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Abstract—Current state-of-the-art locomotion mode classifiers
for controlling robotic lower-limb prostheses rely on multiple
sensors to achieve high accuracy, prediction performance, and
robustness to both speed changes and subject-specific gait pat-
terns. However, multiple sensors placed on different body parts
usually entail discomfort and poor usability for the user. This
paper presents an intention detection method that relies on the
features extracted from an inertial measurement unit worn on
the thigh and an online phase estimator. The algorithm classifies
the locomotion mode of the upcoming stride among the three
modes of ground-level walking, stair ascent, and stair descent.
A two-stage classification process first distinguishes between tran-
sient and steady-state strides and then classifies the locomotion
mode of the impending stride based on directed acyclic graphs of
binary classifiers. The classification is performed at 75% or 85%
of the previous stride phase, respectively for steady-state and
transient strides. Data were gathered from 10 healthy subjects
and processed offline. Feature design and selection were based
on the data of all subjects, while the classification performance
was assessed by leave-one-subject-out cross-validation. Results
presented a median recognition accuracy of 98.7% for steady-
state strides and 95.6% for transitions, suggesting that the method
was inherently robust to variations in gait cadence, since all of
the features were phase-based and not dependent on fixed time
intervals. These results inform the design of control strategies
for active transfemoral prostheses able to predict the user’s loco-
motion intention during the next stride, using minimum sensors.
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I. INTRODUCTION

TECHNOLOGICAL improvements in recent years are
enabling the development of highly efficient active lower-

limb prostheses [1], designed to assist the user when per-
forming locomotion-related activities of daily living (ADLs)
such as ground-level walking (GLW), stair ascent (SA),
and stair descent (SD). Several studies have demonstrated
impressive improvements in gait functions achieved by trans-
femoral amputees using active knees and ankles [2]. Such
results are mainly driven by the evolution of mechatronic
solutions and the technological improvements of control com-
ponents. In particular, smaller sensing and more powerful
computing electronics are allowing the online control of these
devices via machine learning methods. To deliver task-specific
biologically-inspired joint actuation, robotic prostheses must
be able to identify different locomotion modes in real-time
and provide appropriate motor action according to the per-
formed activity. To do so, the control architecture is usually
divided into three layers, dedicated to different tasks: the high-
level controller analyses sensory data and decodes the user’s
movement intentions, the middle-level layer sets the motor
command for each powered joint, according to the recog-
nized locomotion mode and its sub-phases [3]–[5], and the
low-level controller executes the motor command by driv-
ing the motors through either torque or position closed-loop
compensators [2].

Several intention detection methods have been developed
to address this challenge, following approaches that range
from simple rule-based algorithms to more complex neu-
ral networks [2], [3], [6]–[10]. To develop high-performance
intention detection algorithms, two aspects have been recog-
nized as the most critical. First, the method’s classification
accuracy should be close or equal to 100%, as every misclas-
sified stride can cause unnatural and unexpected prosthesis
behavior that may pose safety concerns [11]. Second, the
method should be able to classify the locomotion mode
of the upcoming stride before prosthesis contact with the
ground, to modulate the behavior of the prosthesis (e.g.,
the impedance) according to the requirements of the given
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Fig. 1. A subject wearing the Inertial Measurement Units (IMUs) and
pressure-sensitive insoles.

locomotion mode [11]. This latter aspect is particularly impor-
tant for locomotion mode transitions (e.g., from ground-level
walking to stair ascent) in which the knee and ankle joints
have significantly different kinematic and kinetic profiles.
Another aspect to consider when designing and evaluating
an intention detection method is the robustness to cadence
changes and subject-related gait pattern variability. Robustness
to speed and cadence changes is especially critical for methods
that use inertial measurement units (IMU), since the magni-
tude of collected data is highly influenced by the speed of
the motion [12]. Furthermore, the design of a classification
method that does not require subject-specific tailoring would
eliminate the need to acquire training data from each new user,
allowing simpler, “off-the-shelf” uses. Such methods should
hence rely on features that show low variability across different
anthropometries and gait patterns [13].

