Rev.
Control Robot. Auton. Syst. 2020, 3, 297–330. [CrossRef]

14. Argall, B.D.; Chernova, S.; Veloso, M.; Browning, B. A survey of robot learning from demonstration. Robot. Auton. Syst. 2009,
57, 469–483. [CrossRef]

15. Schou, C.; Damgaard, J.S.; Bøgh, S.; Madsen, O. Human-robot interface for instructing industrial tasks using kinesthetic teaching.
In Proceedings of the IEEE ISR 2013, Seoul, Korea, 24–26 October 2013; pp. 1–6.

16. Paraschos, A.; Daniel, C.; Peters, J.; Neumann, G. Using probabilistic movement primitives in robotics. Auton. Robot. 2018,
42, 529–551. [CrossRef]

17. Steinmetz, F.; Montebelli, A.; Kyrki, V. Simultaneous kinesthetic teaching of positional and force requirements for sequential
in-contact tasks. In Proceedings of the 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul,
Korea, 3–5 November 2015; pp. 202–209.

18. Berio, D.; Calinon, S.; Leymarie, F.F. Learning dynamic graffiti strokes with a compliant robot. In Proceedings of the 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 3981–3986.

19. Kronander, K.; Billard, A. Learning compliant manipulation through kinesthetic and tactile human-robot interaction. IEEE Trans.
Haptics 2013, 7, 367–380. [CrossRef] [PubMed]

20. Calinon, S.; Bruno, D.; Malekzadeh, M.S.; Nanayakkara, T.; Caldwell, D.G. Human—Robot skills transfer interfaces for a flexible
surgical robot. Comput. Methods Programs Biomed. 2014, 116, 81–96. [CrossRef] [PubMed]

21. Huang, B.; Ye, M.; Hu, Y.; Vandini, A.; Lee, S.L.; Yang, G.Z. A multirobot cooperation framework for sewing personalized stent
grafts. IEEE Trans. Ind. Inform. 2017, 14, 1776–1785. [CrossRef]

22. Liang, J.; Mahler, J.; Laskey, M.; Li, P.; Goldberg, K. Using dVRK teleoperation to facilitate deep learning of automation tasks for
an industrial robot. In Proceedings of the 2017 13th IEEE Conference on Automation Science and Engineering (CASE), Xian,
China, 20–23 August 2017; pp. 1–8.

23. Abbott, J.J.; Hager, G.D.; Okamura, A.M. Steady-hand teleoperation with virtual fixtures. In Proceedings of the 12th IEEE
International Workshop on Robot and Human Interactive Communication, ROMAN, Millbrae, CA, USA, 31 October–2 November
2003; pp. 145–151.

24. Bettini, A.; Marayong, P.; Lang, S.; Okamura, A.M.; Hager, G.D. Vision-assisted control for manipulation using virtual fixtures.
IEEE Trans. Robot. 2004, 20, 953–966. [CrossRef]

25. Baumkircher, A.; Munih, M.; Mihelj, M. Performance analysis of learning from demonstration approaches during a fine movement
generation. IEEE Trans. Hum.-Mach. Syst. 2021, 51, 653–662. [CrossRef]

26. Ijspeert, A.J.; Nakanishi, J.; Hoffmann, H.; Pastor, P.; Schaal, S. Dynamical movement primitives: Learning attractor models for
motor behaviors. Neural Comput. 2013, 25, 328–373. [CrossRef] [PubMed]

27. Calinon, S.; Guenter, F.; Billard, A. On learning, representing, and generalizing a task in a humanoid robot. IEEE Trans. Syst. Man,
Cybern. Part B (Cybern.) 2007, 37, 286–298. [CrossRef] [PubMed]

28. Huang, Y.; Rozo, L.; Silvério, J.; Caldwell, D.G. Kernelized movement primitives. Int. J. Robot. Res. 2019, 38, 833–852. [CrossRef]
29. Paraschos, A.; Daniel, C.; Peters, J.; Neumann, G. Probabilistic movement primitives. In Advances in Neural Information Processing

Systems; MIT Press: Cambridge, MA, USA, 2013.

http://dx.doi.org/10.1371/journal.pone.0190038
http://www.ncbi.nlm.nih.gov/pubmed/29287094
http://dx.doi.org/10.1093/nar/20.17.4599
http://www.ncbi.nlm.nih.gov/pubmed/1408762
http://dx.doi.org/10.1016/j.chembiol.2018.08.008
http://www.ncbi.nlm.nih.gov/pubmed/30220597
http://dx.doi.org/10.1146/annurev-control-100819-063206
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1007/s10514-017-9648-7
http://dx.doi.org/10.1109/TOH.2013.54
http://www.ncbi.nlm.nih.gov/pubmed/25248219
http://dx.doi.org/10.1016/j.cmpb.2013.12.015
http://www.ncbi.nlm.nih.gov/pubmed/24491285
http://dx.doi.org/10.1109/TII.2017.2773479
http://dx.doi.org/10.1109/TRO.2004.829483
http://dx.doi.org/10.1109/THMS.2021.3107523
http://dx.doi.org/10.1162/NECO_a_00393
http://www.ncbi.nlm.nih.gov/pubmed/23148415
http://dx.doi.org/10.1109/TSMCB.2006.886952
http://www.ncbi.nlm.nih.gov/pubmed/17416157
http://dx.doi.org/10.1177/0278364919846363

	Introduction
	Materials and Methods
	Experimental Setup
	Learning from Demonstration and Trajectory Generation
	Experiment Protocol

	Results
	Picking Process
	Deposition Process
	Identification

	Discussion
	Conclusions
	References

