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Abstract: Asparagus harvesting presents unique challenges, due to the variability in spear growth,
which makes large-scale automated harvesting difficult. This paper describes the development of
an asparagus harvesting robot system. The system consists of a delta robot mounted on a mobile
track-based platform. It employs a real-time asparagus detection algorithm and a sensory system to
determine optimal harvesting points. Low-level control and high-level control are separated in the
robot control. The performance of the system was evaluated in a laboratory field mock-up and in
the open field, using asparagus spears of various shapes. The results demonstrate that the system
detected and harvested 88% of the ready-to-harvest spears, with an average harvesting cycle cost
of 3.44 s± 0.14 s. In addition, outdoor testing in an open field demonstrated a 77% success rate in
identifying and harvesting asparagus spears.

Keywords: asparagus; delta robot; mobile platform; harvest; detection; point cloud segmentation

1. Introduction

Agriculture, one of the oldest and most essential industries, has undergone a signif-
icant transformation as a result of the introduction of innovative technologies. Robotics
is a technology that has the potential to revolutionize the agronomy industry [1–3]. Both
Lytridis et al. [4] and Bergerman et al. [5] suggest that the incorporation of robotics into
agriculture could address a number of issues, including labor scarcity, rising production
costs, and environmental sustainability; in addition, it could improve precision, efficiency,
and productivity, resulting in increased yields and profitability [3,4,6]. The current state
of the art in agricultural robotics includes crop monitoring [7], weed control [8,9], harvest-
ing [10,11], and post-harvesting [12]. Robots are utilized for a variety of agricultural tasks,
including soil monitoring [13], seeding [14], seedling manipulation [15], fertilization [16],
irrigation [17], and crop protection [18,19]. These technologies enable efficient and accurate
crop monitoring, allowing for timely interventions to promote optimal growth.

Despite its economic significance, asparagus presents unique harvesting challenges.
Asparagus spears are delicate, and their growth is variable, making large-scale automated
harvesting challenging [20]. In recent years, significant progress has been made in the de-
velopment of robot systems for asparagus harvesting, with the goal of increasing efficiency
and decreasing labor costs. The University of Waikato and Robotics Plus Limited have
developed a robotic asparagus harvester that is pulled by a tractor [21]. A highly effective
convolutional neural network (CNN) has been developed, to detect asparagus spears [22].
Irie et al. [23] presented an asparagus harvesting robot that used an electrical cart equipped
with a 3D camera and robotic arm to harvest spears along the furrow: the time needed
to harvest a single asparagus spear was reduced to 13.7 s. Irie and Taguchi [24], in a later
study, upgraded the sensory system, to include a laser scanner, reducing the harvesting
time to approximately 7.5 s per spear. Funami et al. [25] created an electro-pneumatic,
four-degrees-of-freedom robotic system capable of harvesting asparagus spears from ridges,
even in dense vegetation. The asparagus harvesting trolley, designed by Zhang et al. [26],
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utilizes a pneumatic punching and cutting mechanism, and two pinch rollers, to grab and
move cut spears onto a conveyor belt.

Inaho Inc., Kamakura, Japan (https://en.inaho.co/, accessed on 8 June 2023), intro-
duced a tracked robotic system with a robotic arm and an infrared detection device for
spear detection for greenhouse asparagus harvesting [27]. Several funded initiatives have
sought to develop comprehensive harvesting solutions for asparagus: the AmLight project
aimed to create an automatic harvesting system for green asparagus with stalk detection in
ambient light; the MANTIS project sought to develop an automated asparagus harvester;
GARotics (http://echord.eu/garotics/, accessed on 8 June 2023) presented a mobile plat-
form on wheels, equipped with an RGBD camera for spear detection, and two Cartesian
manipulators capable of harvesting five spears per meter [28].

To ensure accurate and selective harvesting, numerous asparagus detection methods
have been investigated. The University of Waikato compared the performance of faster,
region-based convolutional neural networks (FRCNN) to that of a single shot multibox
detector (SSD), and concluded that FRCNN-based detectors are better suited to asparagus
detection [29]. Kennedy et al. [30] presented a single-view representation of information
from a multi-camera system, combined with temporal filtering, to reliably locate asparagus
spears in laboratory and outdoor settings in real time. Sakai et al. [31] used two laser scan-
ners for vertical scanning, to detect asparagus spears, with an accuracy of approximately
75% and a harvesting time of more than 10 s per spear. Leu et al. [28] utilized RGB and
depth images to generate a point cloud for the classification, recognition, and tracking
of asparagus. Hong et al. [32] utilized an improved YOLOv5 algorithm for asparagus
recognition and detection in complex environments, achieving an average mean precision
of nearly 99% percent. Lastly, Liu et al. [33] introduced depth-aided mask RCNN for
asparagus detection, demonstrating a better balance between precision and speed than
existing algorithms.

