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Abstract 
 
Robotic interfaces are becoming increasingly common in motor rehabilitation. In the long 

term, exercise with such devices yields results comparable to intensive exercise with a 

therapist. Additionally, they offer an objective estimation of the patient’s motor 

performance and functional improvement. Frequently, they are combined with virtual 

environments in order to make rehabilitation more interesting and motivational. Patient-

cooperative robots, which can recognize the patient’s movement intentions and motor 

abilities, also adapt the robotic assistance to the activity (or passivity) of the patient. This 

dissertation extends the concept of patient-cooperative robotics to biocooperative 

robotics, where psychophysiological measurements (measurements of a person’s 

physiological response to psychological stimuli) are used to estimate how difficult the 

rehabilitation task is for the patient and adapt the difficulty to make it moderately 

challenging without inducing boredom or stress. 

 

The dissertation covers the use of four psychophysiological measurements in upper 

extremity rehabilitation: heart rate, skin conductance, respiration and skin temperature. 

The research can be divided into two parts. The first covers the analysis of rehabilitation-

specific factors which could adversely affect psychophysiological responses: the presence 

of physical activity and pathological conditions.  

 

The effects of physical activity on psychophysiological responses in haptic interaction 

were examined in a study where 30 healthy subjects performed an inverted pendulum 

balancing task with a haptic robot at two levels of physical workload and three levels of 

cognitive workload. Heart rate and skin conductance were primarily influenced by 

physical workload. Neither respiration nor peripheral skin temperature were significantly 

affected by physical workload. Respiratory rate variability decreased from baseline 

during the moderately cognitively challenging condition while skin temperature 

decreased during the cognitively overchallenging condition. This suggests that respiration 

and skin temperature are effective for the estimation of cognitive workload in haptic 

interaction.  

 

The effects of pathological conditions on psychophysiological responses in rehabilitation 

were examined in a study where 23 stroke and 23 control subjects performed a virtual 
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rehabilitation task and a simple cognitive task (the Stroop word-colour interference task). 

Significant differences between stroke and control groups were found especially for heart 

rate and peripheral skin temperature, with the stroke group exhibiting weaker responses to 

both the rehabilitation task and the cognitive task. Skin conductance appears to be the 

most useful psychophysiological signal in stroke subjects, as there is a significant 

correlation with self-reported arousal as well as a significant difference between different 

difficulty levels of the virtual rehabilitation task. However, we must keep in mind that it 

is also affected by physical activity. 

 

The second part of the dissertation deals with psychophysiological sensor fusion and 

biocooperative control in upper extremity rehabilitation. A review of the existing 

psychophysiological literature was performed, and a number of different dimension 

reduction and classification methods were selected for implementation. Furthermore, the 

method of adaptive discriminant analysis, which had previously only been used in 

electroencephalography, was transferred to the signals used in the dissertation and used to 

perform online adaptation of the sensor fusion rules. 

 

Sensor fusion was first implemented with a physically undemanding cognitive task 

performed by 20 healthy subjects. This allowed different data fusion methods to be tested 

in a relatively controlled setting. The subjects performed the Corsi block-tapping task at 

different difficulty levels for six two-minute periods while task performance and 

psychophysiological signals were recorded. At the end of each period, they stated whether 

they would prefer difficulty to increase or decrease. Various features were extracted from 

the signals, and the aforementioned dimension reduction and classification methods were 

trained to classify these features into an estimate of whether difficulty should increase or 

decrease, and the accuracy rate of a method was defined as the percentage of times that it 

matched the subject’s opinion. In cross-validation, the highest accuracy rate for 

psychophysiological features was 86.7% using adaptive discriminant analysis, which 

outperformed other classifiers. The highest accuracy rate using both psychophysiological 

features and task performance was approximately the same. This validates the sensor 

fusion approach in a non-rehabilitation setting. 

 

Sensor fusion was then implemented with the upper extremity rehabilitation task 

previously used in the analysis of the effects of pathological conditions. 24 healthy 
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subjects and 11 patients performed the task at different difficulty levels for six two-

minute periods while task performance, biomechanical signals and psychophysiological 

signals were recorded. At the end of each period, they stated whether they would prefer 

difficulty to increase or decrease. The same dimension reduction and classification 

methods were used again on the same extracted features. In cross-validation, the highest 

accuracy rate was obtained for task performance (approximately 82% for both healthy 

subjects and patients), with psychophysiological measurements yielding relatively low 

accuracy (approximately 60%). The adaptive approach increased accuracy of 

psychophysiological measurements to approximately 77% for both healthy subjects and 

patients. Combining psychophysiology with task performance yielded an accuracy rate of 

84.7% for healthy subjects and 89.4% for patients.  

 

Finally, a biocooperative feedback loop was implemented in the upper extremity 

rehabilitation task. The measurements from the aforementioned 24 healthy subjects and 

11 patients were used to train the data fusion rules, and the system then automatically 

adapted the task difficulty according to its own estimates. 10 healthy subjects and 6 

patients tested the feedback loop and provided their own opinions. The decisions taken by 

the biocooperative controller matched the subjects’ opinions in 88.3% of all cases for 

healthy subjects and 88.9% of all cases for patients. 

 

Results of the dissertation suggest that psychophysiological measurements are not reliable 

as a primary data source in motor rehabilitation, especially since they are influenced by 

both physical activity and pathological conditions. They can provide supplementary 

information that complements task performance and biomechanical measurements. 

However, at this point it is questionable whether the amount of additional information 

justifies the increased complexity of the system, though several possibilities for 

improvement are presented in the final discussion. 

 

Key words: psychophysiological measurements, rehabilitation robotics, biocooperative 

robotics, stroke, sensor fusion, machine learning 
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Razširjeni povzetek 
 
 

Uvod 
 
Rehabilitacijski roboti so naprave, ki pacientom z oslabljenimi zmožnostmi gibanja (kot 

posledica možganske kapi, poškodbe hrbtenjače ali drugih poškodb) pomagajo pri 

okrevanju in ponovnem učenju gibov. Ti roboti imajo več prednosti. Natančni senzorji sil 

in pozicij omogočajo objektivno ocenjevanje pacientovih gibalnih sposobnosti [1], aktivni 

motorji pa lahko pacientu pomagajo izvajati preproste ali tudi bolj zapletene gibe ter tako 

razbremenijo terapevta [2]. Rezultati dolgoročne vadbe s takimi napravami so primerljivi 

z rezultati vadbe s pomočjo terapevta [3]. Rehabilitacijski roboti se pogosto uporabljajo v 

kombinaciji z navideznimi okolji, ki nudijo bolj zanimivo in motivacijsko vadbo [4]. 

 

V rehabilitaciji so trenutno najbolj uveljavljene takoimenovane »pacientu prijazne« 

metode, ki zaznavajo pacientove gibalne sposobnosti in hotene aktivnosti ter robotsko 

pomoč prilagodijo gibom, ki jih izvaja pacient. Uspešno se uporabljajo pri rehabilitaciji 

tako spodnjih [5, 6] kot zgornjih okončin [7, 8]. Koncept robotske pomoči in prilagajanja 

je bil nedavno razširjen na biokooperativno robotiko, ki poleg izmenjave (mehanske) 

energije med pacientom in robotom upošteva tudi psihološke faktorje (npr. dolgčas, 

stres). V biokooperativni rehabilitacijski nalogi se parametri naloge samodejno 

spreminjajo tako, da naloga stalno predstavlja zmeren izziv, ki pacienta motivira in ne 

povzroča nepotrebnega stresa oziroma bolečine. Osnovna ideja biokooperativne robotike 

je sicer že dobro definirana [9, 10], vendar pa delujoča implementacija še ne obstaja, saj 

je merjenje psiholoških faktorjev veliko težje od merjenja sil ali hitrosti. V psiholoških 

raziskavah se za ta namen sicer najpogosteje uporabljajo vprašalniki, vendar le-ti niso 

dobra rešitev za rehabilitacijo, saj zahtevajo prekinitev vadbe in tako nudijo le 

informacije o že preteklih dogodkih. Obetavna možna rešitev bi bila uporaba 

takoimenovanih psihofizioloških meritev. 
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Psihofiziologija je znanost, ki preučuje odzive telesa na psihološke dražljaje. Dobro znan 

primer psihofiziološkega odziva je naprimer povečano znojenje in spremenjen srčni utrip 

kot posledica stresa. Fiziološke odzive lahko merimo hitro, poceni in nemoteče za 

merjenca, zato predstavljajo priročen in objektiven način ocenjevanja človekovega 

psihološkega stanja brez njegovega aktivnega sodelovanja. Največjo oviro predstavlja 

interpretacija merjenih odzivov. Povezave med fiziološkimi odzivi in psihološkimi stanji 

namreč niso dobro raziskane, obstaja pa tudi več motečih faktorjev: vpliv okolja (npr. 

vročina), vpliv gibanja in drugih fizično zahtevnih aktivnosti, lezenje signalov, razlike 

med posamezniki itd. 

 

Psihofiziološke meritve so bile najprej (in so še vedno) uporabljene v laboratorijskih 

eksperimentih, kot so naprimer študije fizioloških odzivov na slike in zvoke [11], vendar 

pa so se zaradi svojih prednosti kmalu pojavile tudi v aplikativnih raziskavah. Pogosto se 

naprimer uporabljajo za preučevanje miselne obremenitve v okoljih, kot je nadzor 

zračnega prometa [12], simulirano letenje [13] ali vožnja avtomobila [14]. Primerne so 

tudi za analizo stresa in anksioznosti v situacijah, kot je javno nastopanje [15]. Najdemo 

pa jih tudi v manj stresnih okoljih, naprimer v računalniških igrah [16] in robotiki [17, 

18].  

 

Psihofiziološke meritve bi bile lahko zelo uporabne v biokooperativni rehabilitacijski 

robotiki, saj bi z njimi lahko hitro in objektivno zaznali nezaželena stanja, kot so 

zdolgočasenost  ali stres. Vendar pa se v rehabilitaciji pojavlja več zahtevnih izzivov za 

psihofiziologijo (npr. prisotnost fizične aktivnosti in patoloških stanj), zato je bilo na tem 

področju izvedenih le malo raziskav. Disertacija tako preučuje potencialno uporabnost 

psihofizioloških meritev v rehabilitaciji zgornjih okončin, še posebej v biokooperativni 

povratni zanki, ki bi samodejno spreminjala parametre naloge, tako da bi bila naloga čim 

bolj primerna za pacienta. Glavni cilj disertacije torej ni ugotavljanje psiholoških stanj iz 

psihofizioloških meritev, marveč le ugotavljanje primernosti naloge za pacienta. Princip 

biokooperativne povratne zanke je prikazan na sliki 1. 
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Slika 1: Biokooperativna povratna zanka. 

 
Disertacija se osredotoča na štiri psihofiziološke odzive, ki jih oživčuje vegetativno 

živčevje: srčni utrip, prevodnost kože, dihanje in temperatura kože. Iz surovih izmerjenih 

signalov izluščimo več psihofizioloških značilk. Iz srčnega utripa izračunamo povprečno 

frekvenco srčnega utripa ter več ocen spremenljivosti srčnega utripa v časovnem in 

frekvenčem prostoru. Iz prevodnosti kože izračunamo nivo prevodnosti kože, frekvenco 

odzivov prevodnosti kože ter povprečno amplitudo  prevodnosti kože. Iz dihanja 

izračunamo povprečno frekvenco dihanja ter spremenljivost frekvence dihanja. Iz 

temperature kože izračunamo temperaturo kože ob koncu vsakega časovnega obdobja. 

Vse to so standardne značilke, ki se pogosto uporabljajo v psihofizioloških raziskavah 

[19]. V vseh haptičnih in rehabilitacijskih nalogah je uporabljen haptični robot 

HapticMaster [20]. 

 

Raziskovalno delo lahko razdelimo na dva dela. Prvi predstavlja analizo vplivov dveh 

motilnih faktorjev, specifičnih za rehabilitacijo, drugi pa senzorno integracijo in 

biokooperativno vodenje.  
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Vpliv motilnih faktorjev na psihofiziološka merjenja  v 

rehabilitaciji 
 

V motorični rehabilitaciji je bilo izvedeno le malo psihofizioloških raziskav, saj dva 

faktorja otežujeta analizo in interpretacijo meritev. Prvi faktor je prisotnost močnega 

fizičnega napora, ki vpliva na fiziološke odzive. V večino psihofizioloških študij je zato 

fizični napor nezaželen in zmanjšan na minimalni možni nivo. V rehabilitaciji to ni 

možno, saj je fizični napor bistven del vadbe. Več študij je že preučevalo vpliv 

kombinacije fizičnega in miselnega napora na psihofiziološke odzive, vendar pa so se 

osredotočale na situacije, kjer sta miselni in fizični napor popolnoma ločena (npr. 

računanje med vožnjo s kolesom) [21, 22]. Merjenci so tako obenem opravljali dve 

nepovezani nalogi. Pri delu s haptičnimi roboti pa ena sama naloga zahteva tako fizični 

kot miselni napor, kar bi lahko privedlo do drugačnih psihofizioloških odzivov. Tako smo 

želeli ugotoviti, ali lahko s psihofiziološkimi odzivi ločujemo med različnimi nivoji 

miselnega napora pri različnih nivojih fizičnega napora. 

 

Drugi faktor, ki otežuje psihofiziološke raziskave v rehabilitaciji, je prisotnost poškodb 

vegetativnega živčnega sistema v merjencih. Posledice možganske kapi so naprimer 

dolgotrajne motnje znojenja in bitja srca [23]. Podobno tudi poškodbe možganov zaradi 

udarcev oslabijo psihofiziološke odzive [24]. Vendar pa psihofiziološki odzivi pacientov 

še nikoli niso bili preučevani med motorično rehabilitacijo samo. Tako smo želeli pred 

začetkom senzorne integracije z analizo ugotoviti, kateri psihofiziološki odzivi so v 

pacientih oslabljeni oziroma sploh odsotni. Zaradi omejenega števila razpoložljivih 

pacientov smo se osredotočili na paciente po možganski kapi. 

 

Vpliv fizične aktivnosti na psihofiziološka merjenja 

 
Analiza vpliva fizične aktivnosti je zajemala trideset merjencev, ki so opravljali fizično in 

miselno zahtevno haptično nalogo pri različnih stopnjah fizičnega in miselnega napora. 

Za nalogo smo izbrali navidezno obrnjeno nihalo, pritrjeno na voziček (slika 2). Obrnjeno 

nihalo je samo po sebi nestabilno in pade, če tega ne preprečimo s stalnim premikanjem 

vozička levo in desno. Voziček se premika v isto smer in z isto hitrostjo kot haptični 
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robot HapticMaster. Če nihalo pade na tla, se samodejno vrne v skoraj navpičen položaj. 

Naloga ima dva možna nivoja fizične zahtevnosti. Višji nivo za enakovreden premik 

robota zahteva petkrat višjo silo kot nižji nivo. Naloga ima tudi tri možne nivoje miselne 

zahtevnosti. V nizkem nivoju nihalo nikoli ne pade, merjenec pa mora le premikati 

voziček levo in desno z zmerno hitrostjo. V srednjem nivoju so parametri fizičnega 

modela nastavljeni tako, da je uravnovešanje nihala zmerno zahtevno. V visokem nivoju 

miselne zahtevnosti na nihalo deluje bistveno močnejša težnost, nihalo pa se tudi slabše 

odziva na premike vozička. Nadalje je med premik vozička in vpliv premika na nihalo 

dodana polsekundna zakasnitev, s čimer uravnovešanje nihala postane veliko bolj 

zahtevno. 

 

 
Slika 2: Merjenec opravlja nalogo z obrnjenim nihalom in robotom HapticMaster. 

 

Vsak merjenec je opravljal nalogo v šestih različnih pogojih (2 nivoja fizične x 3 nivoji 

miselne zahtevnosti), vmes pa smo merili psihofiziološke odzive. Pri analizi rezultatov se 

je pokazalo, da fizična in miselna zahtevnost nista bili popolnoma ločeni (v nizkem 

nivoju miselne zahtevnosti so bili merjenci bistveno bolj fizično aktivni kot v ostalih dveh 

nivojih), vseeno pa smo pridobili relevantne informacije. Analiza je pokazala statistično 

značilen vpliv fizičnega napora predvsem na značilke, izluščene iz srčnega utripa in 

prevodnosti kože. Ta vpliv lahko popolnoma prekrije fiziološke odzive, povezane z 

miselnim naporom. Vpliv fizičnega napora na dihanje in temperaturo kože ni bil 

statistično značilen, čeprav smo pri dihanju opazili manjše neznačilne razlike med 
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nivojema fizične zahtevnosti. Spremenljivost frekvence dihanja je ločevala med srednjim 

in visokim nivojem miselne zahtevnosti, saj se je le v srednjem nivoju statistično značilno 

zmanjšala z vrednosti v mirovanju. Temperatura kože je ločevala med visokim nivojem in 

drugima dvema nivojema miselne zahtevnosti, saj se je le v visokem nivoju statistično 

značilno zmanjšala z vrednosti v mirovanju. Tako bi lahko dihanje in temperatura kože 

bila učinkovita pokazatelja miselnega napora v fizično zahtevni haptični interakciji. 

Seveda pa so te ugotovitve veljavne le za zdrave osebe, ne za paciente po možganski 

kapi. 

 

Primerjava odzivov zdravih oseb in oseb po možganski kapi 

 
Analiza posledic možganske kapi je zajemala 23 pacientov v subakutnem obdobju po 

možganski kapi ter kontrolno skupino 23 zdravih oseb istega spola in starosti. Opravljali 

so tri naloge: haptično nalogo brez miselnega napora (premikanje haptičnega robota levo 

in desno), fizično in miselno zahtevno rehabilitacijsko nalogo ter miselno zahtevno 

nalogo brez fizičnega napora (Stroopov interferenčni test [25]). Rehabilitacijska naloga je 

prikazana na sliki 3. Na sredini ekrana je miza, nagnjena navzdol proti merjencu. Na vrhu 

mize se pojavi žoga, ki se začne kotaliti navzdol. Naloga merjenca je, da s pomočjo 

haptičnega vmesnika prime žogo, preden le-ta doseže spodnji rob mize. Ko je žoga 

prijeta, se nad mizo pojavi koš. Merjenec mora žogo držati in jo postaviti v koš. Ko je 

žoga v košu ali pa pade z mize, se na vrhu mize pojavi nova žoga in naloga se nadaljuje. 

Uporabili smo običajno in težjo različico naloge. Pri težji različici je premik robota v levo 

premaknil navidezno roko na ekranu v desno smer in obratno, zato je bil za uspešno 

opravljanje naloge potreben dodaten miselni napor. Pacientom, ki niso zmogli samostojno 

opraviti naloge, je bila na voljo tudi haptična pomoč. 
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Slika 3: Merjenka opravlja rehabilitacijsko nalogo s haptičnim robotom (1) in prijemalom 

(2), medtem ko je njena roka podprta z manšetama. Na ekranu (4) so vidni nagnjena miza, 

žoga (5) in koš (6).   

 

Postopek merjenja je bil sledeč: počitek, premikanje robota levo in desno, počitek, 

rehabilitacijska naloga, težja rehabilitacijska naloga, počitek, Stroopov test. Vsak interval 

je trajal tri minute. Po vsakem intervalu je merjenec tudi izpolnil kratek vprašalnik. 

Tipična poteka prevodnosti kože in temperature kože med merjenjem sta prikazana na 

slikah 4 in 5. 

 

 
Slika 4: Primer poteka prevodnosti kože med počitkom, premikanjem robota levo in 

desno, počitkom in rehabilitacijsko nalogo. Začetna vrednost je bila definirana kot 

ničelna. 
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Slika 5: Primer poteka temperature kože med počitkom, premikanjem robota levo in 

desno, počitkom in rehabilitacijsko nalogo. 

 

Za najbolj uporaben psihofiziološki signal v pacientih se je izkazala prevodnost kože. 

Nivo prevodnosti kože je statistično značilno ločeval med premikanjem robota levo in 

desno, rehabilitacijsko nalogo in težjo rehabilitacijsko nalogo. Korelacija med frekvenco 

odzivov prevodnosti kože in samooceno miselne budnosti (ang. arousal) je bila prav tako 

statistično značilna (ρ = 0.60). Temperatura kože je statistično značilno ločevala med 

premikanjem robota levo in desno, rehabilitacijsko nalogo in težjo rehabilitacijsko nalogo 

pri kontrolni skupini, ne pa pri pacientih. Tudi v Stroopovem testu se je temperatura kože 

statistično značilno spremenila od mirovanja do konca naloge samo pri kontrolni skupini. 

Povprečna frekvenca bitja srca je bila pri pacientih višja kot pri kontrolni skupini, 

spremenljivost bitja srca pa nižja. Tudi razlike v bitju srca med mirovanjem in 

opravljanjem nalog so bile pri pacientih manjše kot pri kontrolni skupini. 

 

Iz analiz vpliva fizične aktivnosti in posledic možganske kapi smo tako ugotovili, da na 

vse merjene psihofiziološke odzive vpliva bodisi fizična aktivnost bodisi kap. Vseeno 

smo se odločili za nadaljnje raziskave senzorne integracije in biokooperativnega vodenja, 

vendar pa smo se pri tem zavedali, da bo senzorna integracija pri pacientih zaradi 

posledic kapi verjetno bolj zahtevna kot pri zdravih osebah. Nadalje smo pričakovali, da 

bo fizična aktivnost vplivala na psihofiziološke odzive, vendar pa še nismo vedeli, ali bo 

zaradi fizične aktivnosti težje ali lažje določiti primernost naloge za pacienta. Fizična 

aktivnost bi lahko namreč po eni strani zabrisala informacije o psiholoških stanjih, po 

drugi strani pa bi lahko nudila dodatne informacije o primernosti naloge.  
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Senzorna integracija in biokooperativno vodenje 
 

Končni cilj senzorne integracije in biokooperativnega vodenja je povratna zanka, ki bi iz 

psihofizioloških in drugih meritev ocenila primernost naloge za pacienta ter spremenila 

parametre naloge, tako da bi bila le-ta bolj primerna za pacienta. Za to moramo najprej 

določiti pravila za interpretacijo psihofizioloških meritev, vendar pa kljub več desetletjem 

raziskav na tem področju še vedno ne obstaja splošno sprejet nabor pravil, po katerih bi 

lahko iz psihofizioloških meritev določili psihološko stanje posameznika. Prvi korak pri 

senzorni integraciji je bil torej pregled literature in identifikacija več možnih metod 

senzorne integracije za nadaljnjo implementacijo. Pregledali smo tudi že obstoječe 

primere psihofizioloških povratnih zank na drugih področjih (zunaj rehabilitacije). 

 

Ugotovili smo, da večina znanstvenih študij s področja integracije psihofizioloških 

spremenljivk uporablja nadzorovano učenje: učenje na podlagi učne množice primerov s 

pripadajočimi izhodnimi vrednostmi (tj. psihološkimi stanji). Nadalje v psihofiziologiji 

uporabljajo predvsem klasifikacijo: razporeditev meritev v enega od možnih diskretnih 

razredov. Če imamo na voljo učno množico, lahko na njej preizkusimo več različnih 

klasifikatorjev in ugotovimo, kateri je v našem primeru najbolj učinkovit. Implementirali 

smo sledeče v psihofiziologiji že uveljavljene klasifikatorje: 

- linearno in kvadratično diskriminantno analizo, 

- diagonalno linearno in kvadratično diskriminantno analizo (tip naivnega 

Bayesovega klasifikatorja), 

- metodo najbližjih sosedov, 

- klasifikacijsko drevo, 

- metodo podpornih vektorjev. 

 

Ker imamo na voljo veliko psihofizioloških značilk, je pred klasifikacijo smiselno 

zmanjšati dimenzijo podatkov. To smo storili na dva načina: s preslikavo vhodnih značilk 

na manjše število značilk s pomočjo linearne transformacije (metoda analize glavnih 

komponent) oziroma z izločanjem manj pomembnih značilk (metoda sekvenčnega iskanja 

značilk – ang. sequential feature selection). 
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Poleg že uveljavljenih klasifikatorjev smo uporabili tudi adaptivno diskriminantno 

analizo [26], ki je bila predtem uporabljana le v elektroencefalografiji. Prednost te metode 

je, da se začetna klasifikacijska pravila nauči iz učne množice (torej že izmerjenih 

pacientov), nato pa jih postopoma prilagaja posameznemu pacientu s pomočjo 

Kalmanovega filtra. Ker pa je adaptivna diskriminantna analiza v osnovi različica 

nadzorovanega učenja, mora za prilagajanje klasifikacijskih pravil pridobiti mnenje 

pacienta oziroma terapevta. V praksi se želimo temu izogniti, zato smo predstavili tudi 

novo različico adaptivne diskriminantne analize, ki ne potrebuje nadzorovanega učenja. 

 

Vse zgoraj naštete metode smo najprej uporabili v fizično nezahtevni nalogi z zdravimi 

merjenci, saj smo jih tako lahko preizkusili na psihofizioloških podatkih v nadzorovanem 

okolju brez vpliva fizične aktivnosti in kapi. Nato smo jih z enakim eksperimentalnim 

protokolom uporabili v rehabilitacijski nalogi s pacienti in tam implementirali tudi 

biokooperativno povratno zanko. 