In addition to the aforementioned aspects, another critical
consideration in the development of intention detection algo-
rithms is the choice of type and number of sensors to use.
A wide variety of sensors have been used on different con-
figurations for locomotion mode classification such as force
sensors, surface or implantable electromyographic (EMG) sen-
sors, and IMUs [2]. Among these sensors, IMUs have the
advantage of being very reliable yet cheap, small, and easy
to manage (easy to don and doff, non-invasive). For these rea-
sons, IMUs are increasingly being used for the development of
intention detection methods, which usually collect kinematic
data from multiple leg segments [14]–[16].

Some studies thus have tried to address the design of
methods that rely on a limited number of sensors, moving
towards sensory configurations that are easier to set and wear
by end-users in ADLs. For example, the use of only two
thigh IMUs has been proposed for a method that can be
used by transfemoral amputees, since these sensors are rel-
atively easy to set on the residual limb while still allowing
the acquisition of volitional information. This approach has

achieved good accuracies in the classification of steady-state
strides as well as continuous transitions between locomotion
modes [17]. Recent studies have presented intention detec-
tion methods using data from a single thigh-mounted IMU in
healthy subjects [18], [19]. The method presented by Bartlett
and Goldfarb [18] achieved a remarkable accuracy of 97.7%,
without requiring subject-specific data to train the model.
Chinimilli et al. [19] developed a predictive method that classi-
fies the upcoming stride during the swing phase at the moment
of maximum thigh flexion.

Here we present an intention detection method that pre-
dicts (classifies) the locomotion mode of the next step during
the swing phase of each stride, based on (i) the features com-
puted on the data of a single thigh-mounted IMU and (ii) a gait
phase estimation module. We addressed the identification and
classification of transitional strides and designed a feature
set that aimed to make the method robust to subject-specific
anthropometries and cadence variations. A dataset has been
acquired on a pool of ten healthy participants, performing
a sequence of tasks in different locomotion modes. Tests were
performed offline to simulate an online application. The fol-
lowing sections are organized as follows: Section II describes
the data acquisition hardware, the dataset generation, and the
classification method. Section III reports the selected feature
sets and classifier performances. Finally, a discussion about
the main improvements and limitations of the method com-
pared to the state of the art is presented in Section IV, with
conclusions drawn in Section V.

II. MATERIALS AND METHODS

The presented classification method
requires (i) data acquired from an IMU mounted on the
thigh and (ii) a stride phase estimate. The stride phase is used
to swiftly extract the features from the IMU data and thus
trigger the classification process. In this work, the phase was
computed offline, with 0% representing the foot contact event.

A. Sensory Apparatus

The sensory system used for acquisition included two wire-
less IMUs and a pair of pressure-sensitive insoles (Fig. 1).
Data were recorded from both legs.

Each instrumented shoe consists of a pressure-sensitive
insole with sixteen embedded optoelectronic sensor elements
and an electronic board (Insole Control Board) dedicated to
data acquisition and wireless communication. The pressure-
sensitive insoles used in this study have been presented by
Martini et al. in [20]. The information acquired with the
insoles was used during offline processing, to segment the
strides and generate the datasets.

The IMU control boards were developed by the University
of Ljubljana and are equipped with a 9-DOF sensor MPU9250,
embedding an accelerometer, a gyroscope, and a magnetome-
ter (Table I). The control boards are controlled by a low-power
STM32L476RG microprocessor that manages the data read-
ing from the IMU and the wireless transmission of the
data employing a DWM1000 radio module, operating on IEEE
802.15.4 communication.
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TABLE I
HARDWARE SPECIFICATIONS OF THE MPU9250 CHIP

IMU and insole signals were transmitted synchronously
within a 10 ms time window to a receiver module that
acquired and processed signals on a National Instruments
sbRIO-9651 microprocessor, running a dedicated real-time
routine at 100 Hz. IMU signals were used to compute the thigh
angle in the sagittal plane (namely, the roll angle of the IMU)
using the Madgwick algorithm [21]. A test performed on the
roll angle estimation showed a drift of approximately 0.25 ◦/h
over the acquisition of 8 hours. Magnetometer data were nei-
ther used in the computation of the roll estimation process nor
the classification process.