The development of a novel harvesting robot was motivated by the need to address
manual labor shortages. Existing options are limited to large machines, and some are only
appropriate for confined environments, such as greenhouses. Moreover, current software
solutions are computationally intensive, require extensive training databases, and are
unsuitable for deployment on low-cost hardware. The development of a lightweight robot
intended to replace a single large machine with multiple smaller ones, thereby increasing
overall efficiency, was our primary objective, the design of which should be adaptable to
a variety of tasks, while the robotic system should include a robust and computationally
efficient spear detection algorithm. By providing a cost-effective solution, we hope to make
asparagus production accessible to a greater number of growers.

This paper presents a novel design for a lightweight agricultural robot intended for
the efficient harvesting of stem vegetables, with a focus on green asparagus. In Section 2,
we describe the mechanical design and software control system of the robot, and the imple-
mentation of a point-cloud-segmentation-based asparagus detection algorithm. Section 3
provides a comprehensive evaluation of the performance of the robotic system in controlled
laboratory settings and in actual asparagus fields. Section 4 analyzes the test results, and
provides recommendations for future work.

2. Materials and Methods

To optimize asparagus harvesting, a mobile platform with precise and quick mech-
anisms was required. To aid in this endeavor, a real-time asparagus detection algorithm
was used, to determine the optimal harvesting points. This algorithm was designed to be
lightweight, to promote efficient harvesting.

2.1. Hardware Design

The harvesting robot system comprised a delta robot mounted on a mobile platform
with tracks. The gripper on the delta robot was customized for grasping and cutting
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asparagus spears. The platform was also equipped with a sensory system for detecting
asparagus spears.

2.1.1. Delta Robot

We developed a fast and dependable robotic mechanism for harvesting asparagus
spears in an efficient manner. Our solution employed a delta parallel robot with three
identical arms that were triple symmetric, which provided superior dynamics and velocity
compared to serial mechanisms. Each arm consisted of an actuated rotary joint and two
universal joints, and was powered by a Beckhoff AM8113 servo motor and a WPLE040 gear
reducer with a 1:10 gear ratio. The arms were connected to a common platform with three
degrees of freedom, enabling precise control over the position of the robot’s tool center
point (TCP). Figure 1 demonstrates the robot’s CAD model.

Figure 1. The delta robot consists of three parallel arms driven by servo motors, and an additional
rotational axis for gripper orientation control.

The three arms were evenly spaced at a radius of 0.15 m around a central point.
The first segment was 0.25 m in length, and the second segment was 0.50 m in length.
The diameter of the TCP platform was 0.13 m. The robot’s workspace had the shape
of a bowl, with [−0.58, 0.56] m values in the x direction, [−0.50, 0.50] m values in the y
direction, and [−0.75, 0] m values in the z direction. In the center, the maximum height
value was −0.24 m. The robot’s workspace encompassed a cuboid with overall dimensions
of 0.7 m× 0.7 m× 0.36 m.

A fourth degree of rotational freedom was added to the mechanism, in order to ensure
that the gripper approached the asparagus in the proper manner. This additional rotation
enabled the proper orientation of the tool to be set. A DC motor, in combination with
timing belt transmission, was used for actuation, to ensure the tool’s correct orientation. As
asparagus spears grow randomly, this upgrade was essential for approaching each spear
successfully.

For a reliable grasp on asparagus spears of all sizes and shapes, we developed a
specialized gripper. The gripper consisted of three parts: a rigid finger made of hard plastic;
a rubber finger in the shape of a fin; and a narrow blade for cutting the spear. We utilized
the blade from a utility knife, because it was sturdy, long-lasting, readily accessible, and
simple to replace. Figure 2 displays a detailed CAD model of the gripper.

Using an axis-in-axis design, we added a second DC motor to the robot’s upper plate,
so that the gripper could rotate and be actuated. This design guaranteed that the gripper
could effectively grasp and cut the asparagus spears, providing a comprehensive harvesting
solution.
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Figure 2. The gripper comprised three components: a rigid finger (red part) for supporting the
asparagus spear; a flexible finger (yellow part) that conformed to the spear’s size, for a firm grip; and
a blade for cutting the spear. An illustration of the grasping procedure is shown on the right.

2.1.2. Mobile Platform

The delta robot was mounted on a mobile platform with two rubber tracks that pro-
vided traction for field driving. The distance between the tracks was 600 mm, providing
sufficient space for traversing asparagus fields. The outer dimensions of the mobile plat-
form, excluding the sensor, were 1 m× 0.66 m× 1.06 m (length × width × height). The
sensor bar added 0.35 m to the overall length when it was included. The tracks were
propelled by a Beckhoff AM8131 (Beckhoff Automation GmbH & Co. KG, Verl, Germany)
synchronous motor with a combination of angular and chain reduction resulting in a total
ratio of 70:1. This configuration permitted the platform to attain a nominal speed of 0.2 m/s.

The mobile platform was made of extruded aluminum, which allowed the delta
robot to be affixed at a height of 0.9 m. The platform also contained a battery, a low-level
programmable logic controller Beckhoff CX5140 (Beckhoff Automation GmbH & Co. KG,
Verl, Germany), and a high-level controller based on an ultra-compact PC Gigabyte GB-
BRi7-10710 (Giga-Byte Technologies CO., LTD, New Taipei City, Taiwan) that was affixed
above the delta robot. A Sick LMS111 (SICK AG, Waldkirch, Germany) laser scanner was
installed at the front of the platform, oriented in the direction opposite the motion, in
order to detect the asparagus. Figure 3 displays the CAD model of the platform, with its
components labeled.

Figure 3. Mobile platform with integrated delta robot and laser scanner Sick LMS111.
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2.2. Control

The control of the asparagus harvesting robot was divided into two parts (see Figure 4):
(a) low-level control, for controlling the individual motors, and for calculating the for-
ward/inverse kinematics of both the delta robot and the mobile platform; (b) high-level
control, for asparagus spear detection and localization, as well as path planning for the
delta robot.

Figure 4. Control scheme for the asparagus harvesting robot: low-level control for motor velocity
control; high-level control for providing trajectories with manual control capability.

2.2.1. Low-Level Control

We implemented low-level control on the Beckhoff CX5140 (Beckhoff Automation
GmbH & Co. KG, Verl, Germany) programmable logic controller, using three Beckhoff
EL7211 servo motor controllers to control the delta robot’s motors, two Beckhoff EL7201
(Beckhoff Automation GmbH & Co. KG, Verl, Germany) servo motor controllers to control
the track motors, and the Beckhoff EL7342 (Beckhoff Automation GmbH & Co. KG, Verl,
Germany) 2-channel motion interface for the DC motors. The motor controllers were
configured to accept velocity as the reference input, in order to facilitate motor control. The
frequency of the control loop was 1 kHz.

Communication

We used the automation device specification (ADS) protocol, a transport layer de-
veloped for data exchange between software modules within the TwinCAT system, to
communicate with the high-level control. To facilitate ADS communication, two bidirec-
tional data blocks were created: one for the mobile platform, and one for the delta robot.
The frequency of the data exchange between the Beckhoff controller and the high-level
controller was 1 kHz.

Mobile platform kinematics

A simple mathematical model was used to describe the kinematics of the mobile
platform’s low-level control [34]. Under idealized conditions, ignoring factors such as
wheel slip and friction, the kinematics of the mobile platform (linear velocity vP and
angular velocity ωP) could be described by the following equations:

vP =
N R

2
(ωM,R + ωM,L); (1)

ωP =
N R

L
(ωM,R −ωM,L). (2)

In the above equations, ωM,R and ωM,L denoted the angular velocities of the right and left
track motors, respectively, N represented the gear ratio for the track motors, R represented
the pitch radius of the track propulsion gear, and L was the distance between the two tracks.
Integrating the obtained linear velocity vP and angular velocity ωP yielded odometry data,
which were then transmitted to high-level control, using the ADS protocol.
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The reference angular velocities for the right-track and left-track motors (ωM,D,R and
ωM,D,L), as shown in Equations (3) and (4), were calculated based on the reference velocities
of the mobile platform, vP,D and ωP,D:

ωM,D,R =
2 vP,D + ωP,D L

2 R
; (3)

ωM,D,L =
2 vP,D −ωP,D L

2 R
. (4)

These reference velocities served as inputs for motor controllers with internal proportional–
integral–derivative (PID) control loops.