 

Senzorna integracija v nerehabilitacijski nalogi 
 

Metode senzorne integracije smo najprej preizkusili z 20 zdravimi osebami, ki so 

opravljale računalniško verzijo Corsijeve naloge [27]. Na ekranu je razporejenih devet 

kvadratkov. Eden za drugim se obarvajo, merjenec pa mora nato z miško ponoviti 

prikazano zaporedje. Ko uspešno ali neuspešno ponovi zaporedje, se prične novo 

zaporedje iste dolžine. Prednost Corsijeve naloge je, da lahko njeno težavnost preprosto 

spreminjamo s spreminjanjem dolžine zaporedja, ki ga mora merjenec ponoviti. 

 

Vsak merjenec je nalogo začel z zaporedji dolžine 5 kvadratkov. Naloga je trajala šestkrat 

po dve minuti (skupaj 12 minut). Znotraj vsakega dvominutnega intervala je bila dolžina 

zaporedja konstantna, ob koncu intervala pa smo merjenca vprašali, ali bi raje videl/a, da 

se težavnost poveča ali zmanjša. Dolžina zaporedij je bila nato v naslednjem intervalu 

večja ali manjša glede na željo merjenca. Za vsak interval smo ločeno izračunali 

psihofiziološke značilke ter uspešnost v nalogi. Nato smo zgradili učno množico, kjer so 

vhodi različne značilke, izhod pa merjenčeva želja (povečaj / zmanjšaj težavnost). S tem 

se senzorna integracija prevede na klasifikacijo v dva možna razreda. Za klasifikacijo 

smo uporabili vse zgoraj omenjene metode in princip navzkrižne validacije. Točnost 
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klasifikacije je bila definirana kot odstotek primerov, kjer sta bila izhod klasifikatorja in 

merjenčeva želja enaka.  

 

Točnost klasifikacije je bila primerljiva za vse v psihofiziologiji že uveljavljene metode. 

Točnost klasifikacije na podlagi psihofizioloških značilk z uveljavljenimi metodami je 

bila 75.0%, točnost klasifikacije na podlagi uspešnosti v nalogi pa 80.8%. Točnost 

klasifikacije na podlagi psihofizioloških značilk in uspešnosti skupaj je bila 85.0%. 

Adaptivna diskriminantna analiza, ki do zdaj v psihofiziologiji ni bila uporabljana, je 

izboljšala točnost klasifikacije na podlagi psihofizoloških značilk na 86.7%.  

 

Iz rezultatov lahko sklepamo, da so izbrane metode primerne za ocenjevanje primernosti 

naloge iz psihofizioloških značilk in uspešnosti naloge, če jih uporabimo v nadzorovani 

laboratorijski nalogi z relativno homogeno skupino merjencev. Nadalje adaptivna 

diskriminantna analiza lahko opazno izboljša točnost klasifikacije na podlagi 

psihofizioloških značilk. Še vedno pa je bilo potrebno preučiti učinkovitost senzorne 

integracije v rehabilitaciji, kjer nastopajo bolj heterogene skupine merjencev, fizična 

aktivnost in patološka stanja. 

 

Senzorna integracija in biokooperativno vodenje v rehabilitaciji 
 

Metode senzorne integracije smo preizkusili v nalogi, ki smo jo uporabili že za analizo 

posledic možganske kapi. Implementirali smo sedem težavnostnih nivojev, ki so se med 

seboj razlikovali po hitrosti in velikosti žoge, ki jo je bilo potrebno ujeti. Pri nizkih 

težavnostih je bila žoga velika in počasna, pri visokih težavnostih pa majhna in hitra.  

 

Raziskavo smo razdelili na odprtozančni del in zaprtozančni del. V odprtozančnem delu 

je sistem le meril signale in beležil merjenčeve želje. Iz pridobljenih podatkov smo nato 

zgradili pravila za senzorno integracijo in jih v zaprtozančnem delu uporabili za 

samodejno prilagajanje težavnosti naloge. V odprtozančnem delu je sodelovalo 24 

zdravih oseb in 11 pacientov, v zaprtozančnem delu pa 10 zdravih oseb in 6 pacientov. 

 

Merilni postopek za oba dela je bil podoben. Vsak merjenec je nalogo začel pri zmerni 

težavnosti. Naloga je trajala šestkrat po dve minuti (skupaj 12 minut). Znotraj vsakega 
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dvominutnega intervala je bila težavnost konstantna, ob koncu intervala pa smo merjenca 

vprašali, ali bi raje videl/a, da se težavnost poveča ali zmanjša. Težavnost naloge je bila 

nato v naslednjem intervalu večja ali manjša glede na željo merjenca (odprtozančni del) 

ali glede na oceno klasifikatorja (zaprtozančni del). Za vsak interval smo ločeno 

izračunali psihofiziološke značilke, biomehanske značilke ter uspešnost v nalogi. Nato 

smo zgradili učno množico, kjer so vhodi različne značilke, izhod pa merjenčeva želja 

(povečaj / zmanjšaj težavnost). S tem se senzorna integracija znova prevede na 

klasifikacijo v dva možna razreda. Za klasifikacijo smo uporabili vse zgoraj omenjene 

metode in princip navzkrižne validacije. Točnost klasifikacije je bila definirana kot 

odstotek primerov, kjer sta bila izhod klasifikatorja in merjenčeva želja enaka.  

 

Za rezultate odprtozančnega dela smo opravili primerjavo različnih tipov podatkov. Pri 

klasifikaciji na podlagi uspešnosti v nalogi je bila točnost približno 80% tako za zdrave 

osebe kot za paciente. Pri klasifikaciji na podlagi biomehanskih značilk je bila točnost 

približno 75% tako za zdrave osebe kot paciente. Najmanj točna je bila klasifikacija na 

podlagi psihofizioloških značilk – približno 63% tako za zdrave osebe kot paciente pri 

uporabi v psihofiziologiji uveljavljenih klasifikatorjev. Z adaptivno diskriminantno 

analizo lahko izboljšamo točnost klasifikacije na podlagi psihofizioloških značilk na 

približno 77%, kar pa je še vedno nižje od točnosti klasifikacije na podlagi uspešnosti v 

nalogi. Tako psihofiziološke meritve niso primerne kot zanesljiv primarni vir informacij v 

biokooperativni rehabilitacijski robotiki. Z integracijo različnih tipov podatkov 

(uspešnost, biomehanika in psihofiziologija) in uporabo metod zmanjševanja dimenzije 

podatkov lahko točnost klasifikacije povečamo na 84.7% za zdrave osebe in 89.4% za 

paciente. Najpomembnejša značilka je bila uspešnost v nalogi, vendar pa lahko 

psihofiziološke značilke nudijo dodatne informacije, ki izboljšajo klasifikacijo. 

 
V zaprtozančnem delu poskusa smo implementirali biokooperativno vodenje na podlagi 

vseh možnih značilk (uspešnost, biomehanika in psihofiziologija), zmanjševanja 

dimenzije podatkov in klasifikacije z diskriminantno analizo. Točnost klasifikacije v 

zaprtozančnem delu je bila 88.3% za zdrave osebe in 88.9% za paciente. S tem smo 

uspešno implementirali in preizkusili biokooperativno povratno zanko, ki prilagaja 

težavnost naloge na podlagi senzorne integracije psihofizioloških in drugih spremenljivk. 
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Zaključki 
 

Disertacija se je osredotočala na dokaj neraziskano področje psihofiziologije v motorični 

rehabilitaciji, še posebej na uporabo psihofizioloških spremenljivk v biokooperativni 

povratni zanki: sistemu, ki na podlagi psihofizioloških in drugih spremenljivk prilagodi 

nalogo, tako da je le-ta čim bolj primerna za trenutnega pacienta. Merili smo štiri 

psihofiziološke odzive: srčni utrip, prevodnost kože, dihanje in temperaturo kože. 

  

Z analizo vplivov fizične aktivnosti in posledic kapi smo ugotovili, da na vse štiri merjene 

psihofiziološke odzive vpliva bodisi fizična aktivnost bodisi možganska kap. Merjene 

odzive smo nato uporabili v senzorni integraciji in preizkusili več klasifikacijskih metod. 

Za najboljšo se je izkazala adaptivna diskriminantna analiza, ki lahko bistveno izboljša 

točnost klasifikacije na podlagi psihofizioloških značilk in ima primerljivo točnost kot 

druge metode v primeru nepsihofizioloških značilk. Bistvena je tudi primerna izbira 

vhodnih značilk. To izbiro lahko opravimo z metodami zmanjševanja dimenzije 

podatkov.   

 

V rehabilitacijski nalogi senzorna integracija psihofizioloških značilk ni bila zelo točna. 

Bistveno boljšo točnost smo dosegli z upoštevanjem uspešnosti v nalogi ter biomehanskih 

značilk. Psihofiziološke meritve tako niso primerne kot zanesljiv primarni vir informacij 

v biokooperativni rehabilitacijski robotiki, lahko pa služijo kot sekundarni vir informacij, 

ki poveča točnost. Vseeno pa je vprašljivo, ali dodatna točnost, ki jo nudijo 

psihofiziološke meritve, odtehta povečano ceno in kompleksnost sistema. Psihofiziološke 

meritve bi bile morda najbolj uporabne v nalogah in okoljih, kjer uspešnosti in 

biomehanskih značilk bodisi ni mogoče meriti bodisi niso povezane z merjenčevim 

počutjem. 

 

Kljub ne najbolj spodbudnim rezultatom pa je možnih še veliko izboljšav, ki smo jih 

predlagali v poglavju Razprava in so lahko zelo preproste ali pa tudi zelo kompleksne. V 

disertaciji smo opravili prve korake k uvedbi biokooperativnega vodenja v rehabilitaciji, 

vključno z razvojem biokooperativne povratne zanke, ki vključuje psihofiziološke 

meritve. Biokooperativno vodenje predstavlja nadgradnjo “pacientu prijaznih” metod in 

poskuša robota približati vlogi fizioterapevta oziroma delovnega terapevta. Terapevt ima 
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namreč celosten vpogled v pacientovo biomehansko, psihološko in fiziološko stanje, s 

“pacientu prijaznimi” metodami pa ima robot vpogled le v biomehansko stanje. Naša 

biokooperativna povratna zanka poskuša pridobiti tudi vpogled v psihološko in fiziološko 

stanje. Vprašanje, ali se bo ideja biokooperativnega vodenja uveljavila v klinični praksi, 

tako ostaja odprto, kljub deloma nespodbudnim rezultatom pa verjamemo, da bi bilo 

samodejno prilagajanje naloge pomembna izboljšava rehabilitacijskih robotov, ki bi lahko 

morda vodila v boljši izid rehabilitacije. 

  

 

Izvirni znanstveni prispevki doktorske disertacije 
 

Izvirni znanstveni prispevki disertacije so: 

‐ Analiza psihofizioloških odzivov zdravih oseb na kombinacijo psihološke in 

fizične aktivnosti v haptični interakciji človeka in robota. 

‐ Analiza psihofizioloških razlik med zdravimi osebami in hemiparetičnimi pacienti 

v kliničnih rehabilitacijskih okoljih. 

‐ Integracija psihofizioloških senzorjev za ocenjevanje primernosti nalog v 

rehabilitacijski robotiki s pomočjo različnih metod. 

‐ Adaptivna metoda, ki se lahko prilagodi na psihofiziološke razlike med 

posamezniki. 

‐ Biokooperativni regulator, ki lahko prilagodi parametre rehabilitacijske naloge na 

podlagi adaptivne integracije psihofizioloških, biomehanskih in drugih senzorjev. 

 

Ključne besede: psihofiziološke meritve, rehabilitacijska robotika, biokooperativna 

robotika, senzorna integracija, strojno učenje 
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1   Introduction  
 
 

 
1.1 Rehabilitation robotics 

 
Rehabilitation robots are devices that assist the recovery of patients whose motor 

functions are impaired as a result of stroke, spinal cord injury or other condition. Their 

benefit is twofold. First, they offer accurate sensors for measurement of forces and 

positions, thus providing a method of objectively evaluating the patient’s motor 

performance [1]. Second, robots with active motors can help the patient train simple or 

complex movements, taking some of the strain off therapists [2]. Training with such 

robots yields long-term results comparable to exercise with a therapist [3]. Frequently, 

they are combined with virtual environments in order to make rehabilitation more 

interesting and motivational [4]. 

 

The first device that provided robotic training in rehabilitation was the MIT-Manus, a 2-

degree-of-freedom system that supports planar movements using an impedance controller 

[28]. After its introduction, several rehabilitation systems based on different robots were 

developed, such as the GENTLE/s [29] or the ARMin [30]. However, while early 

rehabilitation robots were able to provide active assistance to the patient, they did not 

adapt their movement to the activity (or passivity) of the patient. Rather, the affected limb 

was moved along a predefined, fixed trajectory. The patient was also not informed about 

his or her activity and contribution to the movement. This problem was addressed by 

patient-cooperative or “assist as needed” control techniques.  

 

By recognizing the patient’s movement intentions and motor abilities, patient-cooperative 

techniques adapt the robotic assistance to the activity (or passivity) of the patient. They 

can thus control the amount of physical workload patients need to perform: essentially, 

the amount of energy they need to actively exert with their arms and legs. Patient-
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cooperative techniques have been successfully used for rehabilitation of both the lower 

extremities [5, 6] and upper extremities [7, 8]. However, physical workload is not the 

only important factor in rehabilitation. Cognitive workload, the amount of working 

memory and problem-solving skills that needs to be applied to a task in order to 

successfully complete it, also needs to be considered. If cognitive workload is too low, 

the patient will become bored. On the other hand, if cognitive workload is too high, the 

patient will become stressed and frustrated. 

 

The concept of patient-cooperative robotics has thus recently been extended to 

biocooperative robotics, which take into account not only the bidirectional flow of energy 

between the patient and the robot, but also psychological factors. In a biocooperative 

rehabilitation task, the parameters of the task are automatically adjusted so that the patient 

is challenged in a moderate but engaging and motivating way without causing undue 

stress or harm. However, while this basic idea of biocooperative robotics has been 

defined [9, 10], no working implementation exists yet since measuring psychological 

factors is more difficult than measuring forces or velocities. While commonly used in 

psychological research, questionnaires are not a good solution for rehabilitation since they 

require therapy to be interrupted and only provide information ‘after the fact’. A 

promising potential solution would be the use of psychophysiological measurements. 

 

 

1.2 Psychophysiological measurements 
 

Physiology is the study of bodily function and how the parts of the body work. 

Psychophysiology is intimately related to it, but is also concerned with psychological 

phenomena – the experience and behavior of organisms in the physical and social 

environment [31]. It has been defined as “any research in which the dependent variable 

(the subject’s response) is a physiological measure and the independent variable (the 

factor manipulated by the experimenter) a behavioral one” [32]. Put more simply, 

psychophysiology is the study of the body’s responses to psychological stimuli. For 

instance, one classic psychophysiological response is the increased sweating and changes 

in heart rate as a response to stressful situations.  
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In its early years, psychophysiology mainly focused on the physiological responses and 

organ systems innervated by the autonomic nervous system (e.g. Ekman et al. [33]). More 

recently, psychophysiologists have been equally interested in the central nervous system, 

exploring techniques such as electroencephalography, magnetoencephalography, 

functional magnetic resonance imaging and other neuroimaging methods. Nonetheless, 

responses of the autonomic nervous system such as cardiorespiratory and electrodermal 

responses are still more popular in applied studies since they can be measured cheaply, 

quickly and unobtrusively, providing a convenient and objective method of estimating a 

person’s psychological state without his or her active cooperation. Of course, though 

psychophysiological measurements are easy to measure, they are difficult to interpret for 

a number of reasons: uncertain connections between physiological responses and 

psychological states, intersubject variability, effects of the environment (e.g. heat), effects 

of physical activity, signal drift etc. 

 

Though first (and still) used in laboratory experiments such as studies of physiological 

responses to isolated images and sounds [11], the advantages of psychophysiological 

measurements have allowed them to appear in many applied fields. For instance, they are 

frequently used to study mental workload in situations such as air traffic control [12], 

simulated flight [13] or driving [14]. They are also popular for analysis of stress and 

anxiety in, for example, public speaking [15]. On a lighter note, they are used to evaluate 

users’ experiences with computer games [16] and robots [17, 18].  

 

Psychophysiological measurements represent a promising potential addition to 

biocooperative rehabilitation robotics, as they would allow undesirable states such as 

stress or boredom to be objectively detected in real time. The basic idea of using 

psychophysiological measurements in motor rehabilitation has already been raised [34], 

but little concrete research has been carried out in this direction due to a variety of 

rehabilitation-specific challenges such as the presence of physical activity and 

pathological conditions. Furthermore, despite extensive research, there is still no standard 

method of interpreting psychophysiological measurements in general psychophysiology. 

Aside from theoretical limitations to inferring significance from psychophysiological data 

[35], there are entirely practical disagreements among psychophysiologists. One 

disagreement is how a subject’s psychological state can be described. Here, there are two 

main approaches. The first tries to classify psychophysiological measurements into one of 
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several basic emotions (anger, sadness, fear, surprise, happiness…) [36]. The second 

posits that a person’s psychological state is multidimensional and thus described with 

multiple variables. The most popular multidimensional model in psychophysiology is the 

arousal-valence model [37]. Valence (sometimes also called pleasure) is defined as 

positive versus negative affective states (e.g., humiliation, disinterest, and anger at one 

end versus excitement, relaxation, and tranquility at the other) while arousal is defined in 

terms of mental alertness and physical activity (e.g., sleep, inactivity, boredom, and 

relaxation at the lower end versus wakefulness, tension, exercise, and concentration at the 

higher end) [38]. In applied psychophysiological studies, however, it is also common to 

find researchers using neither basic emotions nor arousal and valence, but other 

psychological quantities such as stress, frustration, mental workload etc. 

 

The dissertation will thus be concerned with the exploration and interpretation of 

psychophysiological measurements in a motor rehabilitation setting, particularly in a 

biocooperative closed loop that could adjust the parameters of a rehabilitation task to 

make it optimally challenging for the patient. 

 

 

1.3 Dissertation structure 
 

The ultimate goal of the dissertation is to combine psychophysiological measurements 

with biomechanical and other measurements in a biocooperative feedback loop for 

rehabilitation robotics. This does not require precise identification of psychological states 

(e.g. angry, surprised, sad), but requires us to determine how suitable the task is for the 

patient and how the task parameters should be adjusted so that the patient is challenged in 

a moderate but engaging and motivating way without causing undue stress or harm. The 

basic blocks of such a biocooperative feedback loop are shown in Figure 1.1. 
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Figure 1.1: The principle of a biocooperative feedback loop. The human interacts with a 

haptic robot and virtual environment while different measurements are taken. These 

measurements are fused into an estimate of how difficulty should be changed, and the 

biocooperative controller changes the parameters of the virtual environment accordingly. 
 

The dissertation focuses primarily on psychophysiological, data fusion and 

biocooperative challenges. The design and implementation of robots and virtual 

environments for rehabilitation, while a significant challenge, is not a part of this 

dissertation; rather, the dissertation makes use of already existing robots and 

environments (with some modifications necessary for implementation of biocooperative 

control). As previous work at the University of Ljubljana was mainly done on upper 

extremity rehabilitation, the dissertation also focuses on the upper extremities. 
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2 Hardware, psychophysiological 
measurements and questionnaires 

 
 
 
 

2.1 HapticMaster and audiovisual display 
 

The HapticMaster robot [20], developed by Moog FCS, was used as the haptic interface. 

Shown in Figure 2.1, this robot offers movement with three degrees of freedom. The first 

joint allows vertical translation, the second allows rotation around a vertical axis, and the 

third allows horizontal translation. The robot’s end-effector also contains a three-axis 

force sensor. A two-axis gimbal with a wrist support mechanism and a two-degree-of-

freedom passive grasping module instrumented with force cells (Figures 2.2 and 2.3) is 

attached to the end-point of the robot [39]. The subject places his/her hand on the wrist 

support mechanism, and the arm is then fixed to the grasping device at the wrist. While 

the wrist is thus fixed during movement, the subject can freely move his/her fingers, 

elbow and shoulder joints. The arm is additionally supported using two cuffs fastened 

above and below the elbow. These cuffs were connected to electric motor pulleys using 

Kevlar cables. The pulleys applied a constant torque in order to compensate for the 

gravity acting on the subject’s arm.  

 

A 1.4x1.4-meter screen was suspended from the ceiling, and a projector behind the screen 

displayed the image onto it. The bottom edge of the screen was approximately 50 

centimeters from the ground. Subjects sat approximately 1.25 meters in front of the 

screen, with the robot situated between the seat and the screen. Additionally, five 

speakers and a subwoofer were arranged around the screen and subject in the Dolby 5.1 

layout: two speakers to the left and right of the screen, one speaker atop the screen, two 

speakers to the left and right behind the subject and the subwoofer below the screen. 
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The HapticMaster has previously served as the basis of the GENTLE/s rehabilitation 

platform [29] and can thus be considered a suitable choice for robot-aided upper 

extremity rehabilitation. Though not yet extensively used in rehabilitation, the grasping 

module has proven promising in preliminary trials with chronic stroke patients [39] and 

should thus also be suitable for this research. 

 
 

 
Figure 2.1: The HapticMaster. 

 



41 
 

 
Figure 2.2: A photograph of the HapticMaster's grasping device [39]. 

 
 

Figure 2.3: The schematics of the HapticMaster’s grasping device without the thumb and 

finger supports [39]. The user squeezes the pads of the device to grasp a virtual object. 

The left subfigure shows the basic mechanism while the right subfigure shows the back of 

the device where springs are attached to the mechanism and used for passive haptic 

rendering. 
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2.2 Psychophysiological sensors 
 

Four measurements were chosen for use in the dissertation following a preliminary 

evaluation: electrocardiography, skin conductance, respiration and peripheral skin 

temperature. These four have seen extensive use in psychophysiology, as evidenced in 

numerous review papers [19, 40, 41].  

 

All psychophysiological sensors were manufactured by g.tec (Graz, Austria). Skin 

temperature, respiration and skin conductance sensors are shown in Figure 2.4. The 

electrocardiogram (ECG) was recorded using four disposable surface electrodes placed in 

a configuration suggested by g.tec (one electrode on the left part of the chest, one on the 

right part of the chest, one on the left part of the abdomen, and a ground electrode on the 

upper left part of the back). Skin conductance was measured using a g.GSR sensor (g.tec). 

The electrodes were placed on the medial phalanxes of the second and third fingers of 

either the idle hand (for healthy subjects) or the nonparetic hand (for hemiparetic 

patients). The sensor generated a constant voltage between the two electrodes and 

measured the current between the electrodes in order to estimate skin conductance 

according to an established procedure [42]. Respiration was measured using a thermistor-

based SleepSense Flow sensor placed beneath the nose. Peripheral skin temperature was 

measured using a g.TEMP sensor (g.tec) attached to the distal phalanx of the fifth finger 

of either the idle hand (for healthy subjects) or the nonparetic hand (for hemiparetic 

patients). All of these signals were connected to a g.USBamp signal amplifier (Figure 

2.5). The sampling frequency was 2.4 kHz in the first part of the dissertation (Section 3, 

Analysis of rehabilitation-specific factors). It was, however, decreased to 1.2 kHz in the 

second part of the dissertation (Section 4, Data fusion and biocooperative control). This 

was done to save hard drive space and processing power since 2.4 kHz is unnecessarily 

high. Skin conductance, respiration and skin temperature can all be accurately measured 

with a sampling frequency below 20 Hz while a recommended ECG sampling frequency 

that allows accurate analysis of heart rate variability (HRV) is approximately 500 Hz for 

healthy adults [43] and 500-1000 Hz for subjects with pathological conditions [44]. These 

recommendations are based on a number of earlier studies, which found that the majority 

of the ECG’s energy is located between 100 Hz and that there is no statistically 

significant difference between the power spectral density calculated at the recommended 
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frequency and the power spectral density calculated at higher frequencies. Since the 

signal amplifier requires all signals to have the same sampling frequency and has a 

limited number of available sampling frequencies, the first available sampling frequency 

above 1000 Hz was selected (1200 Hz). Though stored at 1200 Hz, the skin conductance, 

respiration and skin temperature signals were downsampled to 24 Hz before processing. 

 

 

 
Figure 2.4: Physiological sensors: temperature (top left), respiration (top right) and skin 

conductance (bottom). All manufactured by g.tec. 

 

 
Figure 2.5: The g.USBamp signal amplifier (manufactured by g.tec). 

 
Three other measurements were excluded after early trials: facial electromyography, 

blood oxygen saturation and finger photoplethysmography. Blood oxygen saturation is 

not a commonly used measurement in psychophysiology, and a recent review lists no 

examples of its use [19]. After no changes in blood oxygen saturation were noted during 

early trials, it was excluded from further use. Finger photoplethysmography is frequently 
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used as a measure of heart rate, but this can be more accurately calculated from the ECG. 

It is also used together with the ECG to calculate pulse transit time (the time needed for 

the pulse pressure waveform to propagate through a length of the arterial tree), which has 

been previously used in psychophysiology [45]. However, early trials found the sensor to 

be very sensitive to movement, and it was decided to abandon its use, especially since 

pulse transit time is not nearly as commonly used in psychophysiology as other heart rate 

measures [19]. Facial electromyography, on the other hand, has been demonstrated to 

provide accurate information regarding emotional valence in laboratory studies [16, 17, 

46]. It was eventually discarded because the electrodes needed for electromyography 

require precise positioning, are time-consuming to apply, and are considered fairly 

obtrusive by the subject (since they are placed around the eyes and along the jaw). Thus, 

facial electromyography was felt to be inappropriate for a clinical rehabilitation setting, 

though its usefulness in other settings is well-established. 

 

 

2.3 Signal preprocessing and feature extraction 
 

Feature extraction refers to extracting a number of relevant features from raw 

physiological, biomechanical or other signals. The ECG, for example, is a raw 

physiological signal from which a number of features such as mean heart rate or various 

measures of HRV can be extracted. The process is described for each signal separately in 

the following subsections. 

 

Psychophysiological features are generally calculated over an interval of fixed length, 

with lengths from a few seconds to a few minutes being common in the literature (see 

Kreibig [19] for a review and a table of interval lengths). In this dissertation, several 

studies were performed with different interval lengths. The shortest intervals (used in 

section 4) were two minutes long while the longest (used in section 3.2) were five 

minutes long. Shorter intervals were not used since some features require an interval of at 

least two minutes to be calculated (e.g. some measures of HRV [43]). Additionally, some 

signals such as peripheral skin temperature respond fairly slowly to stimuli and cannot be 

properly evaluated over a short interval. 
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After feature extraction, a number of different features are obtained for each interval. 

Throughout this dissertation, a vector of different features from a single interval will be 

referred to simply as a 'data point'. 

 

2.3.1   Electrocardiogram 
 

Of the four psychophysiological signals included in the dissertation, the ECG is the most 

complex to process. Fortunately, many processing methods have been developed for it 

since it is commonly used in nonpsychophysiological applications. The first step is to 

filter the raw ECG to remove noise. Two filters were applied. The first was the optional 

50 Hz notch filter available in the g.USBamp signal amplifier for reduction of power line 

interference. The second was a fourth-order Butterworth high-pass filter whose cutoff 

frequency was set at 0.5 Hz. Such filters are frequently used to reduce baseline drift and 

noise caused by mechanical movement [47].  

 

After filtering, R-peaks need to be detected in the ECG. R-peaks correspond to 

ventricular depolarization and are the most prominent peak in the ECG. Because of this, 

they are usually used as the basis for heart rate calculation. Numerous algorithms, mostly 

based on the amplitude or derivative of the filtered ECG, are available for R-peak 

detection (e.g. Friesen et al. [48]), but a simple amplitude threshold followed by detection 

of signal peaks using the first and second derivative proved sufficient as long as the 

electrodes were properly positioned on the subject's body. In offline analysis, the ECG 

was additionally checked manually and any incorrectly detected peaks were corrected.  

 

The length of time that passes between two normal (non-pathological) R-peaks is called a 

NN-interval (Figure 2.6). Heart rate is defined as the reciprocal value of the NN-interval. 

Mean heart rate served as the primary ECG-derived feature. However, several 

standardized time- and frequency-domain measures of HRV were also calculated [43]. 

These are not calculated directly from the ECG itself, but from the NN-intervals. The 

three time-domain features were the standard deviation of NN-intervals (SDNN), the 

square root of the mean squared differences of successive NN-intervals (RMSSD) and the 

percentage of interval differences of successive NN-intervals greater than 50 ms 

(pNN50). They are calculated as follows: 
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ܰܰܦܵ           ൌ  stdevሺܰܰሻ                      (2.1) 

ܦܵܵܯܴ              ൌ ඨ∑ ሺேேశభିேேሻమಽಿಿషభ
సభ

ಿಿ
        (2.2) 

50ܰܰ                           ൌ   
∑ ሺሺேேశభିேேሻவ.ହ ௦ሻಽಿಿషభ

సభ
ಿಿ

                                  (2.3) 

where NN is the time series of NN-intervals, LNN is the number of elements of NN and 

stdev is the standard deviation function. 

 

For frequency-domain measures, NN-intervals were converted into an instantaneous time 

series using cubic spline interpolation and the power spectral density of this time series 

was calculated using Welch’s method of modified periodograms [49]. The power spectral 

density has two frequency bands of interest to us: the low-frequency band (LF) between 

0.04 Hz and 0.15 Hz and the high-frequency band (HF) between 0.15 Hz and 0.4 Hz. 

Three frequency-domain HRV features were calculated: total power in the LF band, total 

power in the HF band (commonly referred to as respiratory sinus arrhythmia) and the 

ratio of the two (commonly referred to as the LF/HF ratio). These frequency-domain 

measures should be calculated over a time period of two to five minutes.  

 

 
Figure 2.6: An example ECG signal with NN-intervals marked. 

 

In total, seven features were derived from the ECG. Both heart rate and HRV have been 

previously connected to psychological changes. Heart rate increases and HRV decreases 

as a result of cognitive workload [12, 13, 14, 50]. Changes in both heart rate and HRV 

have also been linked to different emotions such as anger [51, 52] fear and sadness (a 

review for the last two is available in Kreibig et al. [53]), but results are still 
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controversial, with different studies reporting different results. These controversies may 

be due to different methods of eliciting emotions or due to different types of emotions 

(e.g. hot or cold anger). 

 

2.3.2   Skin conductance 
 

An example of a skin conductance signal is shown in Figure 2.7. Two components of skin 

conductance are characterized, tonic and phasic [42, 54]. Tonic skin conductance is the 

slowly-changing baseline level of skin conductance, in the absence of any particular 

discrete environmental event, and is generally referred to as skin conductance level 

(SCL). Each person has a different SCL, which varies over time depending on 

psychological state and autonomic regulation. Phasic skin conductance consists of rapid 

skin conductance increases followed by a return to the tonic level. These changes occur in 

response to discrete environmental stimuli, but can also occur spontaneously in the 

absence of any specific stimuli. These rapid increases are generally referred to as skin 

conductance responses (SCRs). They are often also called galvanic skin responses, but 

this is considered to be an outdated term.  

 

 
Figure 2.7: An example skin conductance signal with several skin conductance responses. 

 

The skin conductance signal was first filtered with a fourth-order Butterworth low-pass 

filter whose cutoff frequency was set at 5 Hz. This is a commonly used cut-off frequency 

for removal of high-frequency noise [55]. Afterwards, two filters were separately applied 

to this signal to obtain tonic and phasic skin conductance. A fourth-order Butterworth 

low-pass filter with a cutoff frequency of 0.1 Hz was applied to the signal to obtain tonic 
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skin conductance while a fourth-order Butterworth high-pass filter with a cutoff 

frequency of 0.1 Hz was applied to obtain phasic skin conductance. Mean SCL was 

calculated from tonic skin conductance. A transient increase in phasic skin conductance 

was detected as a SCR if its amplitude (from beginning of the increase to the peak) 

exceeded 0.05 microsiemens and its peak occurred less than 5 seconds after the beginning 

of the increase. These are commonly used criteria for SCR detection [56], if perhaps 

somewhat arbitrary. SCR frequency and mean SCR amplitude were calculated. 

 

In total, three features were derived from the skin conductance signal. It is generally 

agreed that skin conductance is predominantly innervated by the sympathetic nervous 

system [31]. It thus increases with general psychological arousal and cognitive workload 

[12, 41, 57, 58]. Though skin conductance also increases as a result of emotions such as 

fear [53], it is poor at differentiating between positive or negative emotions. 

 

2.3.3   Respiration 
 

The signal obtained from the SleepSense flow sensor is a sine-like signal in which the 

troughs represent the beginning of inspiration and the peaks represented the beginning of 

expiration (Figure 2.8). As there is no standardized procedure for respiratory rate 

calculation from flow sensors, a procedure was defined following preliminary 

measurements. The signal was first filtered with a fourth-order Butterworth low-pass 

filter whose cut-off frequency was set at 5 Hz. Since the adult human respiratory rate is 

generally between 10-20 breaths per minute (approximately 0.16-0.33 Hz), it was felt that 

such a cut-off frequency would reduce high-frequency noise without removing useful 

information. Peaks in the signal were then detected with a simple algorithm based on the 

signal's first and second derivatives. Respiratory periods were calculated as the times 

between two peaks in the signal, and mean respiratory rate was calculated as the mean 

reciprocal value of the respiratory period. Furthermore, respiratory rate variability was 

calculated as the standard deviation of the reciprocal value of the respiratory period. 

Respiratory volume was not calculated since the amplitude of the signal from the sensor 

does not reflect respiratory volume; only the locations of the peaks and troughs are useful. 
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During measurements, subjects were generally encouraged to remain silent in order to 

avoid artefacts in the respiration signal that would be caused by speaking. If the subject 

spoke, this was noted down by the experimenter and any artefacts around the time of 

speaking were manually removed from the recorded signal prior to feature extraction. 

 

 
Figure 2.8: An example respiration signal with respiratory periods (RP) marked. 

 

Compared to heart rate and skin conductance measurements, respiration is often 

overlooked in psychophysiology. Often, it simply serves as a secondary measure used to 

identify respiration-related artifacts [31]. Nonetheless, it has also been connected to 

psychological states. In a thorough review, Boiten et al. [59] concluded that respiratory 

activity is (in their own words) mainly affected by the continua of calm-excited and active 

versus passive coping. In other words, there is a primary influence of psychological 

arousal and activation. Boiten [60] also found that respiratory variability in general 

decreases with increased cognitive workload. Veltman and Gaillard [13] found that 

respiratory rate increases with cognitive workload and arousal. In a later study, Gomez et 

al. [61] confirmed a strong influence of arousal, but also noted an influence of emotional 

valence (positive vs. negative emotions). Furthermore, respiratory variability has been 

connected to anxiety [62].  

 

2.3.4   Peripheral skin temperature 
 

Peripheral skin temperature changes very slowly compared to the other three 

physiological signals. Responses to stimuli begin to occur at more than 15 seconds after 
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the stimulus [63]. An observation of the signals recorded during the coures of the 

dissertation found that changes in skin temperature could begin to occur up to a minute 

after constant exposure to a stimulus and need an additional minute or two to reach the 

maximum deviation from the initial value. Because of this slowness, high-frequency 

noise was removed with a Butterworth fourth-order low-pass filter whose cut-off 

frequency was set at 1 Hz. The final skin temperature at the end of each period was 

calculated as the mean value over the last 5 seconds of the period. The final value rather 

than the mean value was chosen because of the slow, delayed response.  

 

Changes in peripheral skin temperature are caused by changes in the microcirculation 

induced by stressors or other stimuli acting on the sympathetic nervous system [63]. 

Thus, like skin conductance (which is also innervated by the sympathetic nervous 

system), skin temperature changes are likely to primarily reflect general psychological 

arousal and cognitive workload [64], though skin temperature changes have also been 

noted in response to emotions such as anxiety [65], fear and sadness [53]. 

 

2.3.5   Biomechanics 
 

Biomechanical features describe the movements and forces applied by the human onto the 

HapticMaster’s end-effector. They were derived from the position of the robot’s end-

effector (which was calculated from the HapticMaster’s internal joint position sensors 

through direct kinematics) and from the force signal measured by the 3-axis force sensor 

in the end-effector. The extracted features were defined so that they would both account 

for mean physical activity (e.g. mean absolute force, total work) as well as detect an 

increased amount of sudden jerky movements. Preliminary experiments with haptic tasks 

showed that increased task difficulty was characterized by jerkier movements. A total of 

eight features were extracted: mean absolute force, mean absolute velocity, mean 

absolute acceleration, total work, mean frequency of the position signal, mean frequency 

of the velocity signal, mean frequency of the acceleration signal, and mean frequency of 

the force signal. The mean frequencies were calculated through Welch’s method of 

modified periodograms [49]. Total work was calculated as: 

 

       ௧ܹ௧ ൌ  ௧ܨ  (2.4)         ݔ݀
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where Fint is the interaction force between the human and the robot’s end-effector and C 

is the path along which the robot was moved. It should be acknowledged that this total 

work includes both the active physical effort exerted by the subject and the passive 

energy of the robot moving the subject’s arm. 

 

All biomechanical features were calculated only for movement in the horizontal plane. 

This was done due to the nature of the two tasks used in the dissertation: the inverted 

pendulum task and the ball-catching task. The inverted pendulum task (section 3.2) only 

includes horizontal movements. The ball-catching task (sections 3.3 and 4.3) does include 

vertical movement, but task difficulty is modulated by only adjusting the horizontal 

component of the task, so vertical movements were considered irrelevant.  
 

Though the primary focus of the dissertation is on psychophysiological measurements, 

biomechanical measurements also have several uses. First, they can be used to evaluate 

the level of physical activity during the task. Second, since they are already available in 

the HapticMaster, it would be interesting to see if they could, by themselves, provide 

enough information about how suitable the task is for the patient. In such a case, 

psychophysiological measurements would be unnecessary. 

 

2.3.6   Task performance 
 

Task performance features describe how well a subject did at a particular task. As such, 

they are necessarily task-specific. Since several different tasks were used in the 

dissertation, task performance features for each task will be introduced together with that 

particular task in later sections.  

Like biomechanical measurements, task performance measurements are already available 

in motor rehabilitation and might by themselves provide enough information about how 

suitable the task is for the patient. In data fusion (section 4), they were thus used as an 

alternative or complementary data source to psychophysiological measurements. In 

statistical analysis (section 3), they were used as validation: to determine whether 

differences actually exist between different conditions and to calculate correlations 

between psychophysiology and task performance. 

 



52 
 

2.4 Feature normalization 
 

Psychophysiological features exhibit high intra- and intersubject variability as a result of 

age, gender, time of day and other factors.  Normalization is primarily an attempt to 

reduce the effect of this variability prior to data fusion. For instance, if a training data set 

contains measurements from several subjects, some subjects may exhibit much larger 

responses than others or have different resting values for psychophysiological features 

(resting heart rate, for instance, can easily be anywhere between 60 and 80 beats per 

minute). This needs to be taken into account prior to data fusion. Furthermore, since 

different features are measured in different units, some features have much larger 

numerical ranges than others, which can be problematic for some data fusion methods 

(such as nearest-neighbor classification, described in section 4.1.2.1.1). Normalization 

also attempts to reduce this effect. Three normalization approaches are commonly used.  

 

The first approach is to record psychophysiological responses in a neutral or 'baseline' 

conditions where the subject is not exposed to stimuli or is only exposed to basic, relaxing 

stimuli. Psychophysiological features from other conditions (where the subject is 

performing a task or exposed to affective stimuli) are then normalized by either 

subtracting the baseline value [66-68], dividing by the baseline value [69, 70], subtracting 

the baseline value and dividing the result by the baseline value [71-73], or a combination 

of these, with different options used for different features [74]. Subtraction of the baseline 

value is obviously aimed at reducing intersubject variability due to different baseline 

values while division is also partially aimed at reducing variability due to different 

response sizes. This approach can easily be used online, though it does require a baseline 

condition to be recorded first. 

 

The second approach also begins by recording psychophysiological responses in a 

baseline condition. However, instead of subtracting or dividing the data from the 'task' or 

'affective' conditions with the baseline data, the baseline features are added to the feature 

space as independent features - thus doubling the dimension of the feature space. This 

approach is called the 'baseline matrix' and has been previously used in several studies 

[46, 75]. Like the previous approach, this can be easily done online, though it requires a 

baseline condition to be recorded first. 
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The third approach includes no baseline recordings, but simply involves normalizing the 

data from each subject separately or across all subjects to a certain range (e.g. from 0 to 1 

or from -1 to 1) [16, 76-78]. This is done for each feature separately by, for instance, 

subtracting the mean value of all data points and dividing the result by the standard 

deviation of all data points. If done for each subject separately, the goal is generally to 

reduce intersubject variability by scaling each person's features to a difference between 

their maximum and minimum value. If done across all subjects, the goal is simply to 

ensure that each psychophysiological feature has the same numerical range. In online data 

fusion, normalizing psychophysiological features without a baseline recording can be 

done by calculating the maximum and minimum value of each feature across the entire 

training data set, then scaling features online between that maximum and minimum value.   

 

As there is no clear ‘best’ normalization approach in the literature, the first approach was 

chosen since it is the most common and since recording a baseline condition is not 

problematic. However, it was uncertain whether to simply subtract the baseline value or 

to also divide by the baseline value. Thus, for the first study in this dissertation (analysis 

of the effects of physical activity, section 3.2), most features were normalized by first 

subtracting the baseline value and then dividing the result by the baseline value. There 

was one exception: mean SCL, which is already measured as the difference from an initial 

value and was thus normalized by simply subtracting the baseline value. For later studies, 

however, it was felt that a mixed approach would be best. Thus, in all other studies, the 

“subtract and divide” method was used for SDNN, RMSSD, LF/HF index, total LF power, 

total HF power, SCR frequency and respiratory rate variability. Mean heart rate, pNN50, 

mean SCL, mean SCR amplitude, mean respiratory rate and final skin temperature were 

normalized by simply subtracting the baseline value. The choice to change normalization 

methods was based on a purely subjective opinion that such an approach would be more 

effective. 
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2.5 Questionnaires 
 

A number of different questionnaires have been used together with psychophysiological 

measurements, among them the NASA-TLX [79], the Behavior Activation System / 

Behavior Inhibition System (BAS/BIS) scales [80], the Self-Assessment Manikin (SAM) 

[81] and a variety of study-specific questionnaires mainly consisting of multiple-choice 

questions [17, 53, 66, 72]. Though multiple studies have failed to find strong correlations 

between self-report questionnaires and psychophysiological features [82, 83], 

questionnaires remain the most popular and convenient method of validating 

psychophysiological measurements. 

 

Two questionnaires were used in the dissertation: the SAM, which measures the current 

valence and arousal of the subject, and the BAS/BIS scales, which measure properties of 

the individual’s innate motivational systems.  The SAM was used for both studies 

described in section 3 as well as data fusion in a non-rehabilitation setting (section 4.2). 

The BAS/BIS scales were used for analysis of the effects of stroke (section 3.3) and data 

fusion in a non-rehabilitation setting (section 4.2). Although the BAS/BIS scales were 

also intended for use with data fusion in rehabilitation (section 4.3), they had to be 

omitted due to lack of time. 

 

2.5.1   The Self-Assessment Manikin 
 

The nine-point arousal and valence scales from the SAM [81] were chosen as the primary 

questionnaire. Shown in Figure 2.9, these scales allow subjects to rate their level of 

emotional valence and arousal graphically by choosing the picture that best represents 

their current mood. Valence (sometimes also called pleasure) is defined as positive versus 

negative affective states (e.g., humiliation, disinterest, and anger at one end versus 

excitement, relaxation, and tranquility at the other end) while arousal is defined in terms 

of mental alertness and physical activity (e.g., sleep, inactivity, boredom, and relaxation 

at the lower end versus wakefulness, tension, exercise, and concentration at the higher 

end) [38].  
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Valence and arousal were converted to numerical values for purposes of analysis. For 

valence, 1 represented extremely negative valence while 9 represented extremely positive 

valence. For arousal, 1 represented extremely low arousal while 9 represented extremely 

high arousal. The SAM was chosen over other questionnaires for two reasons. First, the 

physiological effects of arousal and valence are well-documented [41]. Second, the SAM 

is graphical in nature and thus very simple to use; in pretesting, some stroke patients had 

difficulty comprehending more complex self-report questionnaires. Despite this 

simplicity, the SAM has been shown to yield results similar to those of more complex 

self-report scales such as the semantic differential [81]. The SAM also contains a third 

subscale, dominance, but most psychophysiological studies omit it since it has never been 

reliably connected with physiological responses. 

 

 
Figure 2.9: The valence (top) and arousal (bottom) scales of the Self-Assessment 

Manikin. 

 

2.5.2   Behavioral Activation System / Behavioral Inhibition System 

Scales 
 

The Behavioral Activation System / Behavioral Inhibition System (BAS/BIS) scales [80] 

describe two innate motivational systems governing appetitive and aversive behaviors. 

The behavioral activation system (BAS) is involved in simple reward-approach situations 

as well as in the initiation of behavior in active avoidance situations where the subject 

must respond to avoid punishment. The behavioral inhibition system (BIS) is viewed as 

an anxiety system and inhibits behavior in the presence of cues signaling that frustrative 

or anxiety-evoking aversive consequences would occur as a result of that behavior. 
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Passive avoidance is one situation that activates the BIS. It has been demonstrated that the 

BAS primarily influences heart rate while the BIS primarily influences skin conductance 

[84]. The BAS/BIS scales have already been used in virtual reality [85], making them a 

potentially useful addition to the dissertation. 

 

The BAS/BIS scales themselves consist of 24 statements (such as “I often act on the spur 

of the moment” or “I feel worried when I think I have done poorly at something 

important”) with four possible choices for each (very true for me / somewhat true for me / 

somewhat false for me / very false for me). Four statements are filler and do not 

contribute to the result while the others contribute to four subscales: one BIS scale and 

three BAS scales (BAS Drive, BAS Fun Seeking, BAS Reward Responsiveness). 

According to Carver and White [80], the fact that there are three BAS-related scales and 

only one BIS-related scale was not planned or theoretically motivated. The factors 

emerged empirically, from an item set that was intended to capture diverse manifestations 

of the BAS, according to various theoretical statements. 
 

Since the BAS/BIS scales have been linked to motivation (a very important factor in 

biocooperative rehabilitation) as well as to psychophysiological responses, they were 

included as a way of evaluating the effect that a person's innate psychological properties 

(as opposed to his/her current mood, evaluated by the SAM) affect his/her experience and 

psychophysiological responses.  
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3 Analysis of rehabilitation-specific factors 
 
 
 

3.1 Introduction 
 

As previously mentioned, little concrete psychophysiological research has been carried 

out in motor rehabilitation due to two rehabilitation-specific factors. This section is 

concerned with a statistical analysis of these two factors so that their influence can be 

better-understood in data fusion.  

 

The first factor, studied in Section 3.2, is the presence of strenuous physical activity. 

Psychophysiological responses are affected not only by psychological stimuli, but also 

physical activity.  Most studies consider this physical activity to be an undesired factor 

and attempt to limit it to a minimum, but this cannot be done in motor rehabilitation 

where physical activity is the integral component of the process.  

 

A number of studies have examined psychophysiological responses to a combination of 

physical and cognitive workload, but have mainly focused on the effects of a mentally 

demanding task superimposed onto a physically demanding task (e. g. performing mental 

arithmetic while riding a bicycle) [21, 22]. Subjects in these studies were thus performing 

several unrelated tasks at once. During interaction with haptic robots, however, a single 

task frequently contains elements of both physical and cognitive workload. The interplay 

between cognitive and physical workload found in haptic human-robot interaction may 

result in different psychophysiological responses. While psychophysiological 

measurements have been applied to human-robot interaction [18, 86], they have never 

been studied specifically in the context of haptic interaction. 

 

The question to be answered was thus simple: in haptic human-robot interaction, is it 

possible to use psychophysiological responses to differentiate between different levels of 
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cognitive workload at different levels of physical workload? Our main hypothesis and its 

sub-hypotheses were: 

 

H1: In in haptic human-robot interaction, physiological responses are affected by both 

cognitive and physical workload.  

• H1.1: Cognitive workload causes heart rate, skin conductance and respiratory rate 

to increase. Furthermore, it causes skin temperature to decrease. 

• H1.2: Physical workload also causes heart rate, skin conductance and respiratory 

rate to increase. Effects on skin temperature are uncertain. 

• H1.3: The physiological effects of physical and cognitive workload are additive; 

the presence of both workload types causes a larger physiological response than 

the presence of a single type. 

• H1.4: Both types contribute significantly to physiological responses; at the same 

level of cognitive workload, changing physical workload should significantly 

change physiological responses and vice-versa. 

 

The second factor, studied in section 3.3, is the damage to the autonomic nervous system 

that is present in most patients undergoing motor rehabilitation. Stroke patients, for 

instance, are known to show long-lasting abnormalities in sweating and HRV [23], 

though some recovery occurs with time [87]. Similarly, traumatic brain injury also results 

in weakened psychophysiological responses [24]. Electrical nerve stimulation evokes 

significantly smaller SCRs in stroke patients than controls [88-89] and fails to evoke any 

SCRs at all on the limbs of some patients with spinal cord lesions [90]. 

 

Psychophysiological responses have not, however, yet been studied during motor 

rehabilitation itself. Prior to data fusion, an analysis should be performed with both 

patients and healthy controls to identify all weakened or absent psychophysiological 

responses during rehabilitation tasks. This should ideally be done with both an actual 

rehabilitation task as well as additional psychological tasks where the effects of physical 

activity are not present. Due to a limited availability of patients at the University 

Rehabilitation Institute of the Republic of Slovenia, it was decided to focus primarily on 

stroke patients. While there are different types of stroke, a group of only stroke patients 
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should nonetheless exhibit less intersubject variability than, for instance, a group of both 

stroke and spinal cord injury patients. Our main hypothesis and its sub-hypotheses were:  

 

H2: Stroke patients have weakened or even absent psychophysiological responses 

compared to control subjects. 

• H2.1: Changes in skin conductance and heart rate variability in response to stimuli 

should be smaller in stroke patients than controls based on previous research. 

Effects of stroke on respiration and skin temperature are uncertain, but it is 

expected that these responses are also weakened. 

• H2.2: When performing a purely cognitive task without any physical workload, 

stroke patients nonetheless exhibit one or more of the following: significant 

increases in heart rate, skin conductance or respiratory rate or a significant 

decrease in skin temperature.  

• H2.3: When performing a motor rehabilitation task, stroke patients nonetheless 

exhibit one or more of the following: significant increases in heart rate, skin 

conductance or respiratory rate.    

 

 

3.2 The effects of physical activity 
 

3.2.1   Task 
 

Subjects were presented with a virtual version of the classic inverted pendulum problem 

(visible on the screen in Figure 3.1). A thin pole with a weight at its top end is attached at 

its bottom to a moving cart. This vertical pendulum is inherently unstable; left alone, the 

pole will fall to the ground. However, if the cart is moved left or right, it will act upon the 

pole and either accelerate its fall or balance it. This system is referred to as the inverted 

pendulum and is a classic problem in control theory. Subjects were presented with a 

simulated cart and pole on a screen. They moved the cart left and right using the 

HapticMaster, with the goal of keeping the pole from falling. The cart moved in the same 

direction and with the same velocity as the end-effector of the HapticMaster. If the 

subjects failed to balance the pole and it fell to a horizontal position, it was immediately 

reset to a nearly vertical position. Force feedback was also implemented with the 
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HapticMaster, allowing the subjects to feel the reaction forces resulting from the 

movement of the cart.  

 

The nonlinear differential equations describing the inverted pendulum system can be 

derived using standard laws of motion and are: 

 

       ሺܯ  ݉ሻݔሷ  ሶݔܾ  ሷߠ݈݉ cosሺߠሻ െ ሶߠ݈݉ ଶ sinሺߠሻ ൌ  (3.1)           ܨ݇

               ሺ݈  ݈݉ଶሻߠሷ  ݈݉݃sinሺߠሻ ൌ െ݈݉ݔሷcos ሺߠሻ           (3.2) 

 

where ܯ is the mass of the cart, ݉ is the mass of the pole (which is concentrated at the tip 

of the pole), ݈ is the length of the pole, ݃ is the gravitational acceleration, ܾ is the friction 

between the cart and the ground, ܨ is the force exerted by the subjects, k is a factor that 

scales between the force exerted by the subjects and the force acting on the cart, ݔ is the 

position of the cart, and ߠ is the angle between the pole and a vertical line. 

 

Different levels of cognitive workload were achieved in the task using three different task 

difficulty levels: underchallenging, challenging and overchallenging. These levels of 

cognitive workload allowed us to test hypothesis H1.1. In the challenging version, the 

constants in 3.1 and 3.2 were set in such a way as to make balancing the pendulum 

moderately challenging. The initial value of ߠ was 5o while initial values of both ߠሶ  and ߠሷ  

were zero. In the overchallenging version, a half-second delay was introduced between 

the time the cart was moved and the time the cart’s movement affected the pole, making it 

more unpredictable. Additionally, the pole was heavier (m was multiplied by 1.5 from the 

challenging version), the pole was longer (l was multiplied by 1.5) and the friction 

between the cart and the ground was smaller (b was multiplied by 0.75). This made the 

task extremely difficult to perform successfully. In the underchallenging version, the 

pendulum never fell: ߠሷ  was kept at zero throughout the time period and the initial value of 

both ߠ and ߠሶ  was zero. The subject was simply asked to move the cart left and right at a 

moderate speed.  

 

All three difficulty levels were implemented in low physical workload and high physical 

workload versions. These levels of physical workload allowed us to test hypothesis H1.2. 

The versions were identical except for one factor: in the high physical workload versions, 
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more physical force was required to move the HapticMaster. The scaling factor k in 

equation 3.2 was divided by five, forcing the subject to apply five times the force that had 

been applied in the low physical workload versions. This gave us a total of six task 

conditions: underchallenging with low physical workload, challenging with low physical 

workload, overchallenging with low physical workload, underchallenging with high 

physical workload, challenging with high physical workload, and overchallenging with 

high physical workload. Since the physical and cognitive difficulty can be adjusted 

independently of each other, hypotheses H1.3 and H1.4 can thus be tested. 

 

A single task performance feature was measured: the number of times that the pendulum 

fell (and was reset). It was measured only in challenging and overchallenging conditions 

since the pendulum never fell in the underchallenging conditions. 

 

 
Figure 3.1: A subject performing the inverted pendulum task with the HapticMaster. 

 

3.2.2   Measurement protocol 
 

The experiment was conducted in a quiet area of the laboratory where external stimuli did 

not disturb the subjects. The temperature and humidity in the laboratory were kept 

constant. There was never more than one subject and one experiment supervisor inside 

the laboratory at any time. Each subject performed the experiment in two separate time 

blocks. Each block consisted of an initial rest period (which served as the baseline) 

followed by the three different difficulty levels performed in random order. Each 
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condition lasted for five minutes. After each condition, the subject was presented with a 

self-report questionnaire administered by the experiment supervisor and then the next 

condition began immediately. 

 

One time block was performed with low physical workload while the other was 

performed with high physical workload. The order in which the two blocks were 

presented as well as the order of difficulty levels within each block was randomly chosen 

before each subject’s arrival in the laboratory.  

 

Upon arrival, the task and the experiment procedure were explained to the subject. Then, 

the challenging difficulty level was presented for the subject to practice using the 

HapticMaster at the level of physical workload that would be present during the first 

block. Everyone was required to practice for at least five minutes, and more time was 

given to anyone who felt that he or she had not yet reached a basic level of proficiency. 

This practice period (as well as practice periods in all other studies described in the 

dissertation) was presented in order to reduce the effect of novelty: psychophysiological 

responses are generally strongest during the first exposure to a new stimulus, then 

decrease as a result of habituation [91]. For this reason, psychophysiological studies 

frequently perform a practice session before the actual experiment in order to reduce the 

effects of novelty during the experiment session [92].  

 

After practice had been completed, the physiological sensors were attached and turned on. 

Then, the first block of the experiment was performed. After the first block had been 

completed, a brief informal interview was conducted with the subject. He or she was 

allowed to rest briefly if desired. Then, he or she was required to practice the task at the 

level of physical workload that would be present during the second block for at least five 

minutes. After the practice, the second block of the experiment was performed. After the 

second block had been completed, the subject was disconnected from the equipment and 

an informal interview was conducted about the entire experience. 
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3.2.3   Participants 
 

Thirty students and staff members from various departments of the University of 

Ljubljana (age range: 19-46 years, mean 26.2, standard deviation 5.8) participated in the 

study. Twenty-three were male, seven were female. All were healthy, without any major 

cognitive or physical defects. Each subject signed an informed consent form. 

 

3.2.4   Statistical methods 
 

Results were analyzed with a two-way repeated-measures ANOVA in order to evaluate 

significance and effect size. One factor was physical workload (two levels: low/high) 

while the other was cognitive workload. Cognitive load had two levels for task 

performance (challenging / overchallenging, since the pendulum did not fall during the 

underchallenging condition), three for psychophysiology and biomechanics 

(underchallenging / challenging / overchallenging), and four for the SAM (baseline / 

underchallenging / challenging / overchallenging). Psychophysiological features were 

normalized while others were not. Effect size was calculated as partial η2, the proportion 

of total variability attributable to the factor, excluding other factors from the total 

nonerror variation [93]. All hypotheses were tested at a 5% significance level. The Sidak 

correction for multiple comparisons [94] was used for all post-hoc tests. The Huynh-Feldt 

correction [95] was used in cases of violations of sphericity in ANOVA. The 

Kolmogorov-Smirnov test with Lilliefors’ modification [96] was used to test for 

normality. If the requirements for regular ANOVA were not met, ANOVA on ranks was 

used instead. 

 

3.2.5   Results 
 

3.2.5.1   Performance 

 

For low physical workload, the pendulum was reset 3.2 ± 1.3 times per minute during the 

challenging condition (mean ± standard deviation across all 30 subjects) and 5.6 ± 1.0 

times per minute in the overchallenging condition. For high physical workload, the 

pendulum was reset 2.8 ± 0.9 times per minute in the challenging condition and 5.4 ± 1.2 
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times per minute in the overchallenging condition. The pendulum did not fall during the 

two underchallenging conditions. There was a significant main effect of cognitive 

workload (p < 0.001, partial η2 = 0.87) as well as a smaller significant main effect of 

physical workload (p = 0.042, partial η2 = 0.18). There was no significant interaction 

effect (p = 0.79, partial η2 = 0.00). 

 

3.2.5.2   Self-assessment manikin 

 

Table 3.1 shows results from the SAM for baseline and task conditions.  

 

Table 3.1: Results of self-report measures, presented as mean ± standard deviation. High 

values represent positive valence or high arousal. 

  baseline underchallenging challenging overchallenging 

low physical 
workload 

valence 5.5 ± 1.1 4.9 ± 1.5 5.4 ± 1.2 4.1 ± 1.6 
arousal 1.3 ± 1.3 1.9 ± 1.8 4.5 ± 1.9 4.3 ± 1.9 

high physical 
workload 

valence 5.4 ± 1.5 4.5 ± 1.9 5.5 ± 1.3 4.5 ± 1.8 
arousal 1.3 ± 1.7 2.2 ± 1.7 4.7 ± 1.7 4.5 ± 1.8 

 

There was a significant main effect of cognitive workload on valence (p = 0.002, partial 

η2 = 0.49). Post-hoc tests found a significant difference between baseline and 

overchallenging conditions (p = 0.019) as well as between challenging and 

overchallenging conditions (p = 0.001). There was also a significant main effect of 

cognitive workload on arousal (p < 0.001, partial η2 = 0.81). Post-hoc tests found a 

significant difference between the baseline condition and all other three conditions (p = 

0.029 for baseline-underchallenging, p < 0.001 for the other two) as well as a significant 

difference between the underchallenging condition and the other two task conditions (p < 

0.001 in both cases). There were no significant main effects of physical workload 

(valence: p = 0.75, partial η2 = 0.005; arousal: p = 0.45, partial η2 = 0.03) and no 

significant interaction effects (valence: p = 0.93, partial η2 = 0.02; arousal: p = 0.65, 

partial η2 = 0.07). 
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3.2.5.3   Biomechanical measurements 

 

Table 3.2 shows values of all biomechanical features in all task conditions. There was a 

significant main effect of physical workload on: 

‐ mean absolute force (p = 0.006, partial η2 = 0.51),  

‐ mean absolute velocity (p = 0.024, partial η2 = 0.38),  

‐ mean absolute acceleration (p = 0.029, partial η2 = 0.36),  

‐ total work (p = 0.019, partial η2 = 0.41),  

‐ mean frequency of the position signal (p = 0.033, partial η2 = 0.35),  

‐ mean frequency of the acceleration signal (p = 0.013, partial η2 = 0.44), 

‐ mean frequency of the force signal (p = 0.003, partial η2 = 0.57). 

 

Table 3.2: Mean values of biomechanical features in all task conditions. Underch. = 

underchallenging, ch. = challenging, overch. = overchallenging. 

  Low physical workload High physical workload 
  Underch. Ch. Overch. Underch. Ch. Overch.

mean absolute force (N) 3.06 1.04 1.38 17.1 6.80 7.36 
mean absolute velocity (m/s) 0.148 0.055 0.059 0.128 0.049 0.054 

mean absolute acceleration (m/s2) 0.44 0.17 0.23 0.30 0.13 0.15 
total work (J) 127.4 16.9 24.1 570.4 95.1 119.2 

mean f. of position (Hz) 0.251 0.103 0.103 0.200 0.090 0.093 
mean f. of velocity (Hz) 1.57 4.48 3.35 2.11 6.24 4.56 

mean f. of acceleration (Hz) 4.21 2.76 2.85 4.40 2.74 3.33 
mean f. of force (Hz) 6.85 7.94 15.4 0.67 0.59 1.73 
 

There was a significant main effect of cognitive workload (p = 0.001, partial η2 = 0.76) as 

well as a significant interaction effect between physical and cognitive workload (p = 

0.041, partial η2 = 0.47) on mean absolute force. Post-hoc tests found significant 

differences between the underchallenging and overchallenging conditions for both levels 

of physical workload (p = 0.033 for low physical workload, p < 0.001 for high physical 

workload). The difference between underchallenging and challenging conditions was 

significant only for high physical workload (p < 0.001), though the difference also 

approached significance in the case of low physical workload (p = 0.069). 

 

There was a significant main effect of cognitive workload (p < 0.001, partial η2 = 0.79) as 

well as a significant interaction effect between physical and cognitive workload (p = 
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0.016, partial η2 = 0.34) on mean absolute velocity. Post-hoc tests found significant 

differences between the underchallenging condition and the other two condition for both 

levels of physical workload (p < 0.001 in all four cases), but no significant difference 

between the challenging and overchallenging conditions. 

 

Significant main effects of cognitive workload without accompanying significant 

interaction effects were found for: 

‐ mean absolute acceleration (p = 0.001, partial η2 = 0.59),  

‐ total work (p = 0.001, partial η2 = 0.75),  

‐ mean frequency of the position signal (p < 0.001, partial η2 = 0.66),  

‐ mean frequency of the velocity signal (p = 0.003, partial η2 = 0.50),  

‐ mean frequency of the acceleration signal (p = 0.001, partial η2 = 0.77), 

‐ mean frequency of the force signal (p = 0.013, partial η2 = 0.35).  

For the mean frequency of the force signal, post-hoc tests found a significant difference 

between the challenging and overchallenging conditions (p = 0.024). For the other 

features, post-hoc tests found a significant difference between the underchallenging 

condition and the other two conditions (p < 0.05 in all cases), but no significant difference 

between the challenging and underchallenging conditions. 

 

3.2.5.4   Psychophysiological measurements 

 

Table 3.3 shows normalized values of all psychophysiological features in all task 

conditions. Furthermore, Table 3.4 shows p-values and partial η2 for main effect of 

physical workload, main effect of cognitive workload, and interaction effect between 

physical and cognitive workload. To better illustrate differences between conditions, 

normalized values of four physiological features are shown as graphs: mean heart rate 

(Fig. 3.2), SCR frequency (Fig. 3.3), respiratory rate variability (Fig. 3.4) and final skin 

temperature (Fig. 3.5). 
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Table 3.3: Mean values of normalized psychophysiological features in all task conditions. 

Statistically significant differences from baseline value are indicated with bolded values 

and asterisks: * for p < 0.05, ** for p < 0.01 and *** for p < 0.001. Underch. = 

underchallenging, ch. = challenging, overch. = overchallenging. 

Low physical workload High physical workload 
Underch. Ch. Overch. Underch. Ch. Overch. 

mean heart rate (%) -1.6 -1.6 -2.4* 10.2*** 3.9** 4.7*** 
SDNN (%) -3.2 -12.3** -7.4* -17.1*** -12.3** -8.8** 

RMSSD (%) -2.7 2.3 4.0 -23.9*** -10.2 -4.1 
pNN50 (%) 12.2 29.7 54.1 -26.6** 27.1 57.1 

LF/HF ratio (%) 17.0 14.3 13.6 42.9* 21.0 29.9 
total HF power (%) -17.2** -6.4 -6.1 -22.2** -8.5 1.9 
total LF power (%) -8.7* -7.4 3.8 3.1 3.7 16.0 

mean SCL (μS) 0.0 0.02 0.4 1.0*** 0.7** 1.0*** 
SCR frequency (%) 49.2 133.7* 175.8** 236.2*** 340.7*** 368.9***

mean SCR amplitude (%) 40.0* 23.0 22.8 21.0 20.8 28.1 
mean respiratory rate (%) 13.7*** 15.8*** 15.2*** 17.4*** 24.0*** 22.5*** 

respiratory rate variability (%) -14.3** -28.6*** -11.1** -6.0* -14.4** 4.6 

final skin temperature (%) -0.3 -0.1 -1.3* -0.7 -0.1 -1.5* 
 

Table 3.4: p-values and partial η2 for main effect of physical workload, main effect of 

cognitive workload, and interaction effect between physical and cognitive workload. 

  physical workload cognitive workload interaction 

  p partial η2  p partial η2  p partial η2  

mean heart rate <0.001 0.64 0.008 0.25 <0.001 0.38 
SDNN 0.15 0.12 0.60 0.03 0.47 0.18 

RMSSD 0.08 0.17 0.031 0.21 0.024 0.20 
pNN50 0.22 0.10 0.013 0.25 0.80 0.02 

LF/HF ratio 0.53 0.03 0.64 0.03 0.34 0.06 
total HF power 0.61 0.02 0.064 0.18 0.94 0.00 
total LF power 0.53 0.03 0.043 0.34 0.44 0.10 

mean SCL 0.008 0.34 0.38 0.06 0.24 0.08 
SCR frequency 0.067 0.18 0.048 0.20 0.66 0.05 

mean SCR amplitude 0.94 0.00 0.060 0.02 0.39 0.04 
mean respiratory rate 0.82 0.00 0.29 0.05 0.38 0.04 

respiratory rate variability 0.45 0.03 0.004 0.43 0.88 0.01 

final skin temperature 0.45 0.04 0.048 0.35 0.61 0.02 
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Post-hoc tests for cognitive workload and interaction effects found the following 

differences:  

‐ mean heart rate: significant difference between the underchallenging condition 

and the other two conditions in the case of high physical workload only (p < 0.001 

in both cases); 

‐ RMSSD: significant difference between underchallenging and challenging 

conditions in the case of high physical workload only (p < 0.001); 

‐ pNN50: significant difference between underchallenging and overchallenging 

conditions (p = 0.047);  

‐ total LF power: significant difference between challenging and overchallenging 

conditions (p = 0.040); 

‐ SCR frequency: significant difference between the underchallenging condition and 

the other two conditions (p < 0.05 in both cases); 

‐ respiratory rate variability: significant difference between challenging and 

overchallenging conditions (p = 0.002); 

‐ final skin temperature: significant difference between the overchallenging 

condition and the other two conditions (p < 0.05 in both cases).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2: Normalized values of mean heart rate in different conditions. 
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Figure 3.3: Normalized values of SCR frequency in different conditions. 
 

Figure 3.4: Normalized values of respiratory rate variability in different conditions. 
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Figure 3.5: Normalized values of final skin temperature in different conditions. 

 
 

3.2.6   Discussion 
 

First of all, the biomechanical measurements show that subjects were not equally 

physically active in the three cognitive difficulty levels. The highest physical activity was 

during the underchallenging condition. In a way, this is logical since the measures taken 

to affect cognitive workload also affect the task kinematics. This in turn affects forces and 

physical workload. Thus, it is necessary to be cautious when comparing physiological 

responses to different difficulty levels. Despite a main effect of cognitive workload, the 

change in a physiological response may actually be caused by the increased physical 

workload associated with task difficulty. This is most likely the case for mean heart rate, 

RMSSD, pNN50 and the LF/HF ratio, which show the highest deviation from baseline 

during the underchallenging high physical workload condition, where physical workload 

was by far the highest (as seen, for example, from the mean absolute force 

measurements). 

 

Both mean SCL and SCR frequency are also affected by physical workload, as seen in 

Table 3.4. The main effect of physical workload on SCR frequency is not quite significant 

(p = 0.067), but nonetheless it is clear that skin conductance is affected by physical 

activity. This is not surprising since skin conductance changes as a result of sweating. It 

is, however, surprising that there was no significant effect of cognitive workload on mean 

SCL even though SCL is a generally well-established indicator of cognitive workload 
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[12]. One possibility is that the effect of physical workload on SCL masks the effect of 

cognitive workload. An alternative possibility is that, as a result of habituation, the effect 

of cognitive workload on SCL fades within the five-minute period while the effect of 

physical workload does not. There is, however, a significant effect of cognitive workload 

on SCR frequency that does not appear to be due to higher physical workload in the 

underchallenging condition since SCR frequency is higher in the challenging and 

overchallenging conditions. Thus, SCR frequency may have been an effective indicator of 

cognitive workload if the effect of physical workload had been better-controlled. 

 

There was, however, no significant effect of physical workload on either respiration or 

skin temperature, suggesting that these are more robust to changes in physical workload. 

Both respiratory rate variability and final skin temperature differentiated between 

challenging and overchallenging conditions, with final skin temperature additionally 

differentiating between underchallenging and overchallenging conditions as well. Skin 

temperature in particular seems the least affected by physical workload. While both mean 

respiratory rate and respiratory rate variability (Figure 3.4) show visible if 

nonsignificant differences between low and high physical workload, final skin 

temperature, on the other hand, exhibits much smaller differences between low and high 

physical workload (Figure 3.5). Respiratory rate variability is lower than baseline for all 

task conditions, but is lowest for the challenging condition (Figure 3.4). A possible 

explanation is that it decreases as cognitive workload increases, but increases again as the 

challenge becomes too much to handle. Respiratory rate variability is known to decrease 

as a result of cognitive workload [60], confirming part of this explanation. Final skin 

temperature only significantly decreases from baseline in the overchallenging condition, 

not in the other conditions (Figure 3.5). Thus, it may be a good indicator of when a 

subject is overworked. Previous studies have found decreases in skin temperature as a 

result of tension and anxiety [65], supporting this explanation. However, other studies 

have found skin temperature to decrease as a result of cognitive workload [64]. If skin 

temperature decreases due to cognitive workload, it should also decrease during the 

challenging condition. One possibility is that a certain threshold of cognitive workload 

must be exceeded before skin temperature decreases. 

 

Though heart rate has been used as a psychophysiological indicator in many studies, 

results of this study suggest that, in haptic interaction, it is primarily influenced by 
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physical workload. Mean heart rate showed a large main effect of physical workload 

(partial η2 = 0.64), and by far the greatest increase was during the underchallenging high 

physical workload condition where the exerted mean absolute force was also the greatest. 

Similarly, RMSSD, pNN50 and the LF/HF ratio showed the largest deviation from 

baseline in the underchallenging high physical workload condition. The main effect of 

cognitive workload on total HF power was nearly significant (p = 0.067) and may have 

been able to differentiate between the underchallenging and the other two conditions, but 

this result is fairly unreliable. It appears that the increase in heart rate and HRV due to 

physical workload can completely overshadow any psychological effects. Since the 

effects of physical workload on heart rate have been extensively studied, a possible 

solution in future studies would be to collect information about physical workload from 

sensors built into the haptic robot. This information could be used in conjunction with a 

physiological model to provide an estimate of the effects of physical workload on heart 

rate. Such a model has already been developed for use in robot-assisted lower extremity 

rehabilitation [97], so it should be possible to develop a similar model for the upper 

extremities.  

 

To sum up briefly, both heart rate and skin conductance are significantly affected by 

physical activity. At high levels of physical activity, the effects of cognitive workload on 

these two responses may be completely obscured. Respiration and especially peripheral 

skin temperature are less noticeably affected and are likely to be more effective at a 

higher level of physical activity. Considering that the four signals can be used to 

discriminate between different levels of cognitive and physical workload, they appear to 

be sufficient for the goal of the dissertation: to keep the patient moderately challenged 

during rehabilitation and keep him/her from becoming bored (very low cognitive 

workload) or frustrated (very high cognitive workload). They are also unobtrusive 

compared to additional sensors that might provide more detailed information but are 

unlikely to be accepted by patients in clinical practice (e.g. electroencephalography). 

However, these findings are valid only on the level of statistical analysis and only for 

healthy subjects. An analysis of psychophysiological responses in hemiparetic stroke 

patients is presented in the next section. 
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3.2.7  Others' contributions 
 

The physical model of the inverted pendulum task and the experiment protocol were 

designed with the assistance of my advisor, Matjaž Mihelj. The Simulink drivers and 

blocks for HapticMaster control were developed by a number of other colleagues in the 

laboratory. 

 

 

3.3 The effects of stroke 
 

3.3.1   Tasks 
 

Though very useful for the analysis of the effects of physical workload in section 3.2, the 

inverted pendulum task is not commonly used in rehabilitation. The analysis of the effects 

of stroke, however, should focus primarily on a task suitable for upper extremity 

rehabilitation. This task should ideally have at least two difficulty levels so that the 

differences in psychophysiological responses to different difficulty levels can be 

observed. Such a task has already been developed at the Laboratory of Robotics and is 

described in section 3.3.1.1. 

 

The virtual rehabilitation task combines both physical and cognitive workload. While 

either element can be reduced, it is impossible to remove either physical or cognitive 

work from the task. In order to evaluate psychophysiological responses to differently 

demanding tasks, it was thus decided to also include a task with physical but minimal 

cognitive workload and a task with cognitive but no physical workload. For the first, a 

simple physical control task was used and described in section 3.3.1.2. For the second, a 

classical psychological task was used and described in section 3.3.1.3. By analyzing the 

differences between these tasks, it is possible to get an idea of how subjects who have 

experienced a stroke respond to cognitive and physical challenges. Hypothesis H2.2 can 

be tested using the cognitively demanding task, hypothesis H2.3 can be tested using the 

virtual rehabilitation task, and hypothesis H2.1 can be tested by having both controls and 

stroke patients perform all of these tasks. 
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3.3.1.1   Virtual rehabilitation task 

 

Developed by colleagues at the Laboratory of Robotics at the University of Ljubljana, the 

virtual rehabilitation (VR) task combines reaching and grasping exercise. A photo of a 

subject performing the task using the HapticMaster robot is shown in Figure 3.6. In the 

centre of the screen, there is a table sloped toward the subject. At the beginning of the 

task, a ball appears at the top of the slope and starts rolling downward. The subject’s goal 

is to catch the ball before it reaches the lower end of the table. Once the ball is grasped, a 

basket appears above the table. The subject must then hold the ball and place it in the 

basket. Once the ball is dropped into the basket or falls off the table, another ball appears 

at the top of the table, the basket disappears and the task continues. A quiet applause is 

also played over the speakers when the ball is successfully placed in the basket. The 

different steps of the task are shown in Figure 3.7. The robot allows the subject to feel 

each virtual item. 

 

The robot offers various modes of haptic support. If a subject is unable to perform any or 

all of the following, the robot will actively guide his or her arm in order to move left or 

right and reach the ball, squeeze the grasping device in order to grasp the ball, and/or lift 

the ball into the basket. For reaching support (left-right movements), the robot pulls the 

subject’s hand toward the ball with a maximum force of 10 N. The subject can thus 

reinforce or resist the robot’s guiding force with his or her active arm movement. If the 

subject does not resist the robot, the reaching support system will reach the ball in a 

majority of cases (but may miss the ball if the starting position of the subject’s hand is 

sufficiently far away from the ball). For grasping support, the robot automatically grasps 

the ball as long as the subject’s hand is in the correct position, regardless of whether the 

subject is squeezing the grasping module. For lifting support, the subject’s hand is pulled 

along a predefined trajectory [98] toward the basket. The subject can reinforce or resist 

the guiding force with his or her active arm movement. If the subject does not resist 

lifting support or release the ball, the ball will always be successfully placed into the 

basket by the lifting support system.  
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Figure 3.6: A subject performing the virtual rehabilitation task using the HapticMaster (1) 

and grasping device (2) while his/her arm is supported by cuffs (3). The screen (4) shows 

a sloped table, a ball (5) and a basket (6). 

 

 
Figure 3.7: The virtual rehabilitation task. A ball appears on the top of a sloped table (1) 

and begins to roll down. The subject then catches it (2) and carries it toward a basket that 

appears above the table (3). Once the ball is above the basket (4), the subject drops it into 

the basket and a new ball appears. 
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A second, harder version of the task (henceforth referred to as the harder VR task) was 

also designed. Meant to be more cognitively demanding but equally physically 

demanding, the harder VR task had inverted left-right controls. If the subject moved his 

or her arm to the left, the virtual hand on the screen moved right (and vice-versa).  

 

Two performance features were calculated for the VR task. They were the percentage of 

caught balls and percentage of balls placed into the basket (calculated as percentage of 

all balls in the period, not as percentage of caught balls). The percentage of caught balls 

was calculated only for subjects who did not receive catching support from the robot 

while the percentage of balls placed into the basket was calculated only for subjects who 

received neither catching nor lifting assistance. 
 

3.3.1.2   Physical control task 

 

In addition to the VR task, it was decided to also evaluate psychophysiological responses 

to a less complex task. To this end, a physical control task was introduced where subjects 

moved the robot left and right at a moderate speed while nothing was shown on the 

display and all force feedback was disabled. While both the physical control task and the 

VR task require reaching and some degree of coordinated movement, the physical control 

task is less complex and less cognitively demanding since it does not require lifting 

movements, does not provide visual stimuli and is not timed. Thus, since 

psychophysiological responses are strongly influenced by cognitive workload, the 

physical control task should evoke weaker psychophysiological responses. 
 

3.3.1.3   Stroop word-colour interference task 

 

In addition to the VR task, subjects were presented with a task that required only 

cognitive effort: a variant of the Stroop word-color interference task [25] that has been 

extensively studied by psychologists. Subjects were shown a word on the screen. The 

word was either “red”, “blue” or “green”. The color of the letters was also red, blue or 

green – but the word and the color of the letters did not always match. Subjects were 

given a keypad with three grey buttons, with the words “red”, “blue” and “green” written 

above the buttons (Figure 3.8). They were told to ignore the meaning of the word and, as 
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quickly as possible, press the button corresponding to the color with which the word was 

written. Once a button was pressed, a new word was generated. Occasionally, however, 

the word was generated in black color. In this case, subjects had to push the button 

corresponding to the meaning of the word rather than its color. The words were randomly 

generated with the following probabilities:  40% chance of word with matching color, 

40% chance of word with different color, 20% chance of word in black.  

 

Two performance features were calculated for the Stroop task: percentage of correct 

answers (i.e. correctly chosen colors) and the mean answer time (the interval from the 

moment a color was displayed to the moment the subject pressed any button). 

 

 
Figure 3.8: The keypad used for the Stroop word-colour interference task. The words 

‘red’, ‘green’ and ‘blue’ are written above the buttons in Slovenian. During the task, the 

keypad was strapped to the subject’s leg so that it would stay in one place. 

 

3.3.2   Measurement protocol 
 

The experiment was conducted in a dedicated room at the University Rehabilitation 

Institute of the Republic of Slovenia. The room and equipment are shown in Figure 3.9. 

Three people were present: the subject, experiment supervisor and occupational therapist. 

Upon arrival, subjects were informed of the purpose and procedure of the experiment. 

They signed an informed consent form and filled out the BAS/BIS questionnaire. Then, 

they were seated in front of the robot. The affected arm was strapped into the cuffs and 
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grasping device, and the physiological sensors were attached. The normal VR task was 

demonstrated, and subjects were allowed to practice it briefly. Each subject practiced for 

at least two minutes, and more time was given to any subject who had not yet attained a 

basic level of proficiency. During practice, the three modes of support were set manually 

for each subject. Then, subjects went through the following procedure: rest period, 

physical control task, rest period, normal VR task, harder VR task.  

 
After the harder VR task, the keypad used for the Stroop task was strapped to the 

subject’s upper leg so that it would not fall off (Figure 3.8). The Stroop task was 

explained and demonstrated, and at least two minutes were once again given to practice. 

Then, subjects went through a three-minute rest period followed by the Stroop task. They 

pushed the buttons on the keypad with the thumb of their unaffected hand. The skin 

conductance and skin temperature sensors were not removed, but remained on the other 

fingers of the unaffected hand. While this may have affected measurements, it was 

necessary since many subjects were unable to push buttons with the affected hand. After 

the Stroop task, the experiment was concluded and a brief informal interview was 

conducted.  

 

Each task and rest period lasted three minutes, and the SAM was presented on the screen 

after each period. Subjects verbally made a selection for both arousal and valence scales. 

Subjects remained quiet during rest, as these periods served as baseline periods for 

physiological measurements. The periods were shortened from five minutes (section 3.2) 

to three in order to shorten the overall experiment; despite the frequent rest periods, 

patients in pretesting found the entire experiment to be too long and tiring with five-

minute periods. 

 

While the experiment supervisor and occupational therapist maintained silence in the 

room during most baseline and task periods, the therapist was permitted to provide verbal 

guidance and encouragement during the VR task. This was unavoidable, as some subjects 

in the stroke group required guidance to perform the task without becoming excessively 

frustrated. To establish similar conditions, the therapist also provided verbal guidance to 

the control group. If guidance was not necessary, encouraging statements were provided 

to ensure that all subjects were verbally stimulated. 
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Figure 3.9: The room where the experiment took place. The task was displayed on a large 

screen using backprojection (middle left). The subject (center, blurred for anonymity) sat 

in front of the screen. The robot (not visible) was situated between the subject and screen. 

A metal frame (top) supported the screen, speakers and gravity compensation motors. The 

experimenter (lower right) sat to the side and had access to a secondary task display 

screen (lower center) as well as a separate computer used for physiological recordings 

(lower left). 

 

3.3.3   Participants 
 

The stroke group consisted of twenty-three subjects (age 51.0 ± 13.3 years, age range 23-

69 years, 16 males, 7 females). They were diagnosed with subarachnoid hemorrhage (4 

subjects), intracerebral hemorrhage (9 subjects) or cerebral infarction (10 subjects). As a 

result of the stroke, 13 suffered from hemiparesis of the left side of the body and 10 

suffered from hemiparesis of the right side of the body. All were right-handed before the 

stroke. All were undergoing motor rehabilitation at the University Rehabilitation Institute 

of the Republic of Slovenia. Time between stroke onset and the experiment session was 

154 ± 79 days. A majority of the group had received secondary stroke prevention drugs 

(including antihypertensives) prior to participation in the study.  Three had received 

insulin due to diabetes (but had no diabetes-related complications), two had received 

ischemic heart disease treatment drugs, five had received SSRIs, three had received low 
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doses of antiepileptics (preventive doses following aneurysm surgery), three had received 

short-acting sedatives and one had received a low dose of antipsychotics.  

 

A day before the session, subjects in the stroke group were tested with both the mini-

mental state examination (MMSE) [99] and the Functional Independence Measure (FIM) 

[100]. Score on the MMSE was 27.2 ± 3.6 (out of a possible 30). All but three subjects 

scored between 26 and 30. Of the remaining three, one scored 24 but was not excluded 

from the study since he was able to communicate and comprehend the tasks without 

problems. The other two subjects had lower scores due to dysphasia. These two were 

interviewed by a clinical expert and approved for participation in the study. Score on the 

FIM was 101 ± 13 (out of a possible 126).  

 

The control group consisted of twenty-three subjects (age 50.5 ± 12.6 years, age range 

24-68 years, 16 males, 7 females) with no major physical or cognitive defects. All were 

right-handed. To better match the control group and the stroke group, 13 controls 

performed the tasks with their left hand while 10 performed the tasks with their right 

hand. 

 

In the VR task, four subjects in the stroke group required reaching support, seven required 

grasping support, and eight required lifting support (with some subjects requiring multiple 

types of support). The control group did not receive any support from the robot. The two 

subjects with dysphasia were excluded from the Stroop task. 
 

3.3.4   Statistical methods 
 

Before describing the methods used to analyze the data, it should be mentioned that the 

analysis of most biomechanical features will not be presented here. The analysis was 

chiefly done by J. Ziherl and published as a separate research paper [101]. It is thus not 

part of this dissertation. Only one biomechanical feature is included here: total work 

(section 2.3.5), which allows the effects of physical activity to be illustrated. Similarly, 

the analysis of the BAS/BIS scales will not be presented here since it was chiefly 

performed by M. Milavec and has been submitted to the Slovenian journal Horizons of 

Psychology as a separate paper (Milavec et al., under review as of mid-2011). 
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The first step of the data analysis was to examine performance and total work during the 

two levels of the VR task and the Stroop task. For the two levels of the VR task, a mixed-

design ANOVA with one between-subjects factor (group: stroke or control) and one 

within-subjects factor (task difficulty: normal or harder VR task) was used for each 

feature. For the Stroop task, t-tests were used to compare the two performance features 

between groups. The goal of this step was to determine whether the control group 

performed better than the stroke group and whether performance during the harder VR 

task was worse than during the normal VR task.  

 

The second step of the data analysis was to compare nonnormalized values of 

psychophysiological features between baseline and task periods. This was done separately 

for each task in a mixed-design ANOVA with one between-subjects factor (group: stroke 

or control) and one within-subject factor (period type: baseline or task). The goal of this 

step was to determine whether baseline values of physiological features are different 

between the groups, whether each task causes significant psychophysiological changes 

and whether these changes are different between the stroke and control groups. 

 

The third step of the data analysis was to compare normalized values of 

psychophysiological features between the different task periods. The comparison of 

normalized values was done in a mixed-design ANOVA with one between-subjects factor 

(group: stroke or control) and one within-subjects factor (task type: physical control task, 

normal VR task, harder VR task and Stroop task). The goal of this step was to determine 

whether the different task periods cause different psychophysiological responses at an 

aggregate level. For instance, the harder VR task could evoke larger psychophysiological 

responses than the normal VR task since most subjects can be expected to find it more 

cognitively demanding.  

 

The fourth step of the data analysis was to correlate normalized values of 

psychophysiological features with normalized results of the SAM and with performance 

data. Spearman correlations were used in cases involving results of the SAM (where the 

data is ordinal). Pearson correlations were used in other cases. Valence and arousal were 

normalized by subtracting the baseline value prior to calculating correlations. The goal of 

this step was to analyze the connections between physiological and non-physiological 

responses. For instance, due to the large differences between subjects, it is entirely 
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possible that the ANOVAs performed in the previous step would show no significant 

difference between the normal and harder VR task. However, a correlation would show 

that the psychophysiological response to a task does depend on the subject’s arousal, 

valence or performance during the task. 

 

It should be noted that four subjects from the stroke group (including the two with 

dysphasia) and two from the control group reported no changes in valence or arousal 

during the experiment. Such a lack of changes in self-reported arousal is likely to be the 

result of a misunderstanding of the SAM. In fact, during the final informal interview, 

three of these six subjects mentioned how active they were during the tasks compared to 

the baseline period. Thus, these subjects’ SAM results were considered unreliable and 

discarded. 

 

The threshold for significance was set at p = 0.05. Due to space constraints, most results 

with p > 0.05 are not reported. For significant effects in ANOVA, effect size for a factor 

is also reported as partial η2 (the proportion of total variability attributable to the factor, 

excluding other factors from the total nonerror variation [93]). The Sidak correction [94] 

for multiple comparisons was used for all post-hoc tests. The Huynh-Feldt correction [95] 

was used in cases of violations of sphericity in ANOVA. The Kolmogorov-Smirnov test 

with Lilliefors’ modification [96] was used to test for normality. 

 

3.3.5   Results 
 

3.3.5.1   Performance and work 
 

In the normal VR task, the stroke group caught 63% of all balls placed and placed 51% of 

all balls into the basket while the control group caught 84% of balls and placed 72% of 

balls into the basket. In the harder VR task, the stroke group caught 48% of balls and 

placed 36% of balls into the basket while the control group caught 51% of balls and 

placed 44% of balls into the basket. As previously stated, these percentages were 

calculated only for subjects who did not receive the relevant haptic support. 
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In the two levels of the VR task, there was a main effect of task difficulty (normal vs. 

harder task) on:  

‐ percentage of caught balls (p < 0.001, partial η2 = 0.66), 

‐ percentage of balls placed into the basket (p < 0.001, partial η2 = 0.61), 

‐ total work (p = 0.002, partial η2 = 0.20).  

There was also a main effect of group (stroke vs. control) on:  

‐ percentage of caught balls (p = 0.018, partial η2 = 0.14),  

‐ percentage of balls placed into the basket (p = 0.005, partial η2 = 0.20),  

‐ total work (p < 0.001, partial η2 = 0.36).  

There was an effect of interaction between task difficulty and group for: 

‐ percentage of caught balls (p = 0.003, partial η2 = 0.22),  

‐ percentage of balls placed into the basket (p = 0.004, partial η2 = 0.22),  

‐ total work (p = 0.001, partial η2 = 0.23).  

Post-hoc tests showed that both groups caught fewer balls (stroke: p = 0.002; control: p < 

0.001) and placed fewer balls into the basket (stroke: p = 0.02; control: p < 0.001) in the 

harder VR task. The control group performed less total work in the harder VR task than in 

the normal VR task (46.9 ± 17.4 J vs. 38.2 ± 13.7 J, p < 0.001) while the difference was 

not significant for the stroke group (30.1 ± 9.2 J vs. 30.5 ± 8.2 J). 

 

In the Stroop task, the control group had a higher percentage of correct answers (stroke: 

93.9 ± 5.6%; control: 97.9 ± 4.9%; p = 0.007) and lower mean answer time (stroke: 2.8 ± 

1.6 s; control: 2.0 ± 1.2 s; p = 0.016).  

 
3.3.5.2   Temporal changes of psychophysiological signals 

 

The usefulness of psychophysiological signals strongly depends on how quickly and how 

strongly the signals react to stimuli. The physiological signals of a typical control subject 

during baseline (rest), the physical control task and the normal VR task are shown in 

Figures 3.10, 3.11 and 3.12 in order to illustrate how quickly and how much the signals 

change. For skin conductance (Figure 3.10), an increase can be seen during tasks (with 

the signal responding to the beginning of the task within seconds), and this general 

increase is gauged by mean SCL. Additionally, a greater number of brief increases in the 

skin conductance signal appear during the two task periods – there is a higher SCR 
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frequency. For skin temperature (Figure 3.11), there is a slight decrease during the 

physical control task followed by a return to baseline as well as a larger decrease during 

the VR task (although temperature only begins decreasing approximately half a minute 

after the task begins). Heart rate (Figure 3.12) shows high variability during both baseline 

and task periods, but increases during tasks (though not as quickly as skin conductance). 

Respiratory rate is not shown since most subjects’ differences between baseline and task 

periods were obscured by the high variability of the signal. 

 

 
Figure 3.10: A typical subject’s skin conductance as a function of time during two 

baseline periods, the physical control task and the virtual rehabilitation task. The initial 

value was defined as zero. 

 

 
Figure 3.11: A typical subject’s skin temperature as a function of time during two 

baseline periods, the physical control task and the virtual rehabilitation task. 

 

 
Figure 3.12: A typical subject’s heart rate as a function of time during two baseline 

periods, the physical control task and the virtual rehabilitation task. 
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3.3.5.3   Baseline-task comparisons 
 

Comparison of absolute values of psychophysiological features between baseline and task 

periods was done separately for each task in a mixed-design ANOVA.  Table 3.5 shows 

differences between baseline and task for all four task periods and for both groups, as 

well as the main effect size of time period (baseline vs. task).   

 

Table 3.5: Differences between baseline and task (mean ± standard deviation) and main 

effect size of baseline-task. 

physical control task normal VR task harder VR task Stroop task 

stroke control p. η2 stroke control p. η2 stroke control p. η2 stroke control p. η2 

valence (scale 1-9) -0.4±1.0 0.1±0.6 0.00 -0.2±1.2 0.1±0.9 0.00 -0.5±1.6 -0.1±1.4 0.04 -0.2±1.4 0.1±0.7 0.00 

arousal (scale 1-9) 1.5±1.8 1.0±1.6 0.35** 1.5±1.9 2.4±1.4 0.59** 1.9±1.7 3.5±1.7 0.72** 1.0±2.1 1.6±1.9 0.31**

mean heart rate (bpm) 2.7±2.4 4.9±2.7 0.70** 4.2±3.8 6.6±5.3 0.59** 4.0±4.2 7.9±5.1 0.63** 2.6±2.2 7.2±7.9 0.43**

SDNN (% of baseline) 12±35 25±49 0.13* 12±34 15±41 0.04 8±34 27±58 0.08 -19±21 -7±26 0.27**

RMSSD (%) 10±46 -7±31 0.06 26±85 7±35 0.03 12±53 11±38 0.01 -3±24 -8±34 0.09 

mean resp. rate (bpm) 1.7±2.8 3.0±2.3 0.47** 2.1±2.9 2.4±2.8 0.39** 1.7±2.7 2.2±3.4 0.30** 2.6±2.0 3.6±2.3 0.69**

resp. rate var. (%) 76±115 20±73 0.05 45±117 64±98 0.11* 52±107 89±99 0.24** 26±92 15±79 0.01 

mean SCL (μS) 8±19 12±13 0.31** 25±32 24±21 0.47** 31±39 33±28 0.48** 22±31 22±21 0.43**

SCR frequency (%) 41±68 128±325 0.34** 91±136 82±148 0.57** 95±144 91±165 0.41** 172±456 164±351 0.65**

mean SCR amp.  (μS) -0.6±4.9 1.0±1.3 0.00 0.7±1.5 2.4±2.4 0.38** 0.8±1.4 1.7±1.9 0.37** 0.3±1.4 1.6±2.2 0.22**

final temperature (K) 0.2±0.6 -0.2±0.4 0.01 -0.3±0.6 -0.4±0.6 0.24** 0.2±0.4 -0.8±0.9 0.25** -0.1±0.8 -0.9±1.0 0.24**
bpm = beats per minute or breaths per minute. % = percentage of baseline value. μS = microsiemens. K = kelvin. 

p. η2 = partial eta-squared value for main effect of time period (baseline vs. task).  Bolded values and asterisks indicate significance of 

effect at p < 0.05 (*) or p < 0.01 (**). 

Main effect size of group (stroke vs. control) and interaction effects are listed separately in text.   

 

Significant effects of group (stroke vs. control) were found for:  

‐ arousal (partial η2 = 0.12 in physical control task and 0.11 in normal VR task; 

higher arousal in stroke group in both cases),  

‐ mean heart rate (partial η2 = 0.23 in physical control task, 0.18 in normal VR task 

and 0.15 in harder VR task; higher mean heart rate in stroke group in all cases),  

‐ SDNN (partial η2 = 0.26 in physical control task, 0.21 in normal VR task, 0.27 in 

harder VR task and 0.21 in Stroop task; lower SDNN in stroke group in all cases). 
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Significant effects of interaction between group and time period were found for:  

‐ arousal (partial η2 = 0.18 in harder VR task; the control group showed a larger 

increase in arousal),  

‐ mean heart rate (partial η2 = 0.16 in physical control task, 0.15 in harder VR task 

and 0.14 in Stroop task; the control group showed a larger increase in heart rate in 

all cases), 

‐ RMSSD (partial η2 = 0.17 in physical control task and 0.19 in normal VR task; the 

control group showed a smaller increase in RMSSD in both cases),  

‐ mean SCR amplitude (partial η2 = 0.12 in normal VR task and 0.15 in Stroop task; 

the control group showed a larger increase in SCR amplitude in both cases),  

‐ final skin temperature (partial η2 = 0.14 in harder VR task and 0.11 in Stroop task; 

the control group showed a larger decrease in skin temperature in both cases). 

 

In order to better illustrate some of the findings, Figures 3.13, 3.14, 3.15 and 3.16 show 

box plots of differences between baseline and task for four physiological features: mean 

SCL, final skin temperature, mean heart rate and mean SCR amplitude. A positive value 

represents an increase from baseline. On the box plots, the middle line represents the 

median, the upper and lower edges of the rectangle represent the 25th and 75th percentiles, 

and the whiskers represent the 10th and 90th percentiles.  

 

 
Figure 3.13: Changes in mean SCL as a response to different tasks. CT = physical control 

task, VR = normal virtual rehabilitation task, VR-hard = harder virtual rehabilitation task. 
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Figure 3.14: Changes in final skin temperature as a response to different tasks. CT = 

physical control task, VR = normal virtual rehabilitation task, VR-hard = harder virtual 

rehabilitation task. 

 

 
Figure 3.15: Changes in mean heart rate as a response to different tasks. CT = physical 

control task, VR = normal virtual rehabilitation task, VR-hard = harder virtual 

rehabilitation task. 

 
 

 
Figure 3.16: Changes in mean SCR amplitude as a response to different tasks. CT = 

physical control task, VR = normal virtual rehabilitation task, VR-hard = harder virtual 

rehabilitation task. 
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3.3.5.4   Comparison of normalized values between tasks 
 

The comparison of normalized values was done in a mixed-design ANOVA with one 

between-subjects factor (group: stroke or control) and one within-subjects factor (task 

type: physical control task, normal VR task, harder VR task and Stroop task). As the 

focus was primarily on differences between the physical control task and the two versions 

of the VR task, differences between the Stroop task and the other three task periods are 

not reported. 

 

Analysis of self-reported arousal found an effect of task type (p < 0.001, partial η2 = 

0.24). Post-hoc tests found higher arousal in the harder VR task than in the physical 

control task (p < 0.001) and the normal VR task (p < 0.001). There was also an effect of 

interaction between task type and group (p < 0.001, partial η2 = 0.18). Post-hoc tests 

found that the control group showed significant differences between the physical control 

task, the normal VR task and the harder VR task (p < 0.05 for all three pairwise 

comparisons), but that the stroke group showed no significant differences in arousal 

between these three tasks. 

 

Analysis of SDNN found an effect of task type (p < 0.001, partial η2 = 0.15). However, 

post-hoc tests found that the only significant differences were between the Stroop task 

and the other tasks. Similarly, analysis of RMSSD found an effect of task type (p = 0.031, 

partial η2 = 0.08), but post-hoc tests found no significant differences between the tasks. 

Analysis of respiratory rate variability found an effect of task type (p = 0.039, partial η2 

= 0.07), but post-hoc tests found no significant differences between the tasks. There was 

also an effect of interaction between task type and group (p = 0.024, partial η2 = 0.08). 

Post-hoc tests showed a difference between the physical control task and the harder 

rehabilitation task in the control group, but no difference in the stroke group. 

 

Analysis of mean SCL (Figure 3.13) found an effect of task type (p < 0.001, partial η2 = 

0.18). Post-hoc tests showed significant differences between all three tasks (p < 0.05 for 

all three pairwise comparisons). 

 

Analysis of mean SCR amplitude (Figure 3.16) found an effect of task type (p = 0.049, 
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partial η2 = 0.08), but post-hoc tests found no significant differences between the tasks. 

There was also an effect of group (p = 0.009, partial η2 = 0.17). 

 

Analysis of final skin temperature (Figure 3.14) found an effect of task type (p = 0.010, 

partial η2 = 0.10). Post-hoc tests found that temperature was lower in the normal VR task 

than in the physical control task (p = 0.010). There was also an effect of group (p = 0.001, 

partial η2 = 0.24) and an effect of interaction between task type and group (p = 0.005, 

partial η2 = 0.11). Post-hoc tests found that, in the stroke group, temperature in the normal 

VR task was lower than in both the physical control task and the harder VR task. In the 

control group, temperature in the harder VR task was lower than in the physical control 

task and the normal VR task. 

 

3.3.5.5   Correlations  
 

Table 3.6 shows significant correlations between different features for the control group 

while Table 3.7 shows significant correlations for the stroke group. It should be restated 

that all SAM results and all psychophysiological features were normalized. Furthermore, 

the number of subjects is listed next to correlations since some subjects' SAM results 

were excluded as described in section 3.3.4. 

 

Table 3.6: Significant correlations between different features for the control group. CT = 

physical control task, VR = virtual rehabilitation task. Correlation coefficients are 

Spearman’s (ρ) for all correlations involving the SAM (valence or arousal) and Pearson's 

(r) for all others. 

task feature 1 feature 2 p ρ or r N 
CT total work SCR frequency < 0.001 0.66 23 
VR arousal SCR frequency 0.004 0.60 21 
VR valence SCR frequency 0.046 0.44 21 
VR valence mean respiratory rate 0.051 0.43 21 
VR % of caught balls RMSSD 0.023 -0.49 23 

Stroop arousal SCR frequency < 0.001 0.81 21 
Stroop valence % of correct answers 0.043 0.46 21 
Stroop mean answer time respiratory rate variability 0.031 0.47 23 
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Table 3.7: Significant correlations between different features for the stroke group. CT = 

physical control task, VR = virtual rehabilitation task. Correlation coefficients are 

Spearman’s (ρ) for all correlations involving the SAM (valence or arousal) and Pearson's 

(r) for all others. 

task feature 1 feature 2 p r or r N 
CT arousal mean SCL 0.045 0.51 19
VR arousal percentage of balls placed    

into the basket 
0.029 0.66 19 

VR arousal SCR frequency 0.019 0.59 19 
VR valence percentage of caught balls 0.045 0.56 19 
VR valence percentage of balls placed    

into the basket 
0.047 0.61 19 

VR valence final skin temperature 0.017 0.62 19 

VR percentage of balls 
placed into the basket 

mean SCL 0.040 0.49 23 

VR total work mean SCL 0.021 0.50 23 
Stroop arousal final skin temperature 0.042 -0.54 19 
Stroop valence percentage of correct answers 0.016 0.65 19 
Stroop valence mean respiratory rate 0.026 0.59 19 
Stroop valence respiratory rate variability 0.045 -0.58 19 
Stroop mean answer time RMSSD 0.025 0.51 21 
Stroop mean answer time respiratory rate variability 0.044 0.47 21 

 
 

3.3.6   Discussion 
 

3.3.6.1   Stroop task 

 

In the Stroop task, where no physical activity was required, the expected responses to a 

cognitive task were noted in both the stroke and control groups: increased SCL (Figure 

3.13) [12], increased SCR frequency [57, 58], decreased final skin temperature (Figure 

3.14) [64], increased mean heart rate (Figure 3.15) [12, 13], decreased HRV [13, 14] and 

increased mean respiratory rate [13, 59] relative to baseline.  

 

There was a significant main effect of group on physiological responses. The stroke group 

showed higher mean heart rate and lower SDNN than the control group during both 

baseline and task periods, confirming the results of previous studies that have found 
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increased heart rate [87] and decreased HRV [23] after stroke. 

 

In the comparison of physiological features between baseline and task, there was also a 

significant interaction effect. No decrease in final skin temperature from baseline to task 

was noted in the stroke group (Figure 3.14), and the control group showed a larger 

increase in mean heart rate than the stroke group (Fig. 3.15). This shows that the stroke 

group exhibits different physiological responses even to a cognitive task with no physical 

activity.  

 

3.3.6.2   Comparison of normalized values between tasks 

 

Mean SCL was the only feature that showed a significant difference between the physical 

control task, the normal VR task, and the harder VR task (Figure 3.13). Additionally, it 

showed no significant effect of group or group-task interaction. Since skin conductance is 

a well-documented indicator of arousal [12, 57, 58] and also showed large, rapid changes 

in this study (Figures 3.10 and 3.13), it seems to be the most effective indicator of 

physiological differences between difficulty levels in this task. However, another question 

needs to be answered to ensure reliability. Since the harder VR task was always 

performed after the normal VR task, was there an influence of task order? In other words, 

would skin conductance have kept increasing even if the normal VR task had been 

followed by an easier task? At the end of a task and beginning of a baseline period, skin 

conductance decreases again (Figure 3.10). Additionally, a qualitative examination of the 

recorded signals showed that most subjects’ (N = 20 for patients, N = 21 for controls) 

skin conductance reached a plateau within approximately a minute and then stayed at that 

plateau or even decreased slowly. Such a plateau can be seen for both task periods in 

Figure 3.10, and a slow drift can be observed for the VR task in the same figure. 

However, some subjects (N = 3 for patients, N = 2 for controls) did show a constant rise 

in skin conductance throughout the VR task, so the influence of task order cannot be ruled 

out. 

 

Another interesting feature is final skin temperature, which showed significant task-group 

interaction effects. In the stroke group, it decreased from baseline during the normal VR 

task but was actually higher than baseline in the harder VR task (Figure 3.14). In the 
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control group, however, the greatest decrease was in the harder VR task. This could be 

explained by a transient nature of skin temperature changes [63]. In several subjects, skin 

temperature began to return to baseline levels toward the end of a task period, thus 

suggesting that skin temperature will return to baseline after several minutes’ exposure to 

a constant stimulus. This can be seen in the physical control task in Figure 3.11. The 

control group likely does not find the normal VR task to be difficult (in the final informal 

interview, many stated that they found it too easy) and thus shows a larger decrease in 

temperature during the harder VR task where subjects need to focus more. The stroke 

group, however, is already challenged by the normal VR task. If the harder VR task is not 

much more challenging, temperature may return to baseline. An alternative explanation 

could be that the relationship between workload and skin temperature may not be 

monotonic. While the inverted pendulum study in section 3.2 found that skin temperature 

decreases as workload increases, it is possible that temperature increases again at a very 

high level of workload, much as respiratory rate variability did in section 3.2. A final, 

third possible explanation is that the harder VR task may be so difficult that some 

subjects in the stroke group simply give up and no longer try hard. This was also noted in 

the informal interviews. 

 

One factor that may have blurred differences between the two VR tasks was the verbal 

assistance of the occupational therapist. In the harder VR task, the stroke group may have 

relied on the therapist more than the control group. Nonetheless, it was impossible to 

carry out the study without the therapist’s verbal advice since several subjects in the 

stroke group needed guidance to perform the task properly.  

 

3.3.6.3   Correlations – arousal, valence, performance and work 
 

In both groups, valence was correlated with task success (percentage of correct answers) 

in the Stroop task. However, only the stroke group showed a correlation between valence 

and task success in the VR task (percentage of balls placed into the basket). A possible 

explanation is that the stroke group finds the task challenging and is thus pleased by 

success while the control group does not find the task difficult and is thus less concerned 

about performance.  
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In the VR task, the stroke group’s arousal was correlated with the percentage of balls 

placed into the basket. The lack of a correlation between arousal and performance in the 

control group could once again be explained by the fact that control subjects likely did 

not find the task to be difficult. 

 

3.3.6.4   Correlations – arousal and physiological features 
 

Looking first at the Stroop task, which requires no physical effort, there was a significant 

correlation between self-reported arousal and SCR frequency in the control group. This is 

in agreement with previous studies that have found SCR frequency to be a good indicator 

of arousal [57, 58]. Surprisingly, there was no significant correlation between arousal and 

SCR frequency in the stroke group. There was, however, a correlation between arousal 

and final skin temperature. While this is also in agreement with studies that found 

connections between skin temperature and cognitive workload [64], it is interesting that 

neither group shows both correlations.  

 

In the VR task, both groups showed a correlation between arousal and SCR frequency. 

This raises the question of why the stroke group showed a correlation between arousal 

and SCR frequency in the VR task, but not the Stroop task. Additionally, in the physical 

control task, neither group showed a significant correlation between SCR frequency and 

arousal. It is possible that, during a task that requires only physical workload, SCR 

frequency is not a good measure of arousal. Still, of all tested features, SCR frequency 

appears to be the most reliable indicator of self-reported arousal.  

 

Mean SCL, the only physiological feature that showed a significant difference between 

the different tasks, was only correlated with arousal in the physical control task (and only 

for the stroke group). 

 

3.3.6.5   Correlations – valence and physiological features 
 

The stroke group’s valence was correlated with mean respiratory rate and respiratory 

rate variability in the Stroop task and with final skin temperature in the VR task. 

Evidence does exist for connections between respiratory variability and anxiety [62] as 
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well as between skin temperature and anxiety [65]. However, respiratory rate has mainly 

been associated with arousal and cognitive workload. Similarly, the control group’s 

valence was correlated with SCR frequency, which is a documented indicator of arousal 

rather than valence.  

 

Responses of the autonomic nervous system appear to be better at indicating arousal than 

valence. This is to be expected. Skin conductance is regulated exclusively by the 

sympathetic branch of the autonomic nervous system and is thus poor at distinguishing 

different levels of valence [41]. Connections between heart rate and valence are, at the 

moment, controversial (see Peter and Herbon [41] for examples). Similarly, while some 

studies have reported a connection between skin temperature and tension/anxiety, others 

have found that skin temperature is also primarily regulated by the sympathetic branch of 

the autonomic nervous system [63] and a better indicator of arousal. Respiratory 

variability may be an indicator of valence, but this is a complex issue since studies have 

found different respiratory variability responses to different negative emotions [62]. 

 

3.3.6.6   Correlations – performance, work and physiological features 
 

For the control group, there was a correlation between HRV and percentage of caught 

balls in the VR task. The lower the RMSSD, the more balls the subject caught. Since 

decreases in HRV have been linked to increased cognitive workload [13, 14], it is 

probable that subjects who concentrated harder also performed better. 

 

Similarly, a correlation was found between the control group’s mean answer time and 

respiratory rate variability in the Stroop task. Since decreases in respiratory variability 

have been linked to increased cognitive workload [60], it is again likely that subjects who 

focused harder were able to answer faster. 

 

In the physical control task, the control group showed a correlation between SCR 

frequency and total work. This may indicate an influence of physical activity on skin 

conductance. Such an influence is expected (exertion would cause sweating), but would 

likely make it more difficult to separate the physiological effects of cognitive and 

physical workload. 
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For the stroke group, mean answer time in the Stroop task was also correlated with HRV 

(RMSSD) and respiratory rate variability. The reasoning for this is identical to the 

reasoning above for the control group. In the VR task, mean SCL was correlated with the 

percentage of balls placed into the basket. Although no significant correlation was found 

between arousal and mean SCL, skin conductance is a known indicator of arousal, and 

arousal is also significantly correlated with the percentage of balls placed into the basket. 

Mean SCL was also correlated with total work. This may also indicate an influence of 

physical activity on skin conductance. 

  

3.3.6.7   Study limitations 
 

Three limitations of the study should be highlighted: limitations of self-report measures, 

lack of task order randomization, and potential physiological effects of drugs. 

 

First, the study found some connections between self-report measures and physiological 

responses that were at odds with previous research. For instance, correlations were found 

between valence and skin conductance even though skin conductance has been shown to 

be almost exclusively affected by arousal. Additionally, there were some discrepancies 

between physiological and self-report measures. However, these issues are not as 

problematic as they may appear. Several other studies have found only weak associations 

between physiological responses and self-reported emotions [82]. Some studies even 

found that subjects are sometimes not aware of their own emotions or are simply 

unwilling to report them [83]. This was noted in this study as well. Several subjects 

commented that they found certain tasks to be highly engaging, but did not report any 

increase in arousal on the SAM. Others reported the same valence for the entire session 

despite obvious frustration and annoyance (expressed by, for example, cursing and 

annoyed facial expressions). Thus, imperfect connections between self-report measures 

and psychophysiological responses should be taken not only as a limitation of this 

specific study, but also as an unavoidable facet of research in human-robot interaction.  

 

Second, the order in which tasks were performed was not randomized. Thus, there may 

have been an influence of task order on features such as mean SCL and final skin 

temperature. While it is true that a fully randomized task order would have been 
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preferable from a methodological viewpoint, it was also known in advance that the 

number of subjects would be limited. As stroke patients are already likely to exhibit large 

intersubject variability due to impairments of cognitive and motor ability, it was decided 

in the planning phase to avoid task order randomization since it would further increase 

variability and potentially obscure important results. The decision was thus made for 

purely practical reasons.   

 

Finally, several subjects had received drugs that may have affected psychophysiological 

responses. For instance, sedatives have been shown to affect skin conductance [102]. 

Antiepileptics and antipsychotics may have also had an effect. There may have been an 

influence of secondary stroke prevention drugs, but since these are commonly used in 

stroke rehabilitation, their effects cannot be avoided and could be taken as inherent in that 

subset of the population. 

 

3.3.7  Others' contributions 
 

Matjaž Mihelj and Marko Munih helped design the experiment protocol and oversaw the 

study. The ball-catching scenario and the HapticMaster control algorithms were 

programmed by Jaka Ziherl and Andrej Olenšek. Maja Milavec helped select and prepare 

the questionnaires. Nika Goljar, MD, of the University Rehabilitation Institute oversaw 

the study at the Institute and selected suitable patients. Metka Javh, Janja Poje and Julija 

Ocepek were the occupational therapists who guided the patients during the experiment 

sessions and ensured their safety.  

 

 

3.4 Summary of findings 
 

The two studies described in this section separately analyzed the effects of physical 

activity on psychophysiological responses (by having subjects perform the same task at 

different levels of physical and cognitive workload) and the effects of stroke on 

psychophysiological responses (by having stroke and control groups perform the same 

tasks). However, the two studies did not identify a clearly preferable psychophysiological 

signal.  
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The first study found that respiration and skin temperature were fairly robust with regard 

to physical activity. The second study, on the other hand, found few significant results for 

respiration and showed that changes in skin temperature are much smaller after a stroke. 

Furthermore, while the second study found skin conductance to be the most informative 

(with regard to both correlations and differences between different conditions), the first 

study noted an important influence of physical activity on mean SCL and, to a lesser 

degree, on SCR frequency. Thus, it appears that the two factors influence different 

psychophysiological responses. Both studies, however, agree that only limited 

psychophysiological information can be gleaned from heart rate during motor 

rehabilitation since it is significantly influenced by both physical activity and stroke. 

Nonetheless, heart rate can be useful in rehabilitation since the patient also should not be 

physically overworked. 

 

Having found that all of the used psychophysiological responses are, to some degree, 

affected by either physical activity or stroke, it was decided to nonetheless continue with 

the second part of the dissertation: data fusion and biocooperative control. However, it 

was important to keep in mind that data fusion would likely be more difficult in stroke 

patients than in healthy controls due to the effects of stroke. Furthermore, the effects of 

physical activity would have an effect on data fusion in all subjects. After these two 

studies, however, it was not yet possible to know whether the physical activity would 

make data fusion more difficult by masking responses to psychological stimuli. Another 

possibility was that, since the overall goal was to determine how suitable the task is for 

the patient, the effects of physical activity would contribute additional information 

regarding task suitability (a heart rate of 120 beats per minute, for instance, should be 

avoided regardless of its cause).   
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4 Data fusion and biocooperative control 
 
 
 

4.1 Introduction 
 

Having performed the statistical analysis of psychophysiological responses in section 3, 

the next step was to implement data fusion and biocooperative control. Specifically, the 

overall goal was to determine how suitable the rehabilitation task currently is for the 

patient and then adjust task difficulty accordingly in order to make the experience better 

for the patient. This is, however, not a trivial goal. There has been a long history of 

researchers using psychophysiological measurements to try to identify psychological 

states. However, despite a vast body of literature available on the subject, there is still no 

universally accepted set of rules that would translate physiological data to psychological 

states. Aside from theoretical limitations to inferring significance from 

psychophysiological data [35], there are entirely practical disagreements among 

psychologists – for instance, whether the subject’s psychological state can be classified 

into one of several basic emotions (anger, sadness, fear, surprise, happiness…) [36] or 

whether it is defined with multiple independent variables such as arousal and valence 

[37]. Furthermore, while valence and arousal can be defined as continuous variables, 

another possibility is to define arousal-valence quadrants: low arousal/positive valence, 

low arousal/negative valence, high arousal/positive valence and high arousal/negative 

valence.  

 

Though no universal set of rules for fusion of psychophysiological measurements 

currently exists, it is possible to look at all the work that has been done and identify some 

of the most promising strategies. Thus, it was decided to review psychophysiological 

studies performed in the last ten years, examine all those dealing with the fusion of 

autonomic nervous system responses, and implement some of the most promising data 

fusion methods. The review also included those studies that use psychophysiological 
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measurements as a form of biofeedback: to make changes to the environment around the 

subject in response to psychophysiological changes. This is important since 

biocooperative control is, in essence, psychophysiological biofeedback applied to 

rehabilitation robotics.  
 

Figure 4.1 shows the general process of measuring, interpreting and using autonomic 

nervous system responses in psychophysiology. Three of these steps (signal recording, 

feature extraction and normalization) were already described in section 2 and utilized in 

section 3. A review of the remaining three steps (dimension reduction, 

classification/estimation and biofeedback) is presented in the next three subsections (4.1.1 

– 4.1.3). Finally, section 4.1.4 specifies the methods implemented for the dissertation. 

When choosing the methods to implement, the overall goal of the dissertation was also 

taken into account. While many psychophysiological studies try to distinguish many 

psychological states or emotions, the goal in motor rehabilitation is simply to keep the 

subject from becoming bored or stressed. Thus, a relatively simple psychological model 

should be sufficient.  

 

 
Figure 4.1: The general process of measuring, interpreting and using autonomic nervous 

system responses in psychophysiology. The blocks contain the human (top) and different 

steps to be performed. The data used at each stage is written on the left, while the 

numbers on the right show which section of this dissertation describes the different steps. 
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4.1.1   Dimension reduction 
 

When multiple psychophysiological signals are measured, it is possible that a very large 

number (20+) of features will be extracted from them. In data fusion, this can lead to the 

'curse of dimensionality': with a large number of features, an extremely large training data 

set is required to build an accurate classifier or estimator. If the training data set is too 

small, overfitting can occur – data fusion rules trained on a small data set may not 

generalize well to new data. Thus, it can be beneficial to reduce the number of features 

prior to data fusion. Some data fusion methods already incorporate dimension reduction 

(e.g. classification tree pruning, random forests – section 4.1.2.1.5), but several general 

dimension reduction techniques also exist.  

 

The techniques commonly used in psychophysiology can be roughly divided into three 

types: selection of individual features that ignores correlations between different features 

(section 4.1.1.1), projection of the feature space onto a lower-dimensional space (section 

4.1.1.2) and selection of individual features that takes correlations between different 

features into account (section 4.1.1.3). While the first and third type are mutually 

exclusive (with the third type having been found superior to the first as described in 

section 4.1.1.3), the second can be used together with either of the other two (as described 

in section 4.1.1.3). Other dimension reduction techniques that have seen limited use in 

psychophysiology are described in section 4.1.1.4. All these techniques can be used 

online. For online use, either the best features are selected in advance or the projection of 

the feature space is calculated in advance. Online data fusion then either uses the selected 

features or transforms the features using the precalculated projection rule.  

 

4.1.1.1   Individually best features 

 

A simple way to select the most appropriate features for data fusion is to rank the features 

according to a criterion of how much information each individual feature provides. Then, 

the best features (either a preselected number of features or all those who exceed a certain 

predefined threshold) are selected for data fusion. In psychophysiology, the most 

common way to rank individual features has been through ANOVA, correlations and chi-

square tests: statistical methods that find differences between different conditions (e.g. 
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between 'sad' and 'angry' emotions) or connections between different variables (e.g. 

between arousal and heart rate). Only features that show significant differences between 

conditions or significant connections between different variables can then be used in data 

fusion.  

 

ANOVA was used for feature selection by Wagner et al. [103], where 

psychophysiological features were ranked according to their p-value and a preselected 

number of most significant features were selected. ANOVA was also used by van den 

Broek et al. [75], where features with a p-value below 0.001 were selected. The chi-

square test was used for feature selection by Pour et al. [104], where the ten most 

significant features were chosen. Correlations with self-reported psychological variables 

were used for feature selection by Liu et al. [45] and Rani et al. [105], where only 

psychophysiological features that had an absolute correlation coefficient of at least 0.3 

were chosen. Correlations were also used to identify the most relevant 

psychophysiological features by Bailenson et al. [106], though this information was not 

later used in data fusion. 

 

The weakness of this approach is that it ignores correlations between different 

psychophysiological features. For example, if two features correlate highly with self-

reported arousal, they may also correlate highly with each other. In this case, it may make 

sense to only include one of the two features in data fusion since the other one would not 

provide enough additional information to justify its inclusion. 

 

4.1.1.2   Principal component analysis and Fisher’s projection 

 

Principal component analysis (PCA) is a method that transforms a large number of 

features into a smaller number of uncorrelated features (called principal components) that 

explain as much of the variability in the data as possible. Since it ensures that the 

principal components are uncorrelated with each other, PCA has an advantage over 

methods from the previous section which ignore correlations between different features. It 

has been used for dimension reduction in several psychophysiological studies [75, 103, 

107, 108]. However, it does have one important weakness: while the principal 

components explain as much of the variability in the data as possible, there is no 
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guarantee that they are better-correlated with psychological states than the original 

features. If we have a training data set where each data point is labeled with a specific 

class (e.g. anger, fear…), it would be useful to take the labels into account during feature 

selection in order to ensure that the selected features discriminate between different 

classes. PCA, however, ignores any data labels.     

 

The above weakness of PCA is addressed by Fisher’s projection, which can be thought of 

as a supervised alternative to PCA. While PCA projects the original features onto a 

lower-dimensional space in such a way as to explain as much of the variability in the data 

as possible, Fisher’s projection projects the original features onto a lower-dimensional 

space where between-class scatter is maximized and within-class scatter is minimized. In 

other words, it projects the original data into a lower-dimensional space where different 

classes (e.g. anger, fear…) are easier to linearly separate. Fisher’s projection is essentially 

a version of linear discriminant analysis (section 4.1.2.1.3), except used for dimension 

reduction rather than classification. It has been used in several psychophysiological 

studies [46, 109, 110]. One weakness of Fisher's projection should be noted, however: 

since it transforms the original feature space into a space where different classes are 

linearly separable, it is less suitable for use with nonlinear data fusion methods such as 

neural networks.  

 

4.1.1.3   Sequential feature selection 

 

Unlike PCA and Fisher’s projection, which linearly transform the feature space, 

sequential feature selection methods (also known as stepwise methods) are methods that 

sequentially select individual features from the feature space. Unlike the approaches 

presented in section 4.1.1.1, however, sequential feature selection methods do not ignore 

connections between different features.  

 

Perhaps the most common sequential feature selection method is sequential forward 

selection, which works as follows. In the first step of the sequence, no features are 

included in the selection. The method evaluates all features to determine which one best 

discriminates between classes in the training data set (using criteria such as the F-value of 

each feature). That feature is included in the selection. In the next steps, all remaining 
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features are evaluated to determine which one best discriminates between classes after the 

contributions of all previously selected features have already been taken into account. 

This process continues until no remaining feature contributes enough additional 

information to warrant its inclusion (for instance, the F-value of all remaining features is 

lower than a certain value). Sequential forward selection has been used in several 

psychophysiological studies [78, 103, 111-113]. It has been shown to outperform the 

approach of selecting the best individual features (section 4.1.1.1) [78, 112]. 

 

A very similar method to sequential forward selection is sequential backward selection. 

The difference is that, while forward selection begins with no features in the selection and 

sequentially adds features, backward selection begins with all features in the selection and 

sequentially removes features according to which one contributes the least to 

discrimination between classes. The process continues until the contribution of all 

remaining features exceeds a given threshold (for instance, the F-value of all remaining 

features is higher than a certain value). Sequential backward selection has been used by 

Kim et al. [114, 115], who reported that it outperformed sequential forward selection 

(though quantitative results were not reported for forward selection). 

 

A combination of the above two methods is sequential floating forward selection (SFFS), 

sometimes called sequential forward-backward selection. Starting with no features 

included in the selection, it sequentially adds features like sequential forward selection, 

but at each step it also evaluates whether any of currently included features can be 

removed. The most common criterions for inclusion or exclusion are F-value thresholds: 

a higher one for inclusion and a lower one for exclusion. SFFS has been used in several 

psychophysiological studies, including Picard et al. [46], Gu et al. [110] as well as Wilson 

and Russell [116], where it was used in conjunction with discriminant analysis (section 

4.1.2.1.3) and thus called stepwise discriminant analysis. 

 

It should finally be noted that Fisher’s projection and sequential feature selection are not 

mutually exclusive. Instead of providing Fisher’s projection with all possible features, it 

is possible to first select a subset of features using sequential feature selection and use 

Fisher’s projection on this subset. This was first done in a study by Picard et al. [46], 

where the combination of the two approaches outperformed both of the two approaches 

used individually. Wagner et al. [103] also found improved performance when using both 
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approaches, though not for all classification methods. Finally, a combination of the two 

approaches was used by Gu et al. [110], though it was not compared with using either 

approach individually. In principle, PCA could also be used with sequential feature 

selection, and both Fisher’s projection and PCA could be used with selection of 

individually best features (section 4.1.1.1). However, this has not been done in 

psychophysiology and there is no strong rationale for it since sequential feature selection 

has been shown to outperform individually best feature selection and since Fisher’s 

projection takes class labels into account while PCA does not. 

 

4.1.1.4   Other 

 

The aforementioned feature selection methods are of course not the only ones; they are 

simply the most prevalent in psychophysiology. Other methods include, for instance, 

Davies-Bouldin clustering [137, 138], BestFirst [122] and genetic algorithms [113]. 

However, these methods have not yet seen much use in psychophysiology, and further 

studies will be required before their strengths and weaknesses can be properly assessed. 

 

4.1.2   Classification and estimation 
 

This section describes several possible methods for psychophysiological data fusion - a 

process which takes a psychophysiological feature vector (consisting of several features 

extracted from multiple physiological signals) as input and assigns a psychological label 

to it. This psychological label can be categorical, in which case the feature vector is 

assigned to one of possible classes (e.g. 'angry', 'sad', 'low stress', 'high stress') and the 

process is called classification (section 4.1.2.1). Alternatively, the label can be a 

continuous value (e.g. an arousal of 9.2 on a scale between 0 and 10), in which case the 

process is called estimation (section 4.1.2.2). Since different methods are generally used 

for the two approaches, they are described in different sections. They are not, however, 

equally popular; in psychophysiology, classification has been used far more than 

estimation. For each specific method, a brief description is provided followed by 

examples of use with autonomic nervous system responses in psychophysiology. Detailed 

descriptions of each method are available in pattern recognition textbooks such as Bishop 

[117].  
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Sections 4.1.2.1 and 4.1.2.2 describe different classification and estimation methods, and 

a comparison is then made in section 4.1.2.3. All of these methods can be used both 

offline and online (real-time), though some are more computationally intensive and thus 

perhaps less suitable for online use (as discussed in section 4.1.2.3).  

 

4.1.2.1   Classification 

 

4.1.2.1.1 Nearest neighbors 

 

The k-nearest neighbor (kNN) algorithm is one of the simplest classification algorithms. 

When a new data point needs to be classified, the algorithm computes the (usually 

Euclidean or Mahalanobis) distance to each data point in the training data set. The 

training points are then ranked according to their distance to the new sample, and the k 

(where k ≥ 1) nearest training points (neighbors) are used to classify the new data point 

using a majority vote: the sample is assigned to the class that is most common among the 

k nearest neighbors. The simplest version of this is the 1-nearest neighbor rule, where a 

new sample is assigned to the same class as the nearest point in the training data set. 

Before calculating distances, it is usually necessary to scale the different data features 

(e.g. normalizing each feature to [0 1]) so that all features contribute equally to the 

distance calculation. Dimension reduction is also usually necessary, since the algorithm 

otherwise weighs all features equally even though some may not be relevant. 

 

Despite its simplicity, the kNN algorithm has become popular in psychophysiology. It has 

been used for:  

- classification of basic emotions [46, 71, 72, 103, 108, 118, 119]; 

- classification of arousal-valence quadrants [75, 110, 120]; 

- classification of the level of frustration [121] or enjoyment [113]. 

 

An algorithm extremely similar to the kNN algorithm is the nearest class center. It differs 

in that, instead of distances being calculated for all data points, each class is represented 

by the center of the data points for that class (e.g. the mean and covariance of the data). A 

new data point is then simply assigned to the class with the nearest center, which is less 
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computationally intensive than computing distances to every point. This approach was 

used in Setz et al. [74] and Frantzidis et al. [122]. 

 

4.1.2.1.2 Naïve Bayes classifier and Bayesian networks 

 

A relatively simple classifier, the naïve Bayes classifier is based on Bayes’ theorem and 

assumes that all features are independent of each other. Given the training data, it creates 

a probability model which estimates the probability that a data point belongs to a certain 

class. It then uses a decision rule to assign a class to the data point based on the 

probability model. Perhaps the most common rule is the ‘maximum a posteriori’ rule, 

which classifies the point as coming from the class with the highest posterior probability.  

 

Like the kNN algorithm, the naïve Bayes classifier has proven surprisingly effective 

despite its simplicity [123]. One important advantage is that, by assuming independence 

between features, it requires a much smaller training data set than other, more complex 

methods. Since the sample size in applied psychophysiological studies is often limited, 

the naïve Bayes classifier could be an attractive option. Nonetheless, most studies have 

preferred more complex methods, so the naïve Bayes classifier has only been used in a 

few studies: for classification of basic emotions [46, 124], classification of arousal-

valence quadrants [125] and classification of the stress level [69]. 

 

The naïve Bayes classifier is actually a very simple form of Bayesian network, a 

probabilistic model of random variables and their conditional dependencies. More 

advanced networks that do not assume that all features are independent of each other have 

also been used in psychophysiology. They were used for classification of basic emotions 

[124], type and intensity of basic emotions [119], arousal-valence quadrants [126] and 

frustration [121]. A Bayesian network was also used to select appropriate songs based on 

physiological features [127], though the user’s mood was not explicitly classified. 

 

4.1.2.1.3 Discriminant analysis 

 

Discriminant analysis is a well-known classification method which finds a linear (linear 

discriminant analysis - LDA, also known as Fisher’s linear discriminant) or quadratic 

(quadratic discriminant analysis - QDA) combination of input features which best 
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separate data points into two or more classes. This combination of input features is 

essentially a hyperplane in n-dimensional space (where n is the number of input features) 

that separates data points of different classes. For a two-class problem, a linear 

discriminant function thus takes the form 

 

ሻ࢞ሺܦ               ൌ ࢞࢝   ܾ                               (4.1) 

 

where ܦሺ࢞ሻ is the discriminant function, ࢞ is the vector of input features, w are the 

weights of the function and b is the intercept. ࢞ is then assigned to one class if ܦሺ࢞ሻ is 

positive and to the other class if ܦሺ࢞ሻ is negative. Both w and b are computed from 

training data as follows: 

 

       ܾ ൌ െ࢝T · ଵ
ଶ

· ሺࣆ   ሻ                      (4.2)ࣆ

࢝              ൌ ሺࡿ  ሻିଵࡿ · ሺࣆ െ  ሻ        (4.3)ࣆ

 

where ࡿ is the covariance matrix for class i and ࣆ is the vector of mean feature values 

for class i. 

 

Since each input feature has its own weight assigned to it, it is easy to determine how 

important it is to discrimination between classes. Though originally used for two-class 

problems, it can also be extended to multiclass situations. The greatest limitation of 

discriminant analysis is that it only allows linear or quadratic psychophysiological 

relations; if strongly nonlinear relations are expected in the data, other methods may be 

preferable. 

 

Because it is easy to use and transparently shows the contribution of each feature to 

discrimination between classes, discriminant analysis has been a popular data fusion 

method in psychophysiology. LDA has been used for: 

- classification of basic emotions [53, 66, 71, 72, 103, 107, 118]; 

- classification of arousal/valence quadrants [114]; 
- classification of the level of workload [116] or stress [109]; 
- discrimination of stress and cognitive workload [74]; 
- separation of phobic / non-phobic [111] or anxious / non-anxious subjects [128]. 
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QDA, which allows some nonlinearity in classification, has been used by Chanel et al. 

[129] and Setz et al. [130]. Another variety of discriminant analysis is worth mentioning 

despite not having seen use in psychophysiology: diagonal discriminant analysis, which 

ignores correlations between different variables and is thus actually a type of naïve Bayes 

classifier. Specifically, diagonal QDA assumes that all classes have diagonal covariance 

matrices while diagonal LDA assumes that all classes have the same diagonal covariance 

matrix. Despite its simplicity, diagonal discriminant analysis has proven to be very 

effective for classification of nonpsychophysiological data [131]. 

 

4.1.2.1.4 Support vector machines 

 

Similarly to discriminant analysis, support vector machines (SVMs) are a method of 

generating hyperplanes in n-dimensional space (where n is the number of input features) 

that separate data points of different classes. The principal difference between the two is 

the criterion used to calculate these hyperplanes. While LDA maximizes a discriminative 

projection, SVMs are a maximum margin classifier: they create the hyperplane so that the 

distance (margin) between the hyperplane and the closest data points on each side is 

maximized. 

 

Basic SVMs thus have similar advantages and disadvantages as discriminant analysis. 

They are transparent and it is easy to determine the contribution of each input feature; but 

on the other hand, they are a linear classifier. To avoid the limitation of linearity, SVMs 

are commonly expanded using so-called kernels. A good explanation of kernels is 

provided in Schölkopf et al. [132], but in essence the training data is transformed into a 

higher-dimensional space and a hyperplane is generated in this space. While the 

hyperplane is linear in the new transformed space, it may be nonlinear in the original 

feature space, resulting in a nonlinear classifier.  

 

The good performance and nonlinearity of SVMs has led to their frequent use in applied 

psychophysiology. They have been used for: 

- classification of basic emotions [67, 104, 106, 119, 124, 133-135]; 

- classification of both the type and intensity of basic emotions [18]; 

- classification of arousal-valence quadrants [75, 120, 125, 129]; 

- classification of the level of stress [69], frustration [121] or enjoyment [18]; 
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- discrimination of natural and unnatural behavior [73]; 

- discrimination of stress and cognitive workload [74]. 

 

4.1.2.1.5 Classification trees 

 

Classification trees assign a class to a data point by progressing through several branching 

IF-THEN logical rules. This branching structure is the reason why they are called trees. 

An example of a psychophysiological classification tree would be “If SCR frequency is 

below five per minute, the subject is bored. Otherwise, if skin temperature is below 33 

degrees Celsius, the subject is frustrated. Otherwise, the subject is entertained.” While not 

an accurate set of rules, this serves as a simple illustration of a classification tree. The 

rules are not defined manually; several different algorithms exist to learn the rules from 

training data. At each new node of the tree, these algorithms select the feature that best 

discriminates between classes after all the previous decisions made in the tree have been 

taken into account. Features are selected using criteria such as information gain. 

 

Classification trees offer a very transparent way of classifying psychophysiological data. 

The decision process can be easily followed by researchers and can be visualized 

graphically, making the trees a very ‘white-box’ approach. The tree building process acts 

as a form of dimension reduction, and many tree-building algorithms also incorporate tree 

pruning, which prevents the tree from becoming too complex and overfitting the data. In 

psychophysiology, classification trees have been used for: 

- classification of basic emotions [124]; 

- classification of both type and intensity of basic emotions [119]; 

- classification of arousal-valence quadrants [122, 125]; 

- classification of the level of stress [69] or anxiety [45, 105]; 

- distinguishing natural and unnatural behavior [73]. 

 

Advanced variants of classification trees have also been used in psychophysiology. One 

example are fuzzy trees [136], which combine the hierarchical structure of classification 

trees with fuzzy logic (described in section 4.1.2.2.2). A second example are ensemble 

methods such as random forests [108], and boosted decision stumps [106] - sets of many 

trees whose outputs are combined to produce the final classification. 

 



111 
 

4.1.2.1.6 Artificial neural networks 

 

Inspired by biological systems, artificial neural networks (ANNs) consist of a large 

number of simple, interconnected components (‘neurons’) operating in parallel. Each 

neuron receives a number of inputs and uses them to calculate the ‘activation’ of the 

neuron. Perhaps the simplest way to calculate this activation is to calculate a weighted 

sum of the inputs, then set the output as 1 if the weighted sum exceeds a certain threshold 

and 0 if the weighted sum does not exceed the threshold. This output is then fed to the 

next layer of neurons and so on until the final output is determined. Such a layered 

network with weighted sums and threshold is called a multilayer perceptron. Multilayer 

perceptrons can model functions of very high complexity if enough layers and neurons 

are used. However, other types of ANNs that incorporate more complex elements also 

exist (e.g. radial basis function networks). Complexity can be especially increased by 

allowing outputs of one layer of neurons to be used as inputs to both preceding and 

succeeding layers. This type of network is called a feedback network. 

 

ANNs are taught to perform a particular function using a training data set by adjusting the 

weights of the connections between different neurons. They are nonlinear tools capable of 

modeling very complex relationships between variables, which can be very useful in 

psychophysiology. To train an ANN as a classifier, it simply needs to be provided with a 

training data set where the inputs are physiological features and the outputs are numbers 

corresponding to different classes (e.g. 1 – ‘angry’, 2 – ‘sad’). However, ANNs have one 

important disadvantage. Once trained, it is difficult to determine how different input 

variables contribute to the output. ANNs thus provide users with little information about 

the underlying system. Despite this lack of transparency, they have been frequently used 

with psychophysiological data, specifically for: 

- classification of basic emotions [71, 72, 103, 124, 137]; 

- classification of arousal-valence quadrants [70, 75, 76, 125, 138]; 

- classification of the level of workload [116, 139, 140]; 

- classification of entertainment value and preferences [78, 112]. 
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4.1.2.1.7 Other 

 

Though the previous subsections describe the classification methods commonly used in 

applied psychophysiology, there are also several other, less-often used methods that bear 

mentioning. Some of these are: 

- Fuzzy logic: More properly an estimation technique, it has also been used for 

psychophysiological classification by simply assigning classes to different 

values of the output variable [105, 134]. Notable for not requiring a training 

data set, it is described in more detail in section 4.1.2.2.2. 

- Hidden Markov models: Actually a type of dynamic Bayesian network 

(section 4.1.2.1.2), hidden Markov models are notable because they allow the 

classification of temporal sequences. Though popular in research fields such 

as speech recognition and activity recognition, they have seen little use in 

psychophysiology where the preferred approach is to calculate features from a 

temporal sequence and then classify those features instead. Two examples of 

their use in psychophysiological data fusion are Kulić and Croft [77] and 

Scheirer et al. [141]. 

- Relevance vector machines: Functionally similar to SVMs (section 4.1.2.1.4), 

relevance vector machines are embedded in a Bayesian framework. They have 

been shown to provide results similar to SVMs, but with sparser solutions. 

They were used for psychophysiological data fusion by Chanel et al. [129]. 

- Large margin algorithm: A simpler version of SVMs (section 4.1.2.1.4), the 

large margin algorithm makes certain assumptions about the data in order to 

reduce computational complexity. It was used by Yannakakis and Hallam 

[112], but is unlikely to see wider use in psychophysiology where 

computational complexity is generally not a problem. 

 

4.1.2.1.8 Classifier fusion 

 

Of course, it is not necessary to use only a single classifier to perform data fusion. It is 

also possible to combine several classifiers (of the same type or different types) either in 

series or in parallel and thus hopefully obtain a better result. Though this approach is not 

especially widespread in psychophysiology, the structure of the input data or the 

psychological model used may lend themselves naturally to classifier fusion. For 
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instance, if other data modalities are used in addition to psychophysiological data, it is 

possible to obtain a classification result using data from each modality separately and 

then combine these unimodal results to obtain a final result. This is commonly called 

decision-level fusion and was performed using speech and psychophysiology [114] as 

well as with both central and autonomic nervous system responses [129]. On the level of 

sensors rather than modalities, Setz et al. [130] used the same approach to obtain a 

separate classification result from each physiological sensor (one result for all features 

extracted from the ECG, one result for all features extracted from skin conductance etc.) 

and then fuse them together.   

 

The above approach features several classifiers working in parallel. An alternate option is 

to have several classifiers in series: the first classifier performs a rough separation into 

two nonspecific classes (e.g. low arousal/high arousal) while the following classifier 

classifies the data point into a specific subclass within the previous class. Two examples 

of this exist in psychophysiology, both involving the arousal-valence space. In both cases, 

the first classifier classifies the data point into one half of the arousal-valence space while 

the second classifier classifies the data point into one of the two remaining possible 

quadrants [115, 122]. 

 

4.1.2.2   Estimation 

 

4.1.2.2.1 Linear sums and linear regression 

 

Perhaps the simplest way to estimate a psychological quantity from psychophysiological 

features is to define it as a weighted sum of (usually normalized) psychophysiological 

features: 

 

ሻ࢞ሺݕ            ൌ ࢞࢝   ܾ                                                   (4.4) 

 

where y is a psychological quantity (e.g. arousal), x are psychophysiological features (e.g. 

mean heart rate, SCR frequency), w are the weights assigned to the different features and 

b is the intercept. w and b can be defined manually (e.g. [142, 143]), but a more optimal 

approach is to perform the technique of linear regression on the training data set. Given a 
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data set with known y and x, linear regression usually estimates w and b using the least 

squares method, though other methods are also possible. It has been used for estimation 

of distress, worry and task engagement [144], estimation of amusement and sadness [106] 

and estimation of arousal [145]. 

 

4.1.2.2.2 Fuzzy logic 

 

Fuzzy logic is an estimation procedure that makes use of easy-to-understand IF-THEN 

logical rules. The difference between fuzzy logic and classical logic is that statements in 

fuzzy logic do not have to be absolutely true or false, but have “degrees” of truth. There 

are thus also no hard boundaries between categories or exclusive memberships. Perhaps 

the most famous example of fuzzy logic involves temperature control, described with the 

statements: “If the room is cold, the heating should be set to maximum. If the room is hot, 

the heating should be off.” In fuzzy logic, the room can be both cold and hot to some 

degree (e.g. 0.8 cold, 0.2 hot), and the heating is thus also set to some intermediate value. 

An example from psychophysiology would be “if heart rate is high and skin conductance 

is high, arousal is high”. Ranges for each variable are defined using membership 

functions and can overlap.  

 

Fuzzy logic is appropriate for situations where a precise mathematical model does not 

exist, but experts can identify general rules underlying the system – as in 

psychophysiology. It is also appropriate for systems with a high level of noise, which is 

also common in psychophysiology due to the intra- and intersubject variability. Expert-

defined fuzzy rules have been used to estimate stress and anxiety [17, 146] as well as 

arousal and valence [16]. Expert-defined fuzzy rules are especially noteworthy because, 

unlike most of the methods described in this paper, they do not explicitly require training 

data. 

 

If the underlying behavior of the system cannot be described by experts, machine learning 

approaches also exist to identify the parameters of a fuzzy logic system using training 

data. Examples of fuzzy system identification for the purpose of user state assessment 

from psychophysiological data are presented in Katsis et al. [134], Kumar et al. [147] and 

Ting et al. [148]. 
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4.1.2.2.3 Artificial neural networks 

 

Previously described in section 4.1.2.1.6, artificial neural networks (ANNs) consist of a 

large number of simple, interconnected components (‘neurons’) operating in parallel. 

They are taught to perform a particular function (which can be simple or very complex) 

using a training data set by adjusting the weights of the connections between different 

neurons. While mostly used in psychophysiology for classification, they do not 

necessarily have to output a categorical value (e.g. 1 – ‘angry’, 2 – ‘sad’); they can easily 

be trained to output continuous values and thus estimate the level of a particular 

psychological variable. However, this approach has seen far less use than classification 

(section 4.1.2.1.6). One recent example is the work by Bailenson et al. [106], where 

ANNs are used to estimate the level of amusement and sadness.  

 

4.1.2.3   Recommendations for use in rehabilitation 

 

Having reviewed several data fusion methods, it is only natural to ask ourselves “which 

method is the best for a biocooperative rehabilitation system?” The answer, of course, is 

not simple and depends critically on the purpose of the system and the properties of the 

data.  

 

4.1.2.3.1 Classification or estimation? 

 

A choice must first be made between classification and estimation. As previously 

mentioned, classification has been used in psychophysiology far more often than 

estimation. This can partially be attributed to the psychological models used. If an 

experiment is built around basic emotions (anger, sadness, fear, surprise, happiness…) 

[36], the psychological state can be described as one of several discrete classes, naturally 

creating a classification problem. If the psychological state is described in terms of 

arousal and valence, estimation is more useful since arousal and valence are both 

continuous quantities [37]. Similarly, if the goal is to determine the level of a particular 

psychological variable (e.g. stress, anxiety), estimation can be the appropriate choice. 

However, since inducing a great number of arousal, valence, stress or anxiety levels can 

be difficult, researchers often settle for splitting psychological states into arousal-valence 
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quadrants [122, 129] or discrete levels of a psychological variable [69, 121, 139], creating 

a classification problem again. 

 

In rehabilitation, it is not necessary to identify a large number of emotional states; it is 

sufficient to identify when a user is bored or frustrated and take steps to remedy this. 

Classification with a small number of classes is thus sufficient for the purposes of this 

dissertation. However, there is still a large number of different classifiers that are 

available and widely used in psychophysiology 

 

4.1.2.3.2 Selecting a classifier 

 

Choosing an appropriate classifier depends on a number of factors. Perhaps the most 

important one is accuracy – how well it can classify data points. To evaluate accuracy, we 

can first turn to large-scale classifier comparisons from other fields. One comprehensive 

nonpsychophysiological comparison of classifiers on different real-world data sets was 

made in the 1990s by King et al. [149]. Other classifier comparisons with 

nonpsychophysiological data include Harper [150] (medical data), Hua et al. [151] (with a 

special focus on classifier accuracy as a function of sample size), Caruana and Niculescu-

Mizil [152], and Caruana et al. [153]. Some general conclusions can be drawn from these 

comparisons that may also apply to psychophysiological data. For instance, classification 

trees seem to outperform discriminant analysis when used on data with high skewness 

and kurtosis [149].  

 

A number of studies have compared different classifiers specifically on 

psychophysiological data. These are briefly summarized in Table 4.1. Unfortunately, it is 

again difficult to identify an optimal classifier, as different studies report results that may 

at first glance be contradictory. For instance, Nasoz et al. [71] find ANNs to perform 

much better than kNN, but van den Broek et al. [75] report higher classification accuracy 

with kNN than with ANNs. Similarly, Zhai and Barreto [69] find SVMs to be much more 

accurate than the naïve Bayes classifier, but Müller [125] reports similar accuracy for 

both methods.  

 

Furthermore, classifier accuracy depends on many different factors such as the input 

features and the possible classes used. For instance, several studies report that certain 
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classifiers are better at recognizing certain emotions [71, 103, 119], though it is unknown 

whether or not this is a sampling fluke. Rani et al. [105] compare classification trees and 

fuzzy logic on data sets of different qualities and find that while trees generally result in 

higher accuracy, fuzzy logic is more accurate if the data quality is low. Thus, direct 

comparison of classification accuracies between studies is difficult.  

 
Table 4.1: Psychophysiological studies that compare different classifiers. 

Study Classifiers compared Classification of? # classes 

Zhai and Barreto [69] naïve Bayes, SVM, trees stress or no stress 2 
Nasoz et al. [71] kNN, LDA, ANN basic emotions 6 

Lisetti and Nasoz [72] kNN, LDA, ANN basic emotions 6 
Mohammad et al. [73] SVM, trees natural behavior 2 

Setz et al. [74] LDA, SVM, nearest center stress, cognitive load 2 
van den Broek et al. [75] kNN, SVM, ANN emotion types 4 

Wagner et al. [103] kNN, LDA, ANN basic emotions 4 
Rani et al. [105] trees, fuzzy logic anxiety level 3 
Rigas et al. [108] kNN, trees (random forest) basic emotions 3 

Yannakakis et al. [112] ANN, large margin algorithm game preferences 2 
Kim and Andre [115] LDA, classifier fusion arousal/valence  4 

Wilson and Russell [116] LDA, ANN low/high workload 2 
Rani et al. [119] kNN, SVM, trees, Bayesian network basic emotions 5 
Shen et al. [120] kNN, SVM arousal/valence  4 

Kapoor et al. [121] kNN, SVM, Bayesian network frustration level 2 
Calvo et al. [124] numerous basic emotions 8 

Müller [125] naïve Bayes, SVM, ANN, trees arousal/valence  4 
Chanel et al. [129] LDA, QDA, SVM, RVM arousal/valence  3 
Katsis et al. [134] SVM, fuzzy logic basic emotions 4 

Pastor-Sanz et al. [135] kNN, naïve Bayes, SVM, trees basic emotions 6 

 
 
Since classification of psychophysiological features has not yet been used in 

rehabilitation, it is difficult to say which classifier would be the most accurate for a 

particular number of classes or input signals. However, it is not necessary to select only 

one. A common approach in psychophysiology is to record a larger data set in advance, 

then use the technique of crossvalidation to evaluate classifiers. The prerecorded data set 

is first divided into multiple parts. Then, the rules for classification are constructed using 

data from all but one part and tested on the remaining part. This process is repeated as 

many times as there are parts, with each part serving as the 'test' part exactly once. 

Crossvalidation provides an estimate of a classifier's accuracy when used on previously 

unseen data. A few examples of crossvalidation in psychophysiological data fusion can be 
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found in Rani et al. [119], Zhai and Barreto [69] and Chanel et al. [129]. It is thus 

possible to select a larger number of potential dimension reduction and classification 

methods, then test them on an already recorded data set and identify the most accurate 

method. Given the lack of prior work with psychophysiological measurements in motor 

rehabilitation, this is recommended as the best approach at this time. This was also done 

in this dissertation, as described in section 4.1.4. 

 

In addition to accuracy, a number of factors could be considered when selecting the best 

classifier to use. For instance, one might look at the speed and computational cost of a 

classifier. While all classifiers described so far can be used both offline and online, some 

are less suited for online use. Calvo et al. [124], for example, found ANNs to be much 

slower than SVMs and thus less suitable for online use. Here, it is important to 

differentiate between the time needed to train the classifier (which can be done in 

advance) and the time needed to apply the classifier to a new data point (which often 

needs to be done online). Discriminant analysis, for instance, is simple to both train and 

apply. SVMs and ANNs can be time-consuming to train, but can be applied to new data 

much faster. On the other hand, a nearest-neighbor classifier requires no advance training, 

but can be computationally intensive to apply to a new data point online since the 

distance to each data point in the training data set must be calculated in many dimensions. 

However, this is unlikely to be a problem in rehabilitation. If the user is bored or stressed, 

an action needs to be taken to correct this. If such actions are taken too often, though, they 

may upset the patient even further since he/she would not have time to adjust to the new 

rehabilitation task. Furthermore, given that many psychophysiological responses react 

slowly to stimuli, it is unnecessary to perform data fusion very often. 

 

Another, generally less crucial factor is the transparency of the classifier. Rather than the 

most accurate classifier, we might choose a slightly less accurate classifier whose 

classification procedure can be easily understood by humans. In this case, classification 

trees provide a very transparent method since their if-then reasoning can be easily 

followed. Discriminant analysis is also fairly simple to understand while nonlinear 

methods such as neural networks are often looked down on despite attempts to do away 

with their reputation as a 'black box' [155]. Here, a consideration must be made whether 

the potential decrease in accuracy from using a transparent classifier is an acceptable 



119 
 

sacrifice for increased transparency. Such a decision is fairly subjective and thus 

generally left to the researcher's preference. 

 

4.1.3   Biofeedback in non-rehabilitation settings 
 

While data fusion primarily is the process of interpreting psychophysiological responses, 

biofeedback is the act of acting on psychophysiological responses in order to make 

changes to the environment. These changes then again affect psychophysiological 

responses. Psychophysiological biofeedback is not a new idea by any means; for instance, 

a 1996 review [40] discusses several attempts to use psychophysiological measurements 

to control the level of automation in a task. Work on psychophysiological feedback has 

primarily focused on three separate purposes. The first (described in section 4.1.3.1) is 

adaptive automation: making a task easier for the user by providing automated assistance 

when necessary. The second (described in section 4.1.3.2) is game difficulty adjustment: 

making a game easier or harder for the user in order to provide an appropriate challenge. 

The third (described in section 4.1.3.3) is the adjustment of the audio or visual properties 

of an application that the user is interacting with in order to make it more pleasant and 

attractive for the user or to evoke a certain other mood. Of course, psychophysiological 

biofeedback has also been used for other purposes, and these are described in section 

4.1.3.4. 

 

Complex data fusion is not strictly necessary for biofeedback. In several studies described 

in this section, biofeedback is based on simple rules such as “make task easier if skin 

conductance is above threshold” [156, 157]. In those studies, data fusion is implicitly 

included in the design of the feedback rules; a person who manually sets such rules 

should already know how autonomic nervous system responses are influenced by 

different psychological states.  

 

4.1.3.1   Adaptive automation 

 

Though the majority of work on adaptive automation through psychophysiology has 

focused on electroencephalography, some studies have also incorporated autonomic 

nervous system responses, either by themselves or in combination with other 
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measurements. Four examples of adaptive automation using autonomic nervous system 

responses are Wilson and Russell [140], Ting et al. [148], Prinzel et al. [158] and Liao et 

al. [159].  

 

The first three take a similar approach: automated assistance is enabled when the user’s 

level of stress or workload is high and disabled otherwise. A HRV threshold is used to 

enable and disable assistance in Prinzel et al. [158]. A Bayesian network is used for 

fusion of autonomic nervous system responses and video in Liao et al. [159] while ANNs 

are used with electroencephalography, electrooculography and autonomic nervous system 

responses by Wilson and Russell [140]. The fourth study, by Ting et al. [148], differs 

slightly in that different automation levels are available; i.e. the control for automation is 

not only an on/off switch. The level of automation is determined by fusing features 

derived from the ECG and electroencephalogram using fuzzy logic. 

 

4.1.3.2   Game difficulty adjustment 

 

Multiple studies have used autonomic nervous system responses to adjust the parameters 

of a computer game in order to make it easier or harder for the subject. The level of data 

fusion in these games differs strongly, from no data fusion to complex data fusion. 

 

Looking first at examples of game difficulty adjustment based on only one physiological 

measurement, Bersak et al. [160] created a racing computer game where the speed of the 

car is inversely proportional to the value of the user’s skin conductance: the lower the 

skin conductance, the faster the car. Nenonen et al. [161] used heart rate to affect the 

difficulty of a biathlon computer game, though it is questionable whether changes in heart 

rate are caused by psychological factors. In their game, high heart rate results in fast 

skiing, but inaccurate shooting, and vice-versa. 

 

Moving on to studies combining multiple physiological measurements, Toups et al. [142] 

used skin conductance and electromyography to increase or decrease the activity level of 

enemies in a computer game, though data fusion was simply performed as a linear sum of 

individual normalized features. Dekker and Champion [156] changed the player’s 

movement speed, visibility to enemies and the damage of his/her weapons in a first-
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person shooter game based on both heart rate and skin conductance. Similarly, 

Kuikkaniemi et al. [162] controlled the player’s movement speed and firing accuracy in a 

first-person shooter using heart rate and skin conductance, though no data fusion was 

performed. Haarmann et al. [57] combined heart rate and skin conductance in a flight 

simulator. Manually set thresholds were used on the features to determine how aroused 

the subject was, and turbulence was turned on and off in the flight simulator depending on 

the level of arousal. Liu et al. [45] used a classification tree on multiple physiological 

signals to estimate the level of anxiety and then used both task performance and anxiety 

to control the difficulty of a game of Pong. 

 

A final interesting example that is not strictly a computer game, but rather a human-robot 

interaction system, is a study where children need to throw baskets through a basketball 

hoop controlled by a robotic arm [18]. The hoop is constantly moved in different 

directions, with the speed and direction of movement changed to maximize the child’s 

enjoyment of the game. The child’s level of enjoyment during the game is determined by 

using SVMs to fuse multiple psychophysiological features. Furthermore, the robotic arm 

gradually adapts to the current subject by changing the biofeedback rules. Since there is 

no guarantee that two users will respond to a particular action in the same way, the arm 

learns the subject’s preferences through reinforcement learning, which learns by trying 

certain actions and noting the subject’s response. Given enough time to try different 

actions, the system learns what action is likely to lead to a certain response for that 

subject.  

 

4.1.3.3   Adjustment of audiovisual features  

 

Unlike adaptive automation, which has been extensively applied to critical situations such 

as flight, adjustment of audiovisual features has primarily been explored within the 

context of multimedia applications, computer games and virtual reality. Here, the purpose 

is to evoke a certain mood in the user using a feature of the environment or to have the 

environment reflect the user’s current mood.  

 

An example of environments that try to match the subject’s mood is described by Wang 

et al. [163]: an online chatting interface where the colour and shape of the text changes to 
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match the user’s skin conductance. Dekker and Champion [156] directly map the ambient 

volume and shading of the environment in a first-person shooter to heart rate and skin 

conductance, without any data fusion. In [70], ANNs are used to classify the subject’s 

mood, and appropriate wallpaper is displayed on the computer background. Groenegress 

et al. [157] describe a virtual environment with an avatar whose respiratory frequency 

matches the user’s, and who taps his foot at a frequency proportional to the user’s skin 

conductance.  

 

One way of trying to guide a person into a desired mood is by playing music that evokes 

specific emotions. Oliver and Kreger-Stickles [164] proposed a music player that 

combines both physiological features and body movement to suggest songs from a 

playlist, though this does not necessarily include psychological factors since autonomic 

nervous system responses in their study are strongly affected by physical activity. Janssen 

et al. [127] also suggested a music player that combines skin conductance and skin 

temperature using a Bayesian network in order to suggest songs. Liu et al. [165] attempt 

to control heart rate around a certain threshold by playing appropriate music, though their 

heart rate sensor is embedded in a seat beneath the subject and is thus fairly nonstandard. 

 

A similar approach to the music recommendation systems outlined above is a content 

delivery system which classifies the user’s autonomic and central nervous system 

responses using kNN and SVMs [120]. It then suggests content (different documents) that 

would be appropriate in that mood. 

 

Finally, a system by Grigore et al. [143] tries to help the subject relax by adjusting the 

level of ambient light in a room. A simple weighted sum of different heart rate and skin 

conductance features is used to estimate the subject’s current state. 

 

4.1.3.4   Other 

 

Three studies should be mentioned which do not quite fit into any of the previous three 

subsections. The first is a study where a mobile robot performs tasks in the environment 

while monitoring a human's level of anxiety [17]. The level of anxiety is calculated from 

heart rate, skin conductance and the electromyogram using fuzzy logic. If anxiety exceeds 
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a certain threshold, the robot ceases its normal operations and queries the human whether 

he or she requires assistance.  

 

The second is an interesting application (though of questionable practical value) where a 

computer monitors the user's engagement level through a combination of skin 

conductance and nonphysiological signals [166]. If the user is not focused on working 

with the computer, the computer decreases the microprocessor speed in order to save 

energy. 

 

The third is a game that does not monitor autonomic nervous system responses to stimuli, 

but rather requires the player to consciously control their skin conductance, temperature 

and pulse in order to dodge obstacles in the game [167]. No data fusion is performed, and 

it is uncertain whether the game actually falls within the domain of psychophysiology. 

 

4.1.4   Our approach 
 

Having performed a thorough review of the psychophysiological literature, a number of 

well-established dimension reduction and classification methods were first selected for 

implementation in the dissertation. These methods are described in section 4.1.4.1. Then, 

another method was implemented: adaptive discriminant analysis, which was previously 

unknown outside electroencephalography. Since it can learn online, adaptive discriminant 

analysis has an advantage over established methods. It is described in section 4.1.4.2. 

Finally, a brief overview of the process of implementing data fusion and biocooperative 

control is given in section 4.1.4.3. 

 

4.1.4.1   Established methods  

 

Having examined the different algorithms and methods for dimension reduction, 

classification, estimation and biofeedback, a few methods can be selected for 

implementation. As was discussed in section 4.1.2.3, classification is the best-established 

data fusion approach in psychophysiological literature and is also easier to validate using 

questionnaires or independent observers than estimation. Since most classification 

methods are not difficult to implement, it is possible to implement several different ones 
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and test them on the training data set using cross-validation. The following standard 

classifiers were implemented:  

- LDA, 

- QDA, 

- diagonal LDA (a type of naïve Bayes classifier), 

- diagonal QDA (also a type of naïve Bayes classifier), 

- kNN based on Euclidean distance, 

- kNN classification based on Mahalanobis distance, 

- classification tree,  

- SVM with a radial basis function kernel. 

 

In addition to classification, dimension reduction is also recommended due to the large 

number of features. It can also be easily tested in crossvalidation together with different 

classification algorithms. For this dissertation, both PCA and SFFS are used for 

dimension reduction. Fisher’s projection is not used since, for reasons described later, 

there are only two possible task suitability states (too easy / too hard) in both sections 4.2 

and 4.3. In a two-state problem, Fisher’s projection can only reduce the number of 

dimensions to one, rendering further data fusion unnecessary. 

 

All classifiers were thus tested without dimension reduction, with PCA, or with SFFS. 

Since some of these methods have parameters that need to be set, the optimal values were 

determined in crossvalidation as follows: a set of possible values was tested on the 

training data set, and the value that yielded the best classifier accuracy was used on the 

test data set. The values that were set thusly were as follows: 

- PCA: number of principal components (possible values: 2, 3, 5, 7, 9, 11), 

- kNN (both Euclidean and Mahalanobis distance): number of considered 

neighbors (possible values: 1, 3, 5), 

- classification tree: the minimum number of data points at a node for that node 

to be split into two branches (possible values: 5, 10, 25, 50). 

For SFFS, the statistical F-value was used as the criterion to add or remove a feature. The 

threshold F-value to add a feature was 3.5 while the threshold F-value to remove a feature 

was 3. An exception was made if no features exceeded the threshold F-value to add a 

feature. This often occurred when only psychophysiological data was entered into the 
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stepwise procedure. In this case, both thresholds were lowered in steps of 0.5 until at least 

one feature’s F-value exceeded the threshold. 

 

In addition to these classifiers, which are all well-established in psychophysiology, a new 

type of classification that has previously not been used in psychophysiology was also 

applied: adaptive discriminant analysis, described in the next section. 

 

4.1.4.2   Adaptive discriminant analysis  

 

Since motor rehabilitation is a long-term process, it would be useful for the 

biocooperative feedback loop to gradually adapt to a particular subject's preferences and 

thus become more useful. One example of adaptation in psychophysiology is through 

reinforcement learning [18], which gradually tries different actions and records the 

subject's (psychological or psychophysiological) response in order to determine the best 

actions to take within the feedback loop. Another partially adaptive approach is used by 

Gu et al. [110] and Ting et al. [148], who create a separate set of data fusion rules for 

each subject using only data previously obtained for that subject. 

 

However, the weakness of these approaches is that they require a long training period 

before they become useful. Reinforcement learning additionally requires the 

biocooperative feedback loop to take actions that affect the subject, and these actions are 

not necessarily beneficial. Thus, it was felt that a better adaptive approach would be to 

start with a set of general data fusion rules, then make adjustments to these rules as the 

system obtains information about the new subject. The initial rules would be trained using 

a prerecorded training data set from multiple subjects. Though psychophysiological 

responses exhibit great intersubject variability, rules derived from multiple subjects 

should nonetheless be accurate enough to serve as a starting point. 

 

The process of gradually adapting the data fusion rules, however, is not trivial. In the 

course of the research covered by this dissertation, Matjaž Mihelj had the idea of 

improving psychophysiological data fusion by combining methods already established in 

psychophysiology with Kalman filtering, a well-known technique for state prediction and 

estimation in data fusion [168]. Kalman filtering is used when the state of a dynamic 
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system is difficult to estimate due to noisy sensor data, approximations in the model 

describing the system, and external factors that have not been accounted for. The filter 

uses a model of the system, known inputs to that system, and known measurements of the 

system to form an estimate of the system's state that is better than the estimate obtained 

by using any one measurement alone. Given an approximate psychophysiological model, 

it could thus potentially improve accuracy of psychophysiological data fusion by treating 

errors in the model as unaccounted-for external factors and treating intersubject 

variability as noise. For the model, it should be possible to use one of the data fusion 

methods described in section 4.1.2, as these methods are essentially models that translate 

physiological measurements to psychological states. 

 

Having decided to combine Kalman filtering with data fusion methods already 

established in psychophysiology, a literature search was conducted to find any papers 

from nonpsychophysiological studies that combine Kalman filtering with any of the data 

fusion methods described in section 4.1.2. This yielded a paper by Vidaurre et al. [26] 

which combines Kalman filtering with LDA and QDA (section 4.1.2.1.3) in order to 

adaptively classify electroencephalographic data. In that paper, classifier accuracy was 

significantly improved by online adaptation. Based on the encouraging results and the 

fact that the method had been developed for use with physiological measurements, the 

two adaptive discriminant analysis methods described in the paper (Kalman adaptive 

linear discriminant analysis, an adaptive LDA, and the Adaptive information matrix, an 

adaptive QDA) were thus selected for implementation in the dissertation’s biocooperative 

feedback loop. The use of these methods also affected the study designs; since adaptive 

discriminant analysis requires multiple data points from each subject within a single 

longer session, the studies described in section 4.2 and 4.3 also require subjects to 

perform a task for several short time periods. 

 

The mathematical foundations of Kalman adaptive linear discriminant analysis (KALDA) 

and the Adaptive information matrix (ADIM) are described in the following two 

subsections (4.1.4.2.1 and 4.1.4.2.2). These mathematical foundations were established by 

Vidaurre et al. [26] and are mostly repeated or paraphrased. However, as described in the 

previous paragraph, a limitation of adaptive discriminant analysis is that it is supervised: 

the subject's opinion is required to perform the update process. Such a supervised learning 

approach is obviously inappropriate in practice. If the subject’s opinion regarding task 
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difficulty is available, no automated feedback loop is necessary – the subject’s opinion 

can be taken into account instead. Thus, section 4.1.4.2.3 describes a modification that 

makes adaptive discriminant analysis unsupervised and more useful in practice.  

 

The adaptive discriminant analysis methods were tested in non-diagonal and diagonal 

variants as well as in supervised and unsupervised variants for a total of 8 (2x2x2) 

adaptive classifiers. These 8 adaptive classifiers were tested without dimension reduction, 

with PCA and with SFFS. 

 

4.1.4.2.1 Kalman adaptive linear discriminant analysis 

 

KALDA is an adaptive version of LDA in which the weights of the discriminant function 

ሺܾ,  ሻ are recursively updated online using a Kalman filter as new data becomes்࢝ 

available. The Kalman gain varies the update coefficient and changes the adaptation 

speed depending on the properties of the data. As previously mentioned in section 

4.1.2.1.3, the LDA equations are as follows:  

 

ሻ࢞ሺܦ             ൌ  ܾ  ்࢝ ·  (4.5)                                                ࢞

                                                    ܾ ൌ െ்࢝ · ଵ
ଶ

· ሺࣆ   ሻ                                         (4.6)ࣆ

࢝                                                 ൌ ሺࡿ  ሻିଵࡿ · ሺࣆ െ  ሻ        (4.7)ࣆ

ሻ࢞ሺܥ           ൌ ൜1; ሻ࢞ሺܦ ൏ 0
2; ሻ࢞ሺܦ  0          (4.8) 

 

where ࢞ is the vector of input features, ܦሺ࢞ሻ is the discriminant function, b and w are the 

weights of ܦሺ࢞ሻ, ࡿ is the covariance matrix for class k, ࣆ is the vector of mean feature 

values for class k, and C(x) is the class to which x is assigned.  

 

For KALDA, the above equations are expanded with: 

 

                 ࡴ  ൌ ൣ1, ࢞
T൧                               (4.9) 

       ݁ ൌ ݕ െ ࡴ · ෝ࢝ ିଵ           (4.10) 

            ݒ  ൌ 1 െ                                ܥܷ       (4.11) 

             ܳ ൌ ࡴ · ିଵ · ࡴ
T   ݒ                     (4.12) 
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              ൌ ೖࡴ·ೖషభ
T

ொೖ
                         (4.13) 

        ෝ࢝          ൌ ෝ࢝ ିଵ   · ݁                                                 (4.14) 

        ෩               ൌ ିଵ െ  · ࡴ ·   ିଵ       (4.15) 

                                                             ൌ ୲୰ୟୡୣሺ෩ೖሻ·


  ෩                                                (4.16)

 

where ݁ is the one-step prediction error, ݕ is the current class label, ࢞ is the current 

input vector, ࢝ෝ  is the state vector (࢝ෝ  = [ܾ,  ,(ሿ, the estimated weights for the LDA்࢝ 

ܳ is the estimated prediction variance,  is the a priori state error correlation matrix, 

  is the variance of the innovationݒ , ෩ is an intermediate value needed to compute

process,  is the Kalman gain, ܷܥ is the update coefficient and  is the number of 

elements of ࢝ෝ . The starting values of  and ࢝ෝ  as well as the optimal value of ܷܥ are 

computed from the training data set. 

 

Kalman adaptive discriminant analysis can also be used with diagonal LDA, which 

assumes that all classes have the same diagonal covariance matrix [131]. For diagonal 

KALDA, the initial weights of the discriminant function are calculated using a diagonal 

covariance matrix. The update process is then performed normally. 

 

4.1.4.2.2 Adaptive information matrix 

 

ADIM is an adaptive version of QDA in which the covariance matrices and mean values 

of the different classes are recursively updated online using a Kalman filter as new data 

becomes available. The Kalman gain varies the update coefficient and changes the 

adaptation speed depending on the properties of the data.  

 

Basic QDA can be computed using the Mahalanobis distance (݀ሻ of the feature vector ࢞ 

to each class i: 

 

                             ݀ሺ࢞ሻ ൌ ሺ࢞ െ ሻTࣆ · ࡿ
ିଵ · ሺ࢞ െ  ሻ                                 (4.17)ࣆ

ሻ࢞ሺܦ       ൌ ඥ݀ଵሺ࢞ሻ െ ඥ݀ଶሺ࢞ሻ      (4.18) 

ሻ࢞ሺܥ              ൌ ൜1; ሻ࢞ሺܦ ൏ 0
2; ሻ࢞ሺܦ  0                                                    (4.19) 
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where ࡿ is the covariance matrix for class i, ࣆ is the mean value for class i, and ܥሺ࢞ሻ is 

the class to which x is assigned. For ADIM, these three equations are expanded with the 

following recursive equation: 

 

,ࡿ   
ି ൌ ሺ1  ሻܥܷ · ିଵ,ࡿ

ିଵ െ ଵା
ଵିା࢞ೖ,·࢜

· ࢜ ·  T                      (4.20)࢜

 

where ࢜ ൌ ିଵ,ࡿ
ିଵ ·  , is the current࢞ ,is the update coefficient for the adaptation ܥܷ ,,࢞

class i feature vector, k is the current sample and i is the current class. The mean vector ࣆ 

is also needed for the computation of ܦሺ࢞ሻ and needs to be estimated. This mean vector 

was incorporated as additional row and column data to the matrix ࡿ for its automatic 

estimation and to avoid an extra algorithm, resulting in an “extended” covariance matrix. 

The starting matrices ࡿ, were computed from the training data set. 

 

ADIM can also be used with diagonal QDA, which assumes that all classes have diagonal 

covariance matrices [131]. For diagonal ADIM, ࡿ, are calculated as diagonal covariance 

matrices. The update process is then performed normally. 

 

4.1.4.2.3 Unsupervised adaptive discriminant analysis 

 

From Equations 4.10 and 4.20, it is evident that the recursive Kalman update equations 

require information about the current class (‘too easy’ or ‘too hard’) in order to update the 

classifier. However, in a real-world application, this information would not be available 

and the update process would need to be unsupervised – to run without requiring the 

subject’s opinion about the current class. It would thus need to use its own, internal 

estimate of the current class. For KALDA, this would be done by replacing ݕ (the actual 

current class label) in Equation 4.10 with the estimated current class label. For ADIM, 

this would be done by replacing i (the actual current class) in Equation 4.20 with the 

estimated current class.  

 

However, such an approach can also amplify classification errors. If incorrect class 

estimates are used to recursively update the classifier, the classifier will gradually become 

worse and more prone to errors. One possible way to address this would be to also 
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generate a measure of how ‘reliable’ the estimate is. The system would then only update 

the classifier if the estimate was sufficiently reliable. 

 

In LDA, if ܦሺ࢞ሻ is greater than zero, the input is classified as class 2, and if the output is 

equal to or less than zero, the input is classified as class 1. If the absolute value of ܦሺ࢞ሻ is 

very close to zero, it can be assumed that the estimate is unreliable and not perform the 

recursive classifier update. Similarly, in QDA it can be assumed that the estimate is 

unreliable if the absolute value of ܦሺ࢞ሻ is very close to zero. To examine the possibility 

of unsupervised adaptation, KALDA and ADIM were modified so that the estimated class 

label was used in equations 4.10 and 4.20. The classifiers were, however, not recursively 

updated in each classification step. Rather, the classifiers were only updated in a 

particular step if the absolute value of ܦሺ࢞ሻ (in Equations 4.5 and 4.18) was larger than a 

certain threshold. This threshold was computed from the training data set. Otherwise, the 

classifiers were not updated in that step. 

 

With such an unsupervised adaptive fusion method, an expanded biocooperative feedback 

loop is obtained. It is shown in Figure 4.2. 

 

 
Figure 4.2: A biocooperative feedback loop incorporating adaptive discriminant analysis. 
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4.1.4.3   Implementation process 
 

The previously established data fusion methods (section 4.1.4.1) as well as adaptive 

discriminant analysis (section 4.1.4.2) were first tested with healthy subjects in a 

relatively simple, controlled task with no haptic robot. This allowed us to gauge the 

effectiveness of different methods in the absence of the effects of physical activity and 

pathological conditions. This first data fusion step is described in section 4.2. Then, the 

same data fusion methods were used in the ball-catching task (previously used in section 

3.3) with both healthy subjects and hemiparetic patients. They were first used in an open-

loop setting (to only estimate task suitability without changing it), then in a 

biocooperative closed-loop setting (to automatically change task suitability). Data fusion 

and biocooperative control in the ball-catching task are described in section 4.3.  

 

In both cases, the approach was similar. The subject performed the task for six two-

minute periods. After each period, he/she was asked whether he or she would prefer the 

task to be easier or harder. At the same time, the classifier also estimated whether the task 

should be easier or harder. The task difficulty was then adjusted according to the subject's 

opinion (open-loop setting) or the data fusion method (closed-loop setting). Adaptive 

discriminant analysis expanded this with the Kalman update process. The discriminant 

function was first initialized with data from the training set. Then, whenever the subject 

provided his or her opinion, the Kalman filter updated the discriminant function based on 

the difference between the data fusion estimate and the subject's response. In this way, an 

adaptive feedback loop which gradually adapts to the current subject is obtained. 

  

Psychophysiological (and other) features were thus mapped directly to the change that 

needs to be made to task difficulty (make task easier or harder). This is a common 

approach in psychophysiological feedback [57, 140], but is relatively “black-box” - it 

does not tell us much about the subject’s actual psychological state. Early on, an 

alternative implementation was considered: first mapping the psychophysiological 

features to arousal-valence quadrants. However, this idea was later abandoned since 

autonomic nervous system measurements are poor at distinguishing different levels of 

valence (as mentioned, for example, in section 3.3.6.5). Furthermore, in motor 

rehabilitation the goal does not need to be to distinguish many emotional states; it is 
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sufficient to optimally control the level of engagement and concentration in order to keep 

the user from becoming either bored or stressed. Thus, it was felt that a relatively simple 

two-class approach would be better for a first implementation of psychophysiological 

data fusion.  

 

 

4.2 Data fusion in a non-rehabilitation setting 
 

While the ultimate goal of the dissertation was to implement data fusion in a 

biocooperative feedback loop for rehabilitation, the data fusion methods were first tested 

with healthy subjects in a relatively simple, controlled task with no haptic robot. This 

allowed us to validate the effectiveness of different methods in the absence of the effects 

of physical activity and pathological conditions. 

 

4.2.1   Task 
 

The Corsi block-tapping task, a classic psychological experiment (see Berch et al. [27] for 

a review), was used in this study. Originally, this task consisted of nine blocks laid on a 

table. The experiment supervisor would tap on the blocks one by one. After the supervisor 

had finished, the subject had to repeat the sequence. A computerized version of the Corsi 

task was implemented with nine white blocks laid out on the screen in approximately the 

same configuration used in the original experiment (Figure 4.3). The blocks briefly 

darken one by one (the next block darkens half a second after the previous one returns to 

white). At the end of the sequence, all blocks are white and the subject has to try to repeat 

the sequence by clicking on the blocks with the mouse. Once the subject has finished 

clicking (i.e. has clicked as many blocks as the length of the sequence), a “CