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Abstract: Patients after stroke need to re-learn functional movements required for independent living
throughout the rehabilitation process. In the study, we used a wearable sensory system for monitoring
the movement of the upper limbs while performing activities of daily living. We implemented time-
based and path-based segmentation of movement trajectories and muscle activity to quantify the
activities of the unaffected and the affected upper limbs. While time-based segmentation splits
the trajectory in quants of equal duration, path-based segmentation isolates completed movements.
We analyzed the hand movement path and forearm muscle activity and introduced a bimanual
movement parameter, which enables differentiation between unimanual and bimanual activities.
The approach was validated in a study that included a healthy subject and seven patients after
stroke with different levels of disabilities. Path-based segmentation provides a more detailed and
comprehensive evaluation of upper limb activities, while time-based segmentation is more suitable for
real-time assessment and providing feedback to patients. Bimanual movement parameter effectively
differentiates between different levels of upper limb involvement and is a clear indicator of the
activity of the affected limb relative to the unaffected limb.

Keywords: stroke; upper-limb movement; movement estimation; activities of daily living; inertial
measurement unit; electromyography

1. Introduction

Rehabilitation is a process of restoring physical, sensory, and mental capabilities
lost due to injury, disease, illness, or other conditions, congenital or acquired. With the
development of medicine and, consequently, humanity ageing, the need for rehabilitation
due to various diseases rises permanently [1,2].

When patients after stroke are discharged from rehabilitation facilities, they usually
still have some degree of upper limb impairment. Therefore, the therapy should be an
ongoing process that continues after the patient leaves the rehabilitation institution. Active
use of an affected limb to perform various movements has a positive effect on motor
abilities. Daily activities with the affected limb are essential for faster improvement [3].
Therefore, patients should use their affected upper limbs as much as possible during daily
tasks. Monitoring the patient in the home environment while performing daily activities is
one of the critical goals in rehabilitation [4,5]. These measurements can help identify motor
activities [6], determine the frequency of individual activities and the relation between
bimanual and unimanual actions, compute the level of use of a particular body segment [7],
assess the limb usage duration and movement quality [8], and identify limitations in
performing the activities.

In robotics, neuroscience, and ergonomics research, parameters computed from the
limb’s movement trajectory are often used [9]. We can obtain information about the
movement’s quality, speed, smoothness, and the distance travelled from the movement
trajectory [10]. We can use different parameters for trajectory comparison, for example, Eu-
clidean distance, Dynamic Time Warping, Longest Common Subsequence based measures,
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Hausdorff, or Fréchet distance [11–14]. Researchers also focus on movement repeatability
and the limb final position [15].

Rehabilitation training exercises and assessment of motor abilities are typically based
on various sensing technologies [16]. Researchers use optoelectronic systems to measure
movement in the laboratory environment, ensuring high accuracy of the obtained results.
Due to the high cost and limited measuring range of these systems, inertial measuring units
(IMUs) have gained popularity. They represent a low-cost alternative [17]. Since sensors
are small and portable, they do not restrict the subject’s movement or range of motion [18].
Wearable sensors are also not limited to a laboratory environment or rehabilitation facility,
meaning the subject can wear them at home during daily activities.

In addition to position sensors, muscle activity or electromyographic (EMG) sensors
are also used to assess movement [19–21]. In robotics, EMG signals are often used to guide
robots [22] or control the active prosthesis [20]. For research outside the laboratories, we
can also use wearable sensors, such as the MYO bracelet (Thalmic Labs) [23], which detects
electrical activity on the skin’s surface when the muscles of the forearm contract. From
these signals, we can extract information about the movement of fingers, which allows for
detecting the grip [24]. We can also indirectly estimate the grip force, which can replace a
force sensor in some tasks [25].

With advancements in technology, particularly MEMS, the miniaturization of wearable
sensors has taken a significant leap forward. IMUs, for example, are now compact and
lightweight, measuring just a few centimeters in size and weighing around 10 grams with
the battery included [26,27]. When packaged in a suitable housing, they make for an ideal
sensor system for measuring motion, as they are small, easy to use, and will not impede
the user’s movement. The same can be said for electromyography measurements, which
have transformed from bulky laboratory equipment with wires and electrodes to simple
wristbands with built-in electrodes, making it more widely accessible. Furthermore, smart
wristbands now offer a combination of sensor modalities such as inertial measurements,
the electromyogram, the photoplethysmogram, electrodermal activity signal, and the skin
temperature signal [28]. In the era of IoT, sensors have the capability to both store data
locally on the device and send them to the cloud for further processing. Additionally,
connectivity with mobile phones is crucial for logging and real-time processing of data, as
well as serving as an additional sensor module.

Inertial measurement units and electromyography measuring devices are low-cost
and widely used due to their easy availability. The development and utilization of new
nanomaterials in novel structures have the potential to expand the range of wearable
sensors [29,30]. While the use of wearable sensors is promising, it is currently limited by
their difficult and expensive production.

In this paper, we propose and validate a methodology for analysing continuous
movement trajectories acquired during activities of daily living. We compare time-based
and path-based segmentation of movement trajectories into relevant quants and introduce
several parameters for assessing upper limb functions. The upper limb bimanual movement
parameter is introduced to distinguish between unimanual and bimanual movements
during the activities of daily living.