Delta robot joint control

The desired reference velocities for each joint of the delta robot were received via
ADS communication from the high-level control system. Similar to track control, these
reference velocities were then used as inputs for the internal PID control loop of the motor
controllers.

2.2.2. High-Level Control

Robot Operating System (ROS) Noetic Ninjemys, running on a Gigabyte compact PC
with Ubuntu 20.04 LTS, provided high-level control. The ROS system architecture was
divided into multiple software packages, allowing for a structured approach to various
problems, and facilitating error diagnosis. These packages contained:

• Beckhoff communication: the C++ package acted as a central node, facilitating ADS
communication between the Beckhoff controller and the ROS computer;

• mobile platform: the package enabled the movement of the mobile platform, using
tracks, and included a program for manual control;

• delta robot: the package controlled the parallel robot, providing functions for proportional–
derivative control, manual operation, and trajectory planning;

• acquire asparagus: the package handled the detection of asparagus locations, using
sensors; it included programs for reading and converting data from a laser scanner,
generating point clouds, and extracting asparagus from them.

A schematic representation of high-level control is depicted in Figure 5.

Figure 5. Schematic representation of high-level control, based on ROS. The main functionalities
were covered by four packages: Beckhoff communication, for communication with PLC; mobile platform,
for control of the mobile robot; delta robot, covering the modalities for the delta robot; and acquire
asparagus, for processing sensory data and asparagus detection.
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By organizing the system into these packages, the ROS architecture encouraged modu-
larity, encapsulation, and efficient coordination among the asparagus-picking robot sys-
tem’s components.

Delta robot kinematics

The delta robot was made up of three identical serial mechanisms (arms) that were
parallel in construction. For each arm, there were three separate controls, which could be
used to operate the robot: this required determining the desired position of each motor,
relative to the desired position of the robot’s TCP.

Inverse kinematics [35] was required for this purpose. The following was the solution
for a single arm. In Figure 6, all relevant geometry variables are marked. We defined the
vector D = [Dx, Dy, Dz]T that extended from the position of the motor p1 to the position
of the joint on the TCP platform of the same arm p3. The projection L′2 of the second arm
segment, with length L2, onto the plane perpendicular to the axis of rotation of the first
segment, could be calculated as follows:

L′2 =
√

L2
2 − p2

1,y. (5)

Next, we determined the projection D′ of the vector D onto the same plane:

D′ =
√

D2
x + D2

z . (6)

To determine the angle α between the first segment with a length of L1 and the vector D,
we used the cosine theorem:

L′22 = L2
1 + D′2 − 2L1D′ cos α; (7)

α = arccos

(
L′22 − L2

1 − D′2

−2L1D′

)
. (8)

The angle γ described the angle between the vector D and the position of the first segment
at an angle of 0◦:

γ = arctan
(
−Dz

Dx

)
. (9)

From the angles α and γ, the joint value q could be determined:

q = γ− α. (10)

Figure 6. Variables of the delta robot’s geometry, used to determine the inverse kinematics. The
respective colors for the base coordinate system, the TCP coordinate system, and the individual arm
coordinate systems were green, red, and blue.
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To facilitate the aforementioned method, it was necessary to define vectors D in the
coordinate system of each arm. The D vectors were defined as follows:

D1 = −a + RT
1 xTCP + b; (11)

D2 = −a + RT
2 xTCP + b; (12)

D3 = −a + RT
3 xTCP + b, (13)

where

R1 =

cos 0 − sin 0 0
sin 0 cos 0 0

0 0 1

; (14)

R2 =

cos 3π
4 − sin 3π

4 0
sin 3π

4 cos 3π
4 0

0 0 1

; (15)

R3 =

 cos 3π
4 sin 3π

4 0
− sin 3π

4 cos 3π
4 0

0 0 1

; (16)

a =
[
0.150 0 0

]T; (17)

b =
[
0.065 0 0

]T. (18)

Here, xTCP represented the desired position of the robot’s TCP, R represented the
rotation matrices describing the rotation of each arm about the z axis of the base coordinate
system, and a and b represented translations from the base coordinate system to the first
joint of the arm p1 (a translation of 150 mm along the x axis), and from the TCP coordinate
system to the last joint of the arm p3 (a translation of 65 mm along the x axis). By employing
the aforementioned method, all three joint angles could be calculated, thereby yielding the
joint angles corresponding to the desired robot position.

Trajectory planning

During asparagus harvesting, a delta robot attached to a mobile platform must com-
pensate for platform motion. In other words, while the platform is in motion, the robot
grippers must remain stationary, relative to the global coordinate system: to accomplish
this, the delta robot’s reference position must be dynamically determined in each control
loop.