B. Experimental Protocol

This experiment was approved by the Institutional Review
Board of Scuola Superiore Sant’Anna (approval n. 11/2019).
Ten healthy subjects were recruited and provided written
informed consent to participate in the study (age: 29.7 ±
3.42 years, height: 170.9 ± 3.8 cm, weight: 64.5 ± 5.8 kg).

Before starting the experiment, participants wore the instru-
mented shoes and two IMUs. An experimenter helped the
subject to place and fasten the two IMUs on the thighs using
elastic bands.

Subjects were asked to perform a structured movement
sequence, starting from a standing still position and performing
ground-level walking, stair ascent, and ground-level walking
until the end of a walkway. Then the subject repeated the
sequence in the opposite order, reaching the starting point of
the sequence. The staircase had a set of 2 flights of stairs
with 11 steps each, separated by a short landing. Acquisitions
were performed in sets of 3 consecutive trials of the structured
sequence. The subject was asked to perform each set in order
at (i) normal, (ii) slow, and (iii) very slow speeds (all self-
selected by the subject), respectively, for a total of 9 trials,
with a rest pause between each set.

Before the start of any set of 3 consecutive trials, the sub-
ject was asked to adopt a series of static reference postures
to remove the offset from the signals of the insoles and the
IMUs. In particular, the subject was instructed to stand still for

2 seconds to measure the mean value of the roll angle in the
standing position, which was then used as the reference angle
for the thigh rotation measurement. The subject was then asked
to lift one foot from the ground for few seconds, to measure
the “zero-load” values on the pressure sensors.

Each structured movement sequence consisted of roughly
60 steps (about 20 steps in each locomotion mode, includ-
ing steady-state and transitional steps). Steps were manually
labeled during the recording sessions by one experimenter,
using a manual demarcation button in the GUI at the start
and the end of each locomotion mode. A visual inspection of
the data was performed at the end of each acquisition session
to check for possible errors in the online labeling. For each
stride, the label of the locomotion stride in the next stride was
then used as the reference for the classification algorithm.

C. Dataset Generation

During the offline processing phase, the collected gait-
related signals were segmented into strides, from a foot-contact
to the consecutive foot-contact of the same leg. Notably,
for each subject, the data from the left and right legs were
processed independently. When the manual label indicated
a transition between two locomotion modes, transitory steps
were defined as the two full strides – one stride of the leading
leg and one of the trailing leg – across the transition.

Steady-state strides and transitory strides were separated
into different datasets. The steady-state dataset was made of
a total of 1719 strides at all the acquired cadences; of these,
one third was related to GLW, one third to SA, and one third
to SD. For each subject, the number of steady-state strides
selected for each of the locomotion modes was the same. For
the transition dataset, 661 strides were selected; 110 of these
were GLW-SA, 185 were SA-GLW, 180 were GLW-SD and
186 were SD-GLW.

Only the raw accelerometer and gyroscope data and the
computed thigh roll angle were ultimately saved in the datasets
and used for locomotion mode recognition. The signs of raw
data collected by the left leg’s IMU were properly modified
to match the ones of the right leg’s signals as the legs have
opposite rotation direction for the intra-extra rotation and the
abduction-adduction degrees of freedom.

At last, data of each stride were resampled over 100 sam-
ples, to obtain a phase-wise representation of the strides and to
uniform the dimension of sensory data for strides of different
cadences.