2. Methodology

During rehabilitation, patients perform various tasks that imitate the basic movements
in many daily activities. After the rehabilitation, the patient should continue using the
affected limb during activities of daily living to further improve the affected limb’s capabil-
ities. However, in the home environment, patients often lack the motivation to use their
affected limb to the same extent as in therapy and learn to perform basic activities only with
the unaffected limb, thereby inhibiting the improvement of the affected limb’s movement
skills. Therefore, measurement of daily activities is vital for the continuous assessment of
the affected upper limb use and subsequent rehabilitation program.
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In this study, we measured activities of daily living in a home-like environment
simulated in a laboratory setting. We prepared the tasks that consisted of activities of daily
living (Figure 1): preparing a meal, chatting and drinking coffee or tea, watering flowers,
folding and tidying towels, writing a shopping list, reading a newspaper, and tidying up a
desk. The listed activities were presented to each participant. We stressed that they should
perform the tasks as they would at home and not have to make an effort to use the affected
upper limb as they would in therapy.

Figure 1. Activities of daily living included preparing a meal, chatting and drinking coffee or tea,
watering flowers, folding and tidying towels, writing a shopping list, reading a newspaper, and
tidying up a desk.

2.1. Participants

The study included seven post-stroke patients (four males) aged 44–59 years (aver-
age 51.6 years) and 5–80 weeks after stroke (average 25 weeks), with limited upper limb
usage. Three participants had left upper limb hemiparesis, and the rest had right upper
limb hemiparesis. All patients were right-handed before the stroke. One healthy, 26 years
old male was included in the study, providing reference values for interpreting patients’
results. We acquired approximately 15 hours of daily activities.

All the participants signed the informed consent. The study was approved by the
National medical ethics committee of the Republic of Slovenia (80/03/15).

2.2. System for Measurement of Daily Activities

Upper limb movement was measured with a wearable sensory system consisting of
seven wireless IMU sensors and two EMG armbands (MYO armbands from Thalmic labs),
more thoroughly described in a study to quantify movement during Action Research Arm
Test (ARAT) on a group of patients after stroke [31]. The IMU sensor consists of a tri-axial
gyroscope with a measuring range of ±1000◦/s and a sampling rate of 1 kHz, a tri-axial
accelerometer with a measuring range of ±2 g and a sampling frequency of 1 kHz, and
a tri-axial magnetometer with a measuring range of ±130 µT and a sampling frequency
of 160 Hz. The sampling and transmission of the seven IMUs occurred at a frequency of
80 Hz. The accuracy of the measured IMU angle is below 2.5◦ for stationary conditions
and bellow 5◦ under dynamic conditions. The Myo bracelet (Thalmic Labs), consists of
eight electromyographic electrodes evenly distributed around the inner circumference of
the bracelet. The data are sampled at a rate of 200 Hz.

The system is designed for the measurement of long-duration activities of daily living.
Data are acquired on a stick computer. We provided warning signals in case of malfunctions,
such as the USB receiver not being inserted, the IMU being off or not working, or the IMU’s
battery being empty. We used built-in vibration and a signalling light on the EMG bracelets
to make warning signals unambiguous.

Communication between the stick computer and the researcher in charge is enabled
through an HTML application for a mobile phone. When the measurement is finished,
the application stores the results in a separate folder on the computer. The wearable
measuring system shown in Figure 2 has several advantages: (1) it is not limited to the
laboratory setting, and it can be used in a home environment or outdoors, (2) the use of
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the system only requires a mobile phone with enabled WiFi connectivity, (3) the sensors
are physically small and unobtrusive during upper limb movement, and 4) the system
allows movement measurement for up to six hours. In Figure 2 (right), orange boxes
represent IMU sensors, and the segmented cylinder represents armband EMG electrodes.
The trunk, which represents the reference frame, and the two arms are relevant to the
analysis. The posture in Figure 2 (right) defines zero values for all joint angles. In the
presented kinematic model, the arm joints are defined in the following order from proximal
to distal: (1) shoulder flexion/extension, (2) shoulder abduction/adduction, (3) shoulder
internal/external rotation, (4) elbow flexion/extension, (5) wrist pronation/supination,
(6) wrist ulnar/radial deviation, and (7) wrist flexion/extension.

Figure 2. Wearable system for measurement of activities of daily living and kinematic model of
the upper limb with sensor placement: IMU sensors (orange) and EMG bracelets (white segmented
cylinder).

2.3. Movement Segmentation

The hand position is defined relative to the trunk reference coordinate frame (xT , yT , zT)
shown in Figure 2. The hand trajectory p(t) is the path p that the hand follows through
space as a function of time t. While measuring activities of daily living, the trajectory can
be segmented into submovements using different approaches. A trivial approach is to
segment the trajectory into predefined time intervals where movement parameters are
then computed on these shorter intervals. We will refer to this approach as a time-based
segmentation. A more complex approach is to segment long trajectories into completed
submovements [32]. We will refer to this approach as a path-based segmentation. In
general, speed and form can be separated by parametrization with the arc length [33]. With
path-based movement segmentation, the entire trajectory of the arm p(t) can be divided
into shorter movement intervals by first representing it as a function of arc length. With the
path-based segmentation method, more thoroughly described in [31], we split a continuous
trajectory into M discrete movements.

To validate the path-based segmentation method, we completed a test with a healthy
subject sitting at a table and a sheet of paper with regular hexagons printed on it. The
person traced the sides of a printed hexagon with a pencil. This task was repeated with
hexagons with different base side lengths (20 mm, 50 mm, and 100 mm). The hand
speed varied during execution. The upper limb kinematics was calculated relative to the
trunk. We counted the number of times the subject drew a straight line across the printed
side of the hexagon for later comparison with the automatic path-based segmentation of
motion during the drawing. The angle between the adjacent sides of a regular hexagon
is 120◦, which was used to verify the detection of a change in motion direction (one of
the criteria for movement segmentation). The 20 mm side length of the hexagon is at the
resolution limit of the used measurement system (2.5◦ measurement error in the shoulder
joint represents an error in the order of 20 mm at the finger position when the arm is
extended). For the purpose of segmenting activities of daily living in this study, the current
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resolution of the measurement system is sufficient. However, the analysis of more subtle
movements, such as writing, may require a higher precision measurement system such as
an optoelectronic system.

Figure 3 shows the previously described movement in the transverse plane. The
path-based movement segmentation method enables the setting of minimal movement
length to be detected. Movement along the circumference of the hexagon with the smallest
side length (20 mm) is shown in Figure 3(ı), where the subject made 186 movements.
The movement segmentation method yielded a result of M = 172. The system detected
fewer movements because the path length was at the limit of the system resolution. The
measurement with a hexagon base length of 50 mm is presented in Figure 3(ii), where the
subject performed 120 movements, and the path-based segmentation method obtained a
result of M = 121. The same was repeated for the longest hexagon base length 100 mm
with trajectory represented in Figure 3(iii). Here the subject performed 120 movements, and
the path-based segmentation method returned a result of M = 124. The system detected
some more movements than were performed as the drawn lines were not perfectly straight
and continuous. Nevertheless, the segmentation error is at the level of a few percent,
which is enough for automatic path-based segmentation of continuous movements during
activities of daily living. To analyze the movement of the upper limbs during daily activities,
we defined a minimum movement length of 50 mm to emphasize activities with longer
arm trajectories.

Figure 3. The traversed path of the hand during the sequential drawing of the circumference of a
regular hexagon with the length of the base side (i) 20 mm, (ii) 50 mm, and (iii) 100 mm.

2.4. Analysis of Upper Limb Activities with Time-Based Segmentation

Studies that use accelerometers to analyze upper limb movement often rely on the
established activity counts parameter for the analysis [34–40]. The parameter is defined as
the sum of the accelerations within a specified time interval, which is not prescribed but is
usually selected in the time frame of up to two seconds. The parameter can distinguish
between the more active and the less active upper limb. The parameter is determined by
summing the accelerations over an unspecified but typically short time period, such as
within two seconds. This parameter allows for differentiation between higher and lower
levels of upper limb activity.

Each subject performed approximately two hours of activities of daily living that were
measured. We set T = 0.25 s (Ti = Ti−1 + T) for the segment duration. In the following
equations, the notation (AF,UAF) indicates that the same equation applies to both limbs,
with UAF for the unaffected and AF for the affected limb. First, we computed the activity
counts AC for the unaffected (UAF) and affected (AF) upper limbs in the time interval i as

ACh
(AF,UAF)i

=
1
T

∫ Ti

Ti−1

‖ah(AF,UAF)
(t)‖dt, (1)

where ah represents acceleration measured at the hand position and filtered using a band-
pass filter with cut-off frequencies 0.25 Hz and 2.5 Hz [39]. The activity counts AC, a
measurement of limb activity, is computed for each upper limb. Bandpass filtering does
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not entirely remove the gravitational acceleration. Thus we augmented the activity counts
computation by subtracting gravitational acceleration g

AC-g
(AF,UAF)i

=
1
T

∫ Ti

Ti−1

‖ah(AF,UAF)
(t)− g‖dt. (2)

The apparent movement of the arms may also be due to the movement of the trunk when
the arm is at rest relative to the trunk. To exclude the influence of trunk movement, we
introduced a third relation based on the subtracted trunk acceleration at(t) (the subtraction
also removes the effect of gravity)

AC-t
(AF,UAF)i

=
1
T

∫ Ti

Ti−1

‖ah(AF,UAF)
(t)− at(t)‖dt. (3)

All acceleration vectors are expressed in the trunk coordinate system in the above equations.
Bailey et al. presented activity counts of both upper limbs ACi and the ratio of left,

and right upper limb activity counts RACi [38,39]. Similarly, we summed values of activity
counts of affected (non-dominant for the healthy subject) ACAFi and unaffected (dominant
for the healthy subject) ACUAFi upper limb for each time interval

ACi = ACUAFi + ACAFi . (4)

The parameter ACi represents the intensity of activities of both upper limbs, where 0 means
that neither the affected (non-dominant) nor the unaffected (dominant) upper limb is active
in the time interval. We evaluated activity count ratio RACi as

RACi = ln
ACUAFi + 1
ACAFi + 1

, (5)

with which we prevent positive skewness coefficient of untransformed size ratios RACi > 0 [41].
To analyze muscle activity resulting from time-based segmentation, we introduced

muscle activity counts MC. We used signals from all eight electrodes of the EMG armband
to estimate the total muscle activity. Four electrodes were assigned to each group to estimate
the muscle activity of flexor and extensor muscle groups, as shown in Figure 4.

Figure 4. Muscles inside the forearm with the consequent electrodes numbers of EMG armband.

The muscle activity counts were computed from the adapted equation (1) as

MC(AF,UAF)i
=

1
T

∫ Ti

Ti−1

√
∑
N

w2
n(t)dt, (6)

with T = 0.25 s, wn is the muscle activity measured with electrode n, and N is the set of
electrodes as determined in Figure 4 (all eight electrodes were considered for total muscle
activity, N = 8). We computed muscle activity counts of both upper limbs. Then we
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summed values of activity counts of unaffected (dominant) MCUAFi and affected (non
dominant) MCAFi upper limb for each time interval to obtain

MCi = MCUAFi + MCAFi . (7)

Finally, we evaluated the activity count ratio as

RMCi = ln
MCUAFi + 1
MCAFi + 1

. (8)

2.5. Analysis of Upper Limb Activities with Path-Based Segmentation

In this case, the goal of movement analysis is not to identify specific everyday activities
but to assess the movement capabilities of the upper limbs. Authors typically estimate kine-
matic parameters on submovements generated by time-based segmentation and analyze
the movement as a function of time [42–45].