First, we determined the coordinate with the greatest range of motion, denoted x f , in
order to reach the desired position; on the basis of this, and the maximum velocity of the
TCP ẋmax, we calculated the time necessary to complete the motion, denoted by t f :

t f = t +

∣∣∣x f − x
∣∣∣

ẋmax
. (19)

As the desired position could change while the platform was in motion, this parameter had
to be constantly updated, to ensure that the robot’s trajectory was maintained accurately.

In order to meet this requirement, the robot’s trajectory was generated using a mini-
mum jerk interpolation method [36]. The expression (20) describes the calculation of the
TCP’s jerk

...
x :

...
x =

−9ẍ
∆t

+
−36ẋ
∆t2 +

60
(

x f − x
)

∆t3 ; (20)

∆t = t f − t (21)

Here, ∆t represented the difference between the final time t f and the current time t.
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Figure 7 is an illustration of the minimum jerk interpolation for the x coordinate in the
system of the delta robot during asparagus harvesting. The reference values for regions (b)
and (c), in which the asparagus was virtually moving in relation to the mobile platform,
were modified based on the platform’s velocity. In the idle state (case a), and during the
deposition of harvested spears into the container, the reference remained constant, as these
positions were fixed in the mobile platform’s coordinate system.

Figure 7. Minimum jerk interpolation for x coordinate in the delta robot’s system during asparagus
harvesting: (a) robot is in idle state, positioned in the middle; (b) asparagus detection triggers a
movement of 50 mm ahead of the asparagus (reference value is adjusted, based on the mobile platform
velocity of 0.2 m/s); (c) robot moves forward by 50 mm, to grasp and cut the asparagus; (d) robot
transports the harvested spear to the fixed storage container, and releases it (reference position is
fixed, as container is mounted on the mobile platform).

We acquired the TCP’s acceleration ẍ, velocity ẋ, and position x by employing the
three-step Euler integration method. Inverse kinematics was utilized, to convert the desired
robot position into joint coordinates. Subsequently, an external proportional–derivative
controller used these joint values. The controller computed and transmitted to the low-level
controller the desired joint velocities via ADS communication.

Manual control

A Logitech F710 wireless gamepad was used as the manual control interface. The
buttons and joysticks on the gamepad were assigned specific functions, such as controlling
the movement and velocity of the mobile platform, and manipulating the delta robot and
gripper. We implemented a dedicated safety button that required continuous activation
during platform movement, to ensure operational safety. This safety mechanism allowed
for the swift cessation of platform motion in the event of uncontrolled movements or loss
of connection to the controller.

2.3. Asparagus Spears Detection

A SICK LMS111 outdoor 2D LiDAR sensor was used to detect the asparagus spears.
The working range of the LMS111 was 0.5 m to 20 m, and it had a scanning resolution
of 0.25◦ and a scanning frequency of 25 Hz. The sensor was attached to the front of a
mobile platform, pointing in the opposite direction of the vehicle’s motion. The sensor
was positioned at an angle of 45◦ relative to the y axis of the mobile platform, and at an
appropriate height, to ensure that the spears fell within the LMS111’s minimum working
range. The linear resolution of the sensory system was 1.1 mm. Figure 8 illustrates an
example of the scanned data: as can be seen, the operation principle of the sensor produced
noticeable shadows.
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Figure 8. Scanned data of two asparagus spears: (a) positions of the asparagus spears; (b) scanned
data with surroundings (soil, robot tracks) filtered out.

A laser scanner only provides distance data on a single plane; therefore, a 3D measure-
ment is required, to determine the position and height of an object, such as an asparagus
spear. To obtain this measurement, we created a joint point cloud, by combining data
from the laser scanner with odometry data from the mobile platform. We converted the
data from the cylindrical coordinate system utilized by the LMS111 to a global Cartesian
coordinate system. The laser data was triggered by position, and sampled every 1 mm of
mobile platform movement, resulting in a measurement independent of speed. In each
direction, the spatial resolution of the measurement system was approximately 1 mm.

The obtained point cloud was altered, to include only the region of interest between
two tracks. This updated point cloud was then discretized in the x–y plane, with a 20 mm
step, resulting in the creation of a grid matrix for z values. As shown in Figure 9, for
each discrete field, the sum of the z axis points was computed. To minimize the impact of
potential weeds or other objects on the asparagus detection, only z values above 0.05 m
were used at this stage. Afterward, the macro-locations of the spears were determined, by
comparing the obtained values to a predetermined threshold.