D. Structure of the Algorithm

The architecture of the algorithm is divided into 3 modules,
performing a two-stage classification process (Fig. 2):

1) A steady/transition module, designed to identify a stride
as either steady-state or transition;

2) A steady-state module, which classifies the locomotion
task of a steady-state stride;

3) A transition module, which recognizes the initial and
final locomotion modes of transition strides.

The first stage of classification is composed of the
steady/transition module and is used to identify strides as
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Fig. 2. General architecture of the classification method and structure of the direct acyclic graphs. Plantar pressure data are used to compute the phase of
the stride, which determines the analysis window for feature extraction from the IMU signals. Features are used to identify the locomotion mode within the
binary tree. Acronyms: stair ascending (SA), stair descending (SD), ground-level walking (GLW), Inertial Measurement Unit (IMU).

steady-state or transition. The second stage of classification
is composed of the steady-state module and the transition
module. The output of the first stage selects the module
that operates in the second stage. Note that the modules in
the second stage perform their classification on a multi-class
problem, given the 3 steady-state locomotion modes and the
4 types of transitions considered. Therefore, both the transi-
tion module and the steady-state module use a strategy based
on a directed acyclic graph (DAG) to extend binary classifiers
to a multi-class problem [22].

A directed graph is defined as a structure formed by (i) a set
of nodes and (ii) a set of directional connections among such
nodes, namely the edges of the graph. In addition, the directed
graph is acyclic if it is possible to define an ordering of the
nodes and every edge only connects earlier nodes to later ones
in the sequence, denying cycles. From a binary classification
viewpoint, for a problem of N classes, the number of nodes in
the DAG is N(N-1)/2, and every node performs a classification.
The DAG configurations adopted for this study, in the form
of binary trees, evaluate the stride by descending along a path
that started from the root node and ended in one of the output
nodes. The mapping of the nodes in the DAG reflects the
average accuracy of each node during the training of the model
(Fig. 2).

The steady/transition module and the transition mod-
ule are composed of rule-based binary classification algo-
rithms, whose outputs are given by AND operations on
a set of threshold-based comparisons of the selected fea-
tures. The steady-state module is based on support vector
machines (SVMs); in particular, each classification node in
the DAG of the module is composed of three different SVMs,
obtained by a 3-fold cross-validation process performed on the
training dataset [23]. During the evaluation phase, a majority
voting process is performed to select the output of the specific
node. The SVMs in a node separately perform the evaluation
process on the same features and the output of the node is
selected as the locomotion mode with the most votes.

Each of the three classification modules has been developed
following the same approach:

1) Visual inspection of the data and design of the features;
2) Feature selection, using a greedy backward

algorithm [24];
3) Tuning of the hyperparameters of the SVMs (this step

has been performed only for the steady-state module);
4) Assessment of the classification performances.
Steps 1, 2, and 3 were performed using the data of all

10 subjects. This solution allowed us to design and select,
for each classification module, a single set of input features to
use during the assessment of the performances. On the other
hand, step 4 was performed with a leave-one-subject-out cross-
validation, i.e., iteratively training on the data of nine subjects
and testing on the data of the remaining subject.

Step 1 was performed starting from a visual inspection of
the available data. The goal was to compute potential features
from the data collected in the observation window between
50% and 100% of the stride phase to predict the locomotion
mode of the upcoming stride. The distribution of the values of
each feature was then evaluated, looking for the features that
could better define and separate clusters of values for the two
classes evaluated by each binary classifier. The goal was to
consider only features that showed a limited variance across
subjects while maximizing the separation of the characteristic
clusters of each class. Furthermore, features were searched as
early as possible within the phase window, to maximize the
prediction of the classification. Ultimately the upper bound
of the observation window was set to 75% of the stride dur-
ing the development of the steady/transition module and the
steady-state module, while its value was set to 85% for the
transition module. Fig. 3 shows the signals acquired in three
representative steady-state steps and the phase window used
to extract the features for the classification of the locomotion
mode.