Activities of daily living consist of bimanual and unimanual movements. By com-
paring the number and the lengths of the movements of one and the other hand, we can
determine which arm is more active in terms of movement frequency and amplitude. We
based the assessment of movements of the upper limbs on four criteria combined into
a single bimanual movement parameter BMP. The four criteria are: (1) the ratio of the
lengths of the hands travelled paths RL, (2) Pearson linear correlation coefficient PCC,
(3) Fréchet distance F, and (4) variance ratio RV .

We computed the hand path length L(AF,UAF)m for the complete movement m resulting
from path-based segmentation as

L(AF,UAF)m =
∫ Ttm

Tom

∥∥∥ṗ(AF,UAF)(t)
∥∥∥dt, (9)

where m represents the index of the single completed movement within the continuous
trajectory of arm movement and ṗ represents velocity of the hand. The path length was
calculated between the movement onset time Tom and the movement termination time
Ttm of the completed movement m. To compare the movements of the upper limbs, we
calculated the natural logarithm of the ratio of the hand path lengths during the completed
movement m as

RLm = ln
LUAFm

LAFm

. (10)

The RLm value should be close to zero for bimanual movements.
The Pearson linear correlation coefficient PCCm ([46]) and the Fréchet’s distance

Fm ([47]) were calculated between the speed profiles of the unaffected (dominant) and
affected (non-dominant) limbs for the movement m. The value of PCCm is close to one
in the case of bimanual movements. The Fréchet’s distance Fm is a measure of similarity
between two curves, which takes into account the position and sequence of points on the
curve and is computed based on the definition in [12]. The Fréchet’s distance Fm should be
close to zero for bimanual movements.

Variance Vm was computed as

V(AF,UAF)m
=

1
Ntm − Nom − 1

Ntm

∑
k=Nom

(
‖ṗ(AF,UAF)k

‖ − µ(AF,UAF)m

)2
, (11)

where µm is defined as

µ(AF,UAF)m
=

1
Ntm − Nom

Ntm

∑
k=Nom

‖ṗ(AF,UAF)k
‖, (12)
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ṗk represents the hand movement velocity at sample time k, Nom represents the movement
onset sample, and Ntm represents the movement termination sample. The ratio of variances
used as one of the criteria for determining bimanual movement was computed as

RVm = ln
VUAFm

VAFm

. (13)

The RVm value should be close to zero for bimanual movements.
The bimanual movement parameter BMP is computed as

BMPm = 1− 1
4

(
1− PCCm

αPCC
+
|RVm |
αRV

+
Fm

αF
+
|RLm |
αRL

)
, (14)

where denominator α indicates the weight of each criterion. The weights were selected to
account for the 95 percentile of the measured parameters for all subjects and are αPCC = 2,
αRV = 5.5, αF = 1.3 m, and αRL = 2.5. Parameter BMPm is normalized between 0 and 1 (1
for bimanual movements).

An example of a sequence of symmetric upper limb movements with the associated
hand trajectories represented in three planes (frontal, transverse, and sagittal) is shown in
Figure 5 for a healthy female subject. Arm trajectories were computed relative to the trunk
coordinate system.

Figure 5. Symmetrical upper limb movement demonstration of a healthy subject with the correspond-
ing trajectories of the arm in the frontal (i), transversal (ii) and sagittal (iii) plane. Black line represents
the position of the dominant hand and red line represents the position of the non-dominant hand.

Figure 6 summarizes the movement parameters PCC, RV , F, RL, and BMP using the
path-based segmentation corresponding to the symmetric movements of a healthy subject
shown in Figure 5. All criteria, including bimanual movement parameter BMP, indicate
well-coordinated movement between the upper limbs.

To better represent different levels of movement coordination, Figure 7 shows the
speed profiles of three representative movement cases of a patient with an upper limb
impairment and the associated values of bimanual movement parameter BMP. We used
the BMP values to distribute the upper limb movements into three classes. The BMP
thresholds were set based on the visual analysis of hand movement trajectories. Mostly
bimanual movements were defined with BMP > 0.7, where coordination between arm
activities was notable. Mostly unimanual movements were defined with BMP < 0.4, where
only one arm was active. Condition 0.4 ≤ BMP ≤ 0.7 indicates activities which cannot be
strictly classified as bimanual or unimanual.



Sensors 2023, 23, 1289 9 of 20

1 
 

 
(i) (ii) (iii) (iv) (v) 

 
Figure 6. Probability distribution of movement parameters: (i) the linear correlation coefficient PCC,
(ii) the ratio of variances RV , (iii) the Fréchet distance F, (iv) the ratio of hand path lengths RL, and (v)
the upper limb bimanual movement parameter BMP of a healthy subject for the activities shown in
Figure 5. The red vertical line marks the boundary between the dominant and non-dominant upper
limb. The arrows indicate the peak values in each plot.

Figure 7. Representative examples of bimanual movements of a patient with an upper limb impair-
ment for BMP = 0.95 (i), BMP = 0.60 (ii), and BMP = 0.25 (iii). Black colour represents the speed of
the unaffected arm and the red colour represents the speed of the affected arm.

The average forearm muscle activity Wm for each completed movement m was es-
timated separately for each upper limb based on the measured EMG signals, where we
considered all eight electrodes of the EMG armband and computed the total value as

W(AF,UAF)m =
1

Tm

∫ Ttm

Tom

√√√√ 8

∑
n=1

w2
n(t)dt, (15)

where wn(t) represents value from electrode n. Then we determined the ratio of the muscle
activity of the upper limbs as

RWm = ln
WUAFm

WAFm

. (16)

3. Results

All participants performed the same tasks (Figure 1) and received the exact instructions
about the measurement protocol. There was no specific order of activities of daily living,
and the patient was allowed to skip the activity due to a reduced upper limb function. All
patients’ movements were used in the later analysis. However, to reduce the number of
figures, detailed results are presented only for one healthy subject and two post-stroke
patients that differ in their upper limb movement capabilities (one with preserved upper
limb functions and one with severe disability). Where applicable, a summary of movement
parameters for all subjects is presented in a tabular form.

3.1. Time-Based Segmentation Movement Analysis

Figure 8 presents the activity counts computed based on three different approaches
for the three subjects: (i) method (1) proposed by the authors in [38], (ii) method (2)
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with the subtracted gravitational acceleration (only dynamic acceleration as a result of
subject’s activity), and (iii) method (3) with the subtracted trunk activity (only dynamic
arm acceleration as a result of arm movement). All results are presented as a function of the
ratio between the activity counts of the unaffected (dominant) upper limb with the affected
(non-dominant) upper limb. Higher AC values indicate the higher intensity of bilateral
activities, while the colour represents the total time in seconds for a given combination
of parameters AC and RAC. The three methods indicate similar activity counts symmetry
for subjects (a) and (b) and asymmetry for the patient (c). However, the subtraction of
gravitational or trunk acceleration reduces the overall movement intensity (indicated as
lower AC peak values in plots (ii) and (iii)) and enables better expression of differences
between arm movements.

Figure 8. Upper limb activity counts AC in relation to RAC computed from accelerations i), from
accelerations with subtracted gravitational acceleration g (ii), and from accelerations with subtracted
trunk acceleration (iii) for a healthy person (a) and two patients after stroke (b,c).

Figure 9 presents muscle activity counts MC in relation to the ratio RMC. Figure 9(i)
represents the total forearm muscle activity, Figure 9(ii) only for flexor muscles, and
Figure 9(iii) only for extensor muscles. Symmetric distribution can be noticed for the
healthy subject and the patient with better preserved upper limb function. Significantly
asymmetric activation was found for the patient with severe upper limb disability. Similar
activation patterns were observed for the total activation and the activation of flexor and
extensor muscles as shown in plots (i), (ii), and (iii) . However, subtle differences can also
be discerned between activation patterns. For example, longer low-level and symmetric
activation of forearm flexor muscles compared to extensor muscles can be noted for the
healthy subject. Notable similarities between the upper limb activity counts presented in
Figure 8 and the muscle activity counts presented in Figure 9 can also be seen.
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Figure 9. Upper limb muscle activity counts MC in relation to ratio RMC for total forearm flexor and
extensor muscles (i), for forearm flexors ii), and forearm extensors (iii) for a healthy person (a) and
two stroke patients b, c).

3.2. Path-Based Segmentation Movement Analysis

In the analysis of activities of daily living, we obtained a different number of move-
ments M for each participant as a result of path-based movement segmentation. Table 1
summarizes the number of computed movements M for each subject. In the analysis
of activities of daily living, we obtained a varying amounts of movements M for each
participant as a result of path-based movement segmentation. Table 1 summarizes the total
number of computed movements M for each individual subject.

Table 1. Number of movements M for a healthy participant (H) and stroke patients (P) computed
with path-based segmentation method.

H (a) P1 P2 (b) P3 P4 (c) P5 P6 P7

M 1389 1957 1632 1809 2046 2019 1554 2568

Figure 10 compares movement lengths obtained from path-based and time-based
segmentation. Results are presented in Figure 10(i) as the natural logarithm of the ratio of
the hand path lengths for a completed movement in the case of path-based segmentation.
Figures 10 (ii,iii,iv) present the natural logarithm of the ratio of the hand path lengths
with the movement segmented into one-, three- and five-second movement periods (time-
based segmentation). Values close to zero indicate similar hand movement lengths of
the unaffected (dominant) and affected (non-dominant) upper limbs. Positive values
indicate longer movements of the unaffected (dominant) limb compared to the affected
(non-dominant) upper limb, and the opposite applies to the negative values.

While time-based segmentation results in symmetric Gaussian-like histograms for the
healthy subject and the patient with better upper limb function, the path-based segmen-
tation indicates a shift toward the unaffected (dominant) limb. There are no significant
differences between different periods for time-based movement segmentation. In the case
of the patient with the reduced upper limb function (Figure 10(c)) all methods indicate a
shift toward the unaffected limb. However, the probability distribution differs between
path-based and time-based segmentation.
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Figure 10. The natural logarithm of the ratio of the hand path lengths of the unaffected (dominant)
upper limb and the affected (non-dominant) upper limb for different segmentation methods: path-
based segmentation (i), and time-based segmentation into one (ii), three (iii) and five (iv) second
movement periods for a healthy person (a) and two patients after stroke (b,c). The red vertical line
marks the boundary between the unaffected (dominant) and affected (non-dominant) upper limb.

Results for all participants are summarized in a numerical form in Table 2. We assumed
the Gaussian distribution of data presented in Figure 10 and computed the following three
parameters: the mean value µ of data, standard deviation σ, and kurtosis κ as a measure
of tailedness.

Table 2. Kurtosis (κ), mean (µ) and standard deviation (σ) for the distribution of ratio RL for a healthy
participant (H) and stroke patients (P). Four κ − µ− σ column sets represent different segmentation
methods: path-based movement segmentation (column 1), and time-based segmentation into one
(column 2), three (column 3) and five (column 4) second movement periods.

1 2 3 4
κ µ σ κ µ σ κ µ σ κ µ σ

H (a) 2.6 0.46 1.05 3.7 0.01 0.98 3.3 0.01 0.91 3.3 0.01 0.87
P1 2.8 0.52 1.05 3.5 0.12 1.02 3.3 0.13 0.95 3.2 0.14 0.9
P2 (b) 2.3 0.54 1.13 3.2 −0.14 1.17 2.8 −0.12 1.15 2.7 −0.12 1.12
P3 2.8 0.59 0.94 3.8 0.29 0.84 3.6 0.31 0.76 3.5 0.32 0.72
P4 (c) 2.4 1.45 0.92 2.3 0.92 0.93 2.1 1.00 0.84 2.1 1.03 0.79
P5 2.8 0.96 0.77 2.4 0.63 0.77 2.2 0.68 0.68 2.2 0.70 0.62
P6 2.9 1.00 0.87 3.9 0.62 0.80 3.8 0.65 0.73 3.5 0.67 0.69
P7 3.9 1.78 0.88 2.2 1.01 0.94 2.1 1.11 0.88 2.1 1.18 0.84

Figure 11 presents the four criteria calculated to assess the bimanual movement coor-
dination of the upper limbs and the bimanual movement parameter BMP that combines
those four criteria. The linear correlation coefficient PCC (i), the variance ratio RV (ii),
and Fréchet distance F (iii) were all computed from the speed profiles of the unaffected
(dominant) and affected (non-dominant) upper limbs within the movement m resulting
from path-based segmentation. The PCC value close to one indicates a significant corre-
lation between the speed profiles. The RV values close to zero indicate similar variances
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in the speed profiles of the upper limbs. The Fréchet distance F was used to evaluate the
similarity between the unaffected (dominant) and affected (non-dominant) upper limb
speed profiles. A larger Fréchet distance means lower similarity between the curves. The
ratio of the hand path lengths RL should be close to zero for similar movement lengths.
Higher values of the bimanual movement parameter BMP indicate mostly bimanual upper
limbs movement, and the lowest values indicate a unimanual or close to the unimanual
movement. All parameters indicate more pronounced bimanual activity for the healthy
subject and the patient with better preserved upper limb function compared to the patient
with reduced upper limb function.

Figure 11. Column (i) presents the linear correlation coefficient PCC, (ii) the ratio of variances RV , (iii)
Fréchet distance F, (iv) the ratio of the hand path lengths RL and (v) upper limb bimanual movement
parameter BMP, for a healthy person (a) and two stroke patients (b, c). The red vertical line marks
the boundary between the unaffected (dominant) and affected (non-dominant) upper limb.

Table 3 summarizes the distribution of unimanual (BMP < 0.4), bimanual BMP > 0.7,
and unclassified movements (0.4 ≤ BMP ≤ 0.7) for the healthy subject and all patients for
the duration of the entire measurement session. The healthy subject and patients with better
preserved upper limb functions performed close to 50% of movements bimanually and
around 15% unimanually. The ratio is the opposite for the patient with the least preserved
upper limb function. The movement length of both upper limbs was approximately
equal for bimanual movements and significantly different for unimanual movements. For
symmetric movements, shown in Figure 5, 97% of movements were classified as bimanual,
3% were unclassified, and no movements were classified as unimanual.

Figure 12 presents the muscle activity W(AF,UAF), computed for each movement m.
Column 12 (i) presents the normalized muscle potential, and column 12(ii) presents the
ratio of the unaffected (dominant) and the affected (non-dominant) limb muscle potential
RW . Higher values in Figure 12(i) indicate a higher level of muscle activity. In Figure 12(ii),
values close to 0 indicate similar muscle activity amplitudes of both upper limbs, higher
values imply higher muscular activity of the unaffected (dominant) limb, and negative val-
ues imply higher muscular activity of the affected (non-dominant) limb. Highly symmetric
activation of forearm muscles was observed for the healthy subject and the patient with
better preserved upper limb functions. On the other hand, patient with significant upper
limb disability shows highly asymmetric activation. The activation of the affected limb was
limited to low EMG amplitudes.
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Table 3. Proportion of bimanual and unimanual movements (%) based on BMP and the median
movement lengths of the unaffected (dominant) limb and the affected (non-dominant) limb expressed
in meters.
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H (a) 9 0.21 0.06 41 0.16 0.15 50 0.13 0.14
P1 14 0.29 0.09 35 0.20 0.15 51 0.15 0.15
P2 (b) 16 0.33 0.08 36 0.14 0.16 48 0.16 0.17
P3 10 0.24 0.07 34 0.15 0.13 56 0.14 0.13
P4 (c) 28 0.35 0.04 42 0.18 0.09 30 0.11 0.10
P5 14 0.39 0.07 46 0.17 0.11 39 0.12 0.11
P6 19 0.45 0.07 40 0.16 0.10 39 0.13 0.12
P7 43 0.28 0.03 37 0.14 0.07 19 0.09 0.08

Figure 12. Probability distribution of the normalized activity level for the unaffected (dominant) and
affected (non-dominant) upper limbs W(AF,UAF) (i) and the ratio of muscle activities RW (ii), for a
healthy person (a) and two stroke patients (b, c). The red vertical line marks the boundary between
the dominant (unaffected) and non-dominant (affected) upper limb.

Results for all participants are summarized in a numerical form in Table 4 as they
were for segmentation results (Table 2). We also assumed the Gaussian distribution of data
presented in Figure 12(ii) and computed the following three parameters: the mean value µ
of data, standard deviation σ, and Kurtosis κ as a measure of tailedness.
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Table 4. Kurtosis (κ), mean (µ), and standard deviation (σ) for the distribution of ratio of muscle
activities RW for a healthy participant (H) and stroke patients (P).

κ µ σ

H (a) 3.02 −0.01 0.77
P1 3.5 0.12 0.73

P2 (b) 3.2 −0.08 0.75
P3 3.2 0.42 0.69

P4 (c) 3.2 1.49 0.55
P5 4.0 1.48 1.0
P6 data were not obtained
P7 4.4 1.87 0.56

4. Discussion

Activity counts represent a well-established method for analysis of upper limb activ-
ities combined with time-based segmentation and are computed from bandpass-filtered
accelerometer data. Comparison of different approaches for the computation of activity
counts indicates that when gravitational acceleration was not subtracted from the arm
acceleration vector, a greater spread of upper limb activity quants at higher intensities was
obtained as shown in Figure 8(i), compared to the approach with the subtracted gravita-
tional acceleration presented in Figure 8(ii) and the approach with the subtracted trunk
acceleration shown in Figure 8(iii). Thus, without subtracting the gravitational acceleration,
the activity of the upper limbs is incorrectly estimated, as part of the computed activity can
be attributed to the gravitational acceleration. The difference between subtracting gravi-
tational acceleration (Figure 8(ii)) and subtracting trunk acceleration (Figure 8(iii)) is less
evident at first glance, which suggests that trunk activity does not contribute significantly
to the assessment of upper limb activity. However, in particular, for the more impaired
patient (Figure 8(c)), the minimal activity of the affected limb can be noticed in column
(iii), which cannot be detected without taking into account the movement of the trunk as
shown in column (ii). Results in Figure 8(a) and Figure 8(b) do not indicate significant
differences between the healthy subject and the less impaired patient. We can observe the
smaller intensity of movements for the less impaired patient but no relevant asymmetry.
For a more impaired patient, activity quants are shifted to the right (Figure 8(c)), indicating
that the unaffected upper limb is significantly more active, which can be interpreted as
predominantly unimanual movement. Most of the unimanual or bimanual activity (red
colour in the duration scale) of all three subjects was performed with lower intensity.

The time-based segmentation and the corresponding activity counts enable compari-
son between the activation of both upper limbs. However, time-based segmentation makes
it challenging to analyze functional movements, identify activities, determine movement
simultaneity and coordination, observe intentionality, and compute movement lengths. All
this is made possible with path-based segmentation into individual completed movements.
Additionally, time-based segmentation can, in some cases, produce misleading results. The
ratio of simultaneous movement lengths of the dominant to the non-dominant arm shown
in Figure 10 confirms this.

The time-based segmentation does not take into account completed movements. Typ-
ically, a movement would be split across several consecutive time intervals, introducing
randomness in path segmentation. The result of this randomness is a symmetrical proba-
bility distribution visible in Figure 10(ii)–(iv) for the healthy subject and the less impaired
patient. This symmetry corresponds to the symmetric distribution of activity counts
(Figure 8). The peak of the histogram around value zero indicates that a significant part
of the upper limb movements is executed with the same movement length of both upper
limbs. Detailed analysis of the time-based segmentation results indicates that the less
impaired patient uses his affected arm more than his unaffected arm. The time-based
segmentation indicates noticeable asymmetry only for the more impaired patient. However,
in this case, the histogram peak is close to value zero (e.g. Figure 10(c)(ii)). The results of



Sensors 2023, 23, 1289 16 of 20

the time-based segmentation indicate that the less impaired patient uses their affected arm
more than their unaffected arm. There is also noticeable asymmetry for the more impaired
patient, indicating that they primarily use only one hand while the other hand is not active.
However, the histogram peak for this patient is close to zero (e.g., Figure 10(c)(ii)).

On the other hand, the path-based segmentation yields asymmetric results for all
subjects (Figure 10(i)). The probability distributions of arm movement lengths for the
healthy subject and the less impaired patient after stroke are similar (Figure 10(a,b)). The
unaffected (dominant) limb typically performs more movements with a longer path than
the affected (non-dominant) upper limb. A less impaired patient presented in (b) has no
significant asymmetry in path-based segmentation. A more impaired patient (Figure 10(c))
shows pronounced asymmetry for all four segmentation methods indicating a higher
degree of impairment. However, it is important to note that the peak in the histogram
for path-based segmentation (Figure 10(c)(i)) is around value 2. On the other hand, the
path-based segmentation shows asymmetry for all subjects (Figure 10(i)). The probability
distributions of arm movement lengths for the healthy subject and the less impaired
patient after a stroke are similar (Figure 10(a,b)). The unaffected (dominant) limb typically
performs movements with a longer path than the affected (non-dominant) upper limb.
A less impaired patient, presented in (b), has no significant asymmetry in path-based
segmentation, but the more impaired patient (Figure 10(c)) shows pronounced asymmetry
in all four segmentation methods, indicating a higher degree of impairment. Importantly,
the peak in the histogram for path-based segmentation for the more impaired patient
(Figure 10(c)(i)) is around value 2, indicating that the person only makes short movements
with their affected upper limb, performing longer movements primarily with their healthy
upper limb. The probability of equal lengths of upper limb movement is only one-third
compared with the time-based segmentation. The difference between path-based and time-
based segmentation is additionally confirmed by the results for all subjects summarized
in Table 2. While there are no significant differences in values for standard deviation σ,
the mean value of distribution µ indicates a significant shift toward the unaffected limb
for the path-based segmentation compared to the time-based segmentation. The kurtosis κ
as a measure of tailedness also confirms differences in probability distribution for the two
segmentation methods.

A significant advantage of path-based segmentation, compared to time-based seg-
mentation, is the ability to assess bimanual/unimanual movement and simultaneity. We
used four sub-parameters to calculate the bimanual movement parameter BMP and distin-
guish between three bimanual/unimanual movement levels. For a coordinated bimanual
movement of a healthy subject (Figure 5), the average BMP parameter is higher than 0.9,
and more than 97% of movements correspond to BMP > 0.7 (Figure 6). Considering the
representative trajectories shown in Figure 7 for different BMP values, it is possible to
confirm strong bimanual activity. With BMP = 0.95, the upper limb speed profiles have an
almost identical shape. With BMP = 0.6, the movements of both limbs are simultaneous
but with different intensities, and with BMP = 0.25, only one limb is predominantly active.

For a healthy person, we expect the highest proportion of bimanual movements.
For bimanual movements (BMP ≥ 0.7), similar movement lengths of both upper limbs
are expected. Both hypotheses are confirmed by the results presented in Figure 11 and
Table 3 for all subjects. The less impaired patient also performed a significant part of
activities bimanually, but the distribution is less shifted to the right compared to the healthy
subject. For a more impaired patient, we can observe an almost symmetric distribution
between unimanual and bimanual activities (most activities cannot be classified as strictly
unimanual or bimanual). A more detailed analysis of movement lengths (Table 3) shows
that the average bimanual movement length of the severely affected subject is much shorter
than that of the healthy subject or patients with more preserved upper limb functions (0.08
m compared to approximately 0.15 m). For unclassified movements (0.4 ≤ BMP ≤ 0.7),
slightly longer movements of the unaffected (dominant) limb were typically observed.
However, this cannot be generalized to all subjects. In some cases, movement lengths are
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equal or even longer movement length of the affected limb can be noted. For predominantly
unimanual movements (BMP < 0.4), differences in the movement length of both limbs are
evident (Table 3).

Often, also the more impaired patients inadvertently or inactively move the upper
limb or at least the limb is not at rest. An example of such movement is a passive oscillation
of the limb during trunk movement. We did not exclude such movements from the analysis
since it is often impossible to distinguish between voluntary and involuntary activity based
on trajectory segmentation. However, since these are typically short movements, they do
not indicate the functional abilities of the affected upper limb.

We can further reduce the effect of involuntary movements by measuring muscle
activity. Muscle activity measured at the forearm is a good indicator of hand activity,
such as grasping and manipulating objects. The results in Figure 12 show the differences
in muscle activity W(AF,UAF) of the upper limbs. The differences are negligible for the
healthy subject and the less impaired patient, who could efficiently use the affected limb.
This is also confirmed by the symmetric distribution of the ratio of the muscle activity
parameter RW . The symmetric distribution indicates that similar activities were performed
with the unaffected (dominant) and the affected (non-dominant) limb. Most often, the
healthy subject and the less impaired patients activated left and right forearm muscles at
the same time (peak at RW = 0 in Figure 12, mean value µ ≈ 0 for H, P1 and P2 in Table 4).
For a patient with a more impaired upper limb, we measured regular muscle activity in
the unaffected upper limb and only low-intensity muscle activity in the affected upper
limb. This is also confirmed by the ratio of the muscle activity parameter RW that indicates
activation of the forearm muscles on the unaffected limb only (Figure 12). There is almost
no simultaneous activation on both arms (with RW = 0), which is the prevailing pattern for
the healthy subject and the less impaired patient. The results of all subjects are summarized
in Table 4 with values for standard deviation σ, the mean value of distribution µ and the
Kurtosis κ. The mean value of distribution µ indicates a significant shift when comparing
the healthy subject (H) and the two patients (P1 and P2) with the less impaired upper
limb with the three patients with a more impaired upper limb (P4, P5, and P7). However,
there are no relevant differences in the Kurtosis κ or standard deviation σ. These results
also support our anticipation of impairment for the patients (P1–P3) as less impaired and
patients (P4–P7) as more impaired.

5. Conclusions

We implemented a wearable system to monitor and analyze upper limb movement
during activities of daily living. This is a crucial step in personalizing the rehabilitation
process for patients after a stroke since it enables monitoring of patients outside the clinical
environment, thus obtaining objective data on the patient’s condition and progress.

The analysis of upper-limb movement trajectories was performed based on two ap-
proaches. In the first approach, we performed time-based segmentation. For each time
interval, we computed parameters that determine the activity of the upper limbs: activ-
ity counts, movement length, and muscle activity counts. In the second approach, we
focused on path-based segmentation for splitting continuous upper limb trajectory into
single completed movements, using the methodology validated in [31]. For each completed
movement, we computed similar parameters as for time-based segmentation. We showed
that path-based segmentation enables a better and more precise insight into the movement
capabilities of upper limbs regardless of movement parameters being computed from the
movement trajectory or muscle activity. Additionally, path-based segmentation enables
functional assessment of upper limb movement. Thus, we proposed the upper limb biman-
ual movement parameter BMP to estimate the level of bimanual/unimanual movement
of upper limbs. The BMP value combines four basic parameters and distinguishes well
between unimanual and bimanual movements during the activities of daily living.

When analyzing the results of activities of daily living, some of the ambiguities can
be attributed to the fact that we did not distinguish between the time when the subject
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performed activities sitting at the table or standing. While sitting, the table provides limb
weight compensation, thus allowing the patient to use the affected limb more efficiently. A
more detailed analysis of the upper limb movement abilities would require data separation
into the phases when the limb is supported and when it moves freely in space. Shoulder
joint angles could provide valuable information for determining support phases.

Time-based segmentation is a straightforward, real-time approach for identifying
trends. It is well-suited for quickly comparing the movements of a unaffected arm to an
affected one, and it can provide patients with immediate feedback for using their affected
arm more. Additionally, because it does not require detailed kinematic data, it can be
implemented using a simpler sensor system, making for more efficient online analysis.
Path-based segmentation, on the other hand, is better for more in-depth analysis. It allows
for the examination of movement patterns, the range of arm movement, trajectory lengths,
and simultaneous movements. However, this method is more complex and would be better
suited for offline computation. This type of analysis is important for rehabilitation planning.
By using a combination of both methods, it provides a useful tool for both planning and
ongoing monitoring of a patient’s activity.

Path-based segmentation opens new possibilities for identifying specific functional
uses of upper limbs. Pattern analysis augmented with artificial intelligence approaches
could provide an even more in-depth insight into arm performance and enable personaliza-
tion of upper limb training.
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