Figure 9. Grid discretization visualization of two asparagus spears: (a) green dots representing data
used for analysis; (b) blue squares marking two local maximums in the discretized grid matrix.

Based on the previously detected field within the x–y grid matrix, the micro-location
of the spear was determined. Figure 10a,b depict the z values below 50 mm above the soil
level, which were used to confirm the spear’s potential growth location. The aggregate of
these z values had to exceed a predetermined threshold. The center of the spear was then



Agronomy 2023, 13, 1766 11 of 17

determined, by calculating the median of the x and y values in the field of interest in the
grid matrix (Figure 10c).

Figure 10. Visualization of calculated gripping position for two asparagus spears, using grid dis-
cretization, with (a) red dots representing analyzed data, (b) blue squares marking local maximums
in the discretized grid matrix, and (c) crosses indicating calculated spear positions, based on medians
of previously selected grid positions (green cross: asparagus is ripe for harvest; red cross: asparagus
is too small).

As the final step, we examined the z values within a 30 mm radius of the spear’s
position, to confirm that it was of harvestable height (the threshold height for harvested
spears was set to 150 mm). The positions of confirmed spears were converted to the
coordinate system of the delta robot, and sent to a trajectory planning algorithm, to generate
a harvesting path.

2.4. Harvesting Procedure

The asparagus harvesting algorithm optimized the process, by taking a number of
variables into account, to ensure controlled and efficient harvesting. The algorithm began by
detecting the locations where asparagus was growing, and, based on its height, determining
whether or not it was suitable for harvesting. These growth locations, obtained in a fixed
global coordinate system, were essential for harvesting purposes.

The algorithm initiated linear motion of the platform, and employed a laser scanner
to generate a point cloud, in order to plan the gripper’s trajectory. Then, an algorithm for
point cloud segmentation was used, to detect the presence of asparagus, and to confirm the
availability of growth locations. If no suitable growth locations were identified, or if the
asparagus detected was too small, the delta robot returned to its initial position.

After a suitable asparagus had been identified, the algorithm planned the trajectory,
using a FIFO system, harvesting the asparagus in the order in which it was identified. To
prevent duplicate harvesting, the algorithm compared the distances between harvested
and detected asparagus in the x–y plane, using the Euclidean distance formula.

As an additional safety measure, the algorithm verified whether adjacent asparagus
were too close to the target asparagus, which could impede successful harvesting, due
to the gripper’s size. This also ensured sufficient picking space in front of the desired
asparagus. Upon detecting an obstruction, the algorithm modified the picking angle, until
a clear path was found.

The resulting trajectory for harvesting asparagus included three points: the initial
point for approaching the asparagus at picking height; the final point, where the asparagus
was growing; and an intermediate point halfway between the initial and final points.

Once the picking points had been determined, the manipulator executed its move-
ments, using interpolation with jerk minimization. The sequence of movements included
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the mobile platform moving along the asparagus row, opening and closing the gripper,
moving to the starting point, reaching the desired points, compensating for velocity during
gripper closure, lifting the harvested asparagus, storing it in a container, and releasing the
gripper.

The algorithm optimized the asparagus harvesting process, by taking into account
constraints, such as the size of the asparagus, its proximity to other asparagus, and the space
available for picking. By incorporating these variables, the algorithm ensured efficient and
controlled harvesting, thereby boosting overall output.

3. Testing of Asparagus Harvesting

The robotic system for asparagus harvesting underwent testing in a controlled labo-
ratory environment, employing plastic 3D-printed models of asparagus (see Figure 11a).
Subsequently, the robot was further tested outdoors, on an actual asparagus field, as
depicted in Figure 11b.

Figure 11. Mobile platform during tests (a) on a simulated field in the laboratory, and (b) on the test
asparagus field at Biotechnical Faculty, University of Ljubljana, Slovenia.

3.1. Laboratory Testing

We carried out 10 harvesting repetitions on a 2.5-m-long row containing 16 asparagus
spears of various shapes (straight, curved) and heights (10 spears > 15 cm, 6 spears < 15 cm).
To replicate real-world conditions as closely as possible, we spread garden soil on the
ground. In total, a 25-m-long test polygon, with 100 harvest-ready spears and 60 spears
below harvesting height, was used. Each repetition involved the random placement of
spears in a non-uniform pattern. A test setup example is depicted in Figure 12.

Figure 12. Example of a test setup for one repetition. A total of 10 fully grown spears and 6 smaller
spears were randomly placed in a field measuring 2 m× 0.55 m. A red square indicates a problematic
situation, where one asparagus was covered by another, causing the detection algorithm to identify
them as a single spear.

The speed of the platform was manually set to approximately 60 mm/s for each
repetition: at that speed, the robotic system was able to detect and harvest spears, even if
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two spears were placed next to one another, while maintaining continuous motion. Due to
hardware limitations, the mobile platform included stop-and-go motion, in order to collect
all spears if the platform’s speed increased.

The laboratory test results, as shown in Table 1, indicate a 94% detection rate for
all the asparagus, with only 6 of the 100 harvest-ready spears going undetected, due to
their close proximity, causing them to be treated as a single spear (see Figure 12). Of the
harvest-ready spears, 88% were successfully detected and collected; however, there were
six instances in which spears were detected but not harvested, due to inaccurate harvesting
point determination. No small spears were harvested.

Table 1. Results of laboratory and outdoor field tests: spears ready to harvest; recognized/unrecognized
spears; harvested spears; missed spears, length of the test field; and total time required. The relative
rate, expressed as a percentage of the total number of spears ready to harvest, is indicated within the
brackets.

Spears Ready to Harvest Total
Length/m

Total
Time/sTotal Rec. a Unrec. b Harvested Missed

laboratory 100 94 (94%) 6 (6%) 88 (88%) 6 (6%) 25 423
outdoor field 43 39 (91%) 4 (9%) 33 (77%) 6 (14%) 25 437

a recognized, b unrecognized.

The total completion time for all 10 repetitions was 423 s, excluding robot return times.
The harvesting cycle cost 3.44 s± 0.14 s (mean ± standard deviation), from the detection of
the spear to the transfer and release of the spear into the storage container.

3.2. Field Testing

Testing was conducted on an asparagus field at the Biotechnical Faculty of the Univer-
sity of Ljubljana, Slovenia, that is used solely for research. The robot was tested on a single
row measuring 25 m in length and 1 m in width. Prior to harvesting, there were a total of
57 asparagus spears, of which 43 were ripe for picking, and 14 were deemed insufficiently
developed.

The settings of the robot remained identical to those used during the laboratory testing.
The robot traversed the length of the field in a single pass at a speed of approximately
60 mm/s. The robot successfully harvested 33 of the 43 mature asparagus spears, account-
ing for 77% of the total harvest. In addition, 6 out of the 43 correctly identified spears
were not harvested (14%). The clustering of missed spears led to the identification of a
single spear with the harvesting point positioned in the middle. A further 4 out of the
43 spears ripe for picking were not identified at all (9%): the growth of these spears was
poor, as they were either severely twisted or aligned parallel to the ground. In such cases,
the detection algorithm classified the spears unsuitable for harvest, because they did not
meet the predetermined height threshold. There were no too-small spears harvested.

4. Discussion

This article describes a lightweight agricultural robot designed specifically for green
asparagus harvesting. For efficient spear harvesting, the robot system consists of a tracked
mobile platform and a delta robot. The delta robot significantly reduces picking times
(below 3.5 s) when compared to serial mechanisms [24,28].

The results from the study indicate that the recognition rate in laboratory tests was
94%, which is comparable to [33]; however, six spears were not recognized, because there
were instances in which spears were placed too closely together, causing the algorithm to
mistake two separate spears for a single spear. This issue, of detecting a single spear as
opposed to multiple spears, was also responsible for the failure to collect some spears. In
the laboratory experiment, the overall rate of harvest was 88%. The incorrect determination
of the picking point resulted in a few misses. When two or more spears were grouped
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together, the harvesting point was incorrectly determined to be in the middle of the spears,
resulting in harvesting next to the spear rather than at the spear. Another potential error
was the density of spears, causing the robot to be too slow in picking all of them. At this
stage, the stop-and-go method must be utilized to address this issue.

In an open field, the spear recognition rate was 91%, while the harvesting success
rate was 77%. The lower success rate compared to the laboratory tests was due to the
various growth patterns and spear shapes. The issues with harvesting are attributable to
the detection method that is currently in use: when spears are closely spaced, overlap, or
grow at varying angles, this method becomes ineffective. Because the grasping point is
determined in the middle, two asparagus spears that are close together may be misidentified
as a single spear, leading to a missed harvest. In addition, if spears are twisted or growing
at an angle, the point cloud segmentation method generates inaccurate gripping points,
due to an increased number of detected points where the spear is straight, typically at the
spear’s tip, as opposed to its base. Furthermore, severely tilted spears may not meet the
height requirement for harvest readiness, and are therefore incorrectly processed as not
harvest-ready.

The majority of harvesting mechanisms [24,26,28] can only approach spears from one
side, preventing them from avoiding small spears or other obstacles. Funami et al. [25]
presented a partial solution, by introducing a SCARA-type robot that allows the tool’s
orientation to be set; however, the issue persists, as the mechanism’s segments can still
harm other spears. In our design, the robot’s gripper incorporates an additional degree-
of-freedom, enabling orientation changes and the harvesting of asparagus from different
angles. This feature prevents damage to young spears, which would otherwise inhibit
plant growth, because the spear releases growth-stimulating enzymes when it reaches a
height of 12 cm or more.

For spear detection, a laser scanner was employed, similar to the approach used by
Sakai et al. [31], where spears were scanned vertically from the ground to the top. The
point cloud generated by the combination of 2D laser scans and odometry eliminated the
need for an RGBD camera. This system is anticipated to operate reliably throughout the
day, irrespective of lighting conditions. Utilizing a straightforward method of point cloud
segmentation, the optimal picking points were determined. This approach is suitable for
systems with limited computational capability, such as Raspberry Pi, operating in real time.

Based on the robot’s test speed of 0.06 m/s, a single robot is capable of harvesting
approximately 2000 m of asparagus rows in 10 h. Taking into account the operational limi-
tations of the robot, this corresponds to an estimated harvest of approximately 8.000 spears,
which exceeds the results of Sakai et al. [31], who estimated a harvest of 6.500 spears in 18 h.
Notably, this estimation assumes that the spears are growing approximately 0.2 m apart,
that the robot operates continuously, and that approximately 20% of the time is allocated
for platform maneuvering, such as turning between rows.

The small size of the robotic system provides numerous benefits. Smaller and lighter
autonomous robots are more environmentally friendly than large and heavy farm machin-
ery, because they cause less damage to arable land. In addition, smaller robots are typically
more cost-effective, enabling the deployment of multiple small robots for the price of a
single large robot.

On the basis of test-identified deficiencies, future work should involve enhancing
the detection system with additional low-cost modalities, to further enhance asparagus
detection. As suggested by Leu et al. [28], a combination of RGB and laser technologies
could be utilized, to improve the system’s ability to detect and identify asparagus spears.
Priority should also be given to the implementation of AI methods, in order to increase the
detection success of asparagus with varying shapes. Efforts should be made to improve
design and functionality, in order to make harvesting operations faster and more efficient. In
instances where there is a large cluster of spears, speed adaptation should be implemented,
to ensure thorough picking, with the mobile platform adjusting its speed, or even coming
to a complete stop, to collect all spears within the cluster. In addition, an RTK GPS
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(real-time kinematics GPS) system should be considered, for mapping the locations of
small asparagus spears, which would provide valuable information for future harvesting.
The system could be expanded to harvest a variety of stem vegetables, including leeks
and celery, with minimal modifications; furthermore, it is adaptable to tasks other than
vegetable harvesting, such as flower picking.

In addition, the mobile robot system could be augmented by additional capabilities, to
address common issues in asparagus fields, such as weed control. Mechanical weeding is
not feasible, as it can damage underground spears. Integrating non-contact weeding options,
such as laser weed [9] or flame weeders [37], into the robot system is one potential solution.

The short harvesting season for asparagus (typically up to nine weeks) necessitates
alternative business models, in light of the substantial financial investment required for
agricultural robots. Exploring additional modalities, or offering the robot as a service in
which the system can be rented for a fee, would increase its economic viability. Therefore,
the presented platform serves as the basis for the development of a multifunctional robot
that can be used throughout the entire growing season.

5. Conclusions

This paper introduced a specialized asparagus harvesting robot system that effectively
addresses the challenges posed by spear growth variability. The design consists of a
tracked mobile platform outfitted with a delta robot for harvesting individual spears. The
additional rotation of the gripper enables the robot to harvest spears from the optimal
direction. The system demonstrated a high rate of success in both laboratory and field
settings. The robot’s diminutive size provides environmental and financial benefits, while
potential enhancements extend its utility. In conclusion, this research significantly improves
asparagus harvesting’s productivity and sustainability, ensuring the availability of high-
quality produce.
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