The list of potential features designed for each of the binary
classifiers of a module was then reduced through a greedy
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Fig. 3. Roll angle estimation and X-Axis gyroscope for a representative steady-state stride on each of the locomotion modes. The colored region on the
plots highlights the observation window between 50 and 75 of the stride.

TABLE II
FEATURE SET 1: FEATURES USED FOR

THE STEADY/TRANSITION CLASSIFICATION

backward elimination algorithm in step 2 of development. The
goal of the feature selection was to eliminate the least infor-
mative or redundant features, to optimize the execution time
and the computational cost of the classification algorithm. The
greedy backward elimination algorithm was applied as fol-
lows. First, a dataset including 300 randomly selected strides
for training and 100 for testing was selected. Then a binary
classifier was trained and tested using all the candidate fea-
tures. A series of training and testing was then performed,
excluding at each iteration a different feature from the set. If
the classification accuracy of the best performing subset of
features was equal to the accuracy of the initial set, the subset
was selected as the new initial set and the process reiterated
to remove further features. The process was stopped when
accuracy decreased, leading to the final sets used in step 4 by
each module. The features used in the steady/transition mod-
ule are listed in TABLE II. The features of each of the binary
classifiers in the steady-state module are listed in TABLE III,
while the ones used by the transition module are listed in
TABLE IV. It is worth noting that for the feature selection
of the steady/transition module the exclusion of any feature
resulted in a decrease in the accuracy of the model, therefore
all the initial features were kept for step 4.

TABLE III
FEATURES USED FOR THE STEADY-STATE CLASSIFICATION

Step 3 was performed only for the steady-state module
to tune the hyperparameters of the SVMs composing the
DAG. The process used the dataset created for the feature
selection process and its reduced feature set to test several
combinations of hyperparameters and find the best trade-
off between the accuracy and complexity of the models.
The best results were achieved using linear SVMs for the
SA/SD and SD/GLW classifiers and a Radial Basis Function
kernel for the SA/GLW SVM. Furthermore, the number of
voting SVMs composing each classification node was set,
considering the trade-off between the evaluation time of the
method and the confidence in its voting process. Given the
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Fig. 4. Overall accuracy of the classification modules developed for the method. Results are divided per subject. DAG stands for directed acyclic graph.

TABLE IV
FEATURE SET 3: FEATURES USED FOR THE TRANSITION CLASSIFICATION

similarity in the identification parameters and consequently,
in the voting output of the classifiers trained and tested for
this specific tuning process, each DAG node was set to have
3 voting SVMs.

Step 4 was dedicated to the evaluation of the classification
performances of each module. Each training iteration within
the cross-validation of the steady/transition module and the
transition module consisted of an optimization problem per-
formed on the thresholds used for each feature of the relative
rule-based algorithms. The cost function of the optimization
was set as the number of classification errors over the spe-
cific training dataset. For what concerns the training of the
steady-state module, once the training dataset was defined
for a specific iteration of the cross-validation, a further
3-fold cross-validation process was performed to obtain the
three concurrent SVMs composing each classification node of
the DAG.

As an example, a single iteration of leave-one-subject-out
training and testing on the steady-state module is explained
step by step:

1) The specific combination of 9 training subjects and
1 testing subject is defined;

2) For each classification node of the DAG, the training
dataset is created with the extracted features from strides
whose labels belong to the locomotion modes to be
classified by the node;

3) The order of entries in the training dataset is randomly
permutated;

4) A 3-fold cross-validation training process is performed
and a set of 3 SVMs is obtained;

5) Steps c) and d) are repeated 10000 times. The best per-
forming set of SVMs out of these runs is selected and
saved;

6) Steps b), c), d), e) are repeated to train SVMs for the
other classification nodes;

7) The SVM DAG is built;
8) Strides of the testing subject are used to evaluate

the DAG.
The number of repetitions during the inner cross-validation

of the training process has been empirically set to 10000 after
some preliminary training trials. During such trials, the SVM
with the best performance on the validation set was almost
always found within the first 5000 iterations of the process.
In the final version of the training protocol, this value was
therefore doubled as a confidence measure.

E. Evaluation

The results of the method are reported in the form of con-
fusion matrices. The columns of the matrices refer to the real
class of a stride, while the rows refer to the predicted class.
True positive rate (TPR) and true negative rate (TNR) have
been computed as performance indexes in addition to the accu-
racy (Acc.). TPR, or sensitivity, measures the proportion of
real strides of a specific class being correctly identified as
such. TNR, or specificity measures the proportion of real neg-
ative strides of a specific class being correctly identified as
such. The overall accuracy across subjects is reported as the
median value with minimum and maximum noted as [min,
max].

III. RESULTS

Fig. 4 shows the accuracy of the algorithm for each subject.
The identification of transition or steady-state strides resulted
in an accuracy of 100% over all strides. This result ensured
the second stage to always evaluate the strides according to
the correct DAG.
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TABLE V
OVERALL PERFORMANCES OF THE STEADY-STATE CLASSIFICATION

The classification of steady-state strides reached a median
accuracy of 98.7% [93.8%, 100%] (TABLE V). For SD
strides, both TPR and TNR resulted in 100%, indicating
a perfect separation of SD from the other locomotion modes.
Classification errors occurred in cases in which SA was clas-
sified as GLW (18 strides), and in cases GLW was classified
as SA (13 strides), on a total of 1719 strides classified.

TABLE VI shows the overall performance of the classifica-
tion of transition steps. The tests reported a median accuracy
of 95.6% [84.1%, 100%], with variable results among sub-
jects. On a total of 36 misclassifications out of 661 transitions
evaluated, 19 were relative to SD-GLW strides being classified
as GLW-SD. Other classification errors occurred on SA-GLW
transitions which were identified as either GLW-SA (8 strides)
or GLW-SD (7 strides).

The confusion matrices reporting performances of the DAGs
for each of the subjects are shown in TABLE VII and TABLE
VIII for steady-state and transition strides, respectively.

IV. DISCUSSION

This study presented a modular locomotion mode classifica-
tion method that can predict the motor activity of the upcoming
stride by monitoring the motion of the thigh during swing.
Important requirements for the method were (i) the ability to
accurately classify each stride before its actual start (i.e., heel
strike), and (ii) the robustness to variations in cadence.

In this study, foot contact detection was performed using an
additional sensor, namely a pressure-sensitive insole, described
in Section II-A. Notably, however, the general method places
no restriction on the source of the phase estimation and
is thus not bound to the use of the insole. A real-time
application of the method could therefore exploit the phase
estimation provided by a different modality such as Adaptive
Oscillators (AOs) [25]. AOs are a mathematical tool that can
synchronize with an external periodic driving signal and model
its characteristic parameters. Notably, the AOs adopt a learn-
ing mechanism that allows a continuous adaptation of the
frequency changes of the driving signal. In this case, the AOs
could be conveniently set to synchronize with the periodic
signals of the thigh IMU during locomotion and to reset the
phase at the heel-strike event, detected by the acceleration
signals, thus removing the need for any other sensor but the
IMU [26]–[28]. In this work, however, the use of a previously-
evaluated insole prototype was preferred to achieve a precise
detection of foot contact and therefore a reliable offline gait
phase computation.

TABLE VI
OVERALL PERFORMANCES OF THE TRANSITION CLASSIFICATION

The presented classification method is inherently robust to
variations in cadence since all of the features are phase-based
and not dependent on fixed time intervals. This robustness is
demonstrated by the use of a dataset composed of strides of ten
subjects moving at three different cadences. The acquisition
protocol did not explicitly dictate a cadence to subjects, thus
intrinsically including the effect of its variability in the datasets.

A. Accuracy

The results achieved by the steady-state module can be
compared to those reported in literature for methods that
use data from a single thigh IMU to perform locomotion
mode classification. In particular, the algorithm presented by
Bartlett and Goldfarb in [18] classified among GLW, SA
and SD strides with an average accuracy of 97.7%, which
increased to 98.3% with subject-specific tuning to perform
a confidence-based class switching. The method presented
by Chinimilli et al. in [19] achieved an average accuracy of
93.3% in the configuration dedicated to GLW, SA, SD, and
jogging strides. The method was specifically trained on each
subject’s data, whereas the model performance using non-
subject-specific training data was not considered. The method
presented in the present study achieved a median overall accu-
racy of 98.7%, in line with the accuracies reported in similar
studies employing similar experimental conditions and IMU
hardware specifications. As shown in Fig. 3, the difference in
the trend of the gyroscope in the sagittal plane and roll angle
for SD strides is noticeable when compared to GLW and SA,
leading to correct classification of all SD strides. On the con-
trary, SA and GLW are similar in trend in the monitored part
of the swing phase. It is therefore considerably more diffi-
cult to distinguish these two locomotion modes, particularly
if we consider extra variability due to cadence changes and
subject-specific anthropometries.

This work extends previous works from the state of
the art to the classification of transitional steps. The
study of Bartlett et al. simulates transitions by concatenating
steady-state strides of different locomotion modes, thus not
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considering the characteristic dynamics of transitional strides.
On the other hand, the study of Chinimilli does not directly
classify transitions but detects a change in the locomotion
mode if two strides in a row have a different class from the
third last. Therefore such detection is performed with one
stride of delay. Our choice to design a two-stage architec-
ture with a separate dedicated module for the classification of
steady-state and transition strides was motivated by the differ-
ent nature of transitional strides. Indeed, the typical dynamics
of the new locomotion mode tend to emerge as the swing phase
evolves, thus differing from the typical trends of steady-state
strides. The SVM models developed for the steady-state strides
were not appropriate to properly identify the transitions, and
attempts to use transition strides in the SVM training set led
to an underfit of the method.

While lower than the accuracy achieved for steady-state
strides, the accuracy for the separate classification of transition
steps still fell in the range of accuracies of the aforementioned
state-of-the-art studies. As highlighted in TABLE V, the over-
all accuracy of the transition DAG was mainly affected by
misclassifications regarding the transition from SA or SD to
GLW. However, the output of the offline evaluation process did
not consider any a-priori knowledge about the previous stride,
which, in turn, could be useful to discard some misclassifica-
tions in online applications [13]. For instance, future online
implementations of the method could automatically limit the
possible classification outputs to the transitions that can occur
starting from the current mode.

B. Prediction Capability

The prediction capability of a classification method is essen-
tial for the control of robotic prostheses. In particular, the
prosthesis behavior at heel strike must appropriately account
for the locomotion mode. The presented method is based on
monitoring the thigh movements using an analysis window
with a fixed length, between 50% and 75% of the stride for
steady-state strides and between 50% and 85% for transitions.
Such difference was ultimately dictated by the need to handle
the characteristic dynamics of the transitional strides, in par-
ticular the ones that move from GLW to either SA or SD. We
noticed that in the first half of the swing of transient steps,
the leg movement closely matches the characteristic pattern of
the current locomotion mode. The movement tends to adapt
to the upcoming locomotion mode during the second half of
the swing.

Previous state-of-the-art classification algorithms using the
data from a single-IMU on the thigh followed different
approaches with respect to the one presented in this work. In
particular, the algorithm of Bartlett et al. classifies the locomo-
tion mode at the heel strike, thus not performing any predictive
classification. In the work of Chinimilli et al., the classifica-
tion is performed at the maximum thigh flexion angle. Despite
occurring before the heel strike, such an event can occur very
close to the heel strike event during SA (on average it occurred
at 94% of the stride for the data we acquired for this study)
thus leaving limited time for the robot to adjust its behavior
for the upcoming stride.

C. Future Works

Future works will focus on the implementation of the
presented method in real-time, thus requiring an online
IMU-based gait phase estimate. Towards this aim, a suit-
able interesting methodology for an online gait phase esti-
mate has been proposed by Yan et al. [25]. Here, AOs
were combined with a kernel-based non-linear filter and
a phase-reset algorithm (which was used to smoothly reset
the phase to 0% when a certain event occurred) to track
a quasi-periodic biomechanical variable and compute online
the gait phase. Yan et al. [25] were able to achieve
a maximum RMSE of 1.1% in the estimate of the gait
phase (stride phase between 0% and 100%). Further tests
will be carried out to verify whether an IMU-based phase
estimator would significantly affect the accuracy of the
classification.

More sophisticated methods to construct the feature sets
(e.g., autoencoders) will be evaluated to automate the feature
design process, to make it repeatable in different scenarios,
and to further increase the accuracy of the classification. The
method will be tested on a new pool of healthy subjects at first
to assess the generalization capabilities of the method and the
validity of (i) the classification architecture and (ii) the feature
sets, designed on the currently available datasets. The new
subjects will be tested using the models trained on data of
all 10 subjects acquired for this study, to test the method in
a subject-independent fashion. The method will then be tested
on transfemoral amputees wearing an active prosthesis. To this
end, applying this classification method to a new population
might require the use of different features, properly designed
for the different gait patterns of the amputees during GLW,
SA, and SD.

Ramp ascent and descent will also be considered in our
future work. The extension of the classification method to
ramps will require a modified DAG structure and the design of
ad-hoc features. Notably, for ramp ascending, a possible strat-
egy to discriminate this locomotion mode from ground-level
walking and stair ascending could involve the extension of the
observation window to the late stance phase. Inertial data of
the push-off might help in the design of informative features
for such classification [29].

Alternatively, given the similarities between the gait patterns
of healthy subjects during ground-level walking and walking
over small inclines [30], the current locomotion classifica-
tion method might be adopted to recognize these locomotion
tasks during the swing phase as a walking activity. Then,
an additional classification module could be used during the
stance phase to estimate the terrain incline using the dif-
ferential influence of gravitational accelerations in the IMU
signals [31], [32], although an application of this strategy still
needs to be tested for a thigh-mounted IMU.

V. CONCLUSION

This work presents a two-stage locomotion mode clas-
sification method. The method demonstrates the possibility
of extracting features from the inertial signals from a sin-
gle thigh during the swing phase to predict the upcoming
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TABLE VII
CONFUSION MATRICES FOR THE LEAVE-ONE-SUBJECT-OUT CROSS-VALIDATION TESTS ON THE STEADY-STATE CLASSIFICATION

TABLE VIII
CONFUSION MATRICES FOR THE LEAVE-ONE-SUBJECT-OUT CROSS-VALIDATION TESTS ON THE TRANSITION CLASSIFICATION

Authorized licensed use limited to: UNIVERSITY OF LJUBLJANA. Downloaded on July 23,2021 at 12:12:30 UTC from IEEE Xplore.  Restrictions apply. 



PAPAPICCO et al.: CLASSIFICATION APPROACH BASED ON DIRECTED ACYCLIC GRAPH 445

locomotion task among the most common ADLs. The clas-
sification features are extracted from a single IMU on the
thigh to perform the classification through dedicated DAG
modules for steady-state and transitory strides. We tested the
method offline on data acquired from 10 healthy subjects, and
it showed promising results in tests that included cadence vari-
ations and subject-specific gait patterns. The method improves
the prediction of the classification with respect to the state-of-
the-art and fully addresses the challenge of transitional strides.
Future works will focus on (i) validation of the generaliza-
tion capabilities of the method in a real-time implementation,
(ii) an extension of the method to slope walking, and (iii) to
the use of the classification for the control of an active
transfemoral prosthesis.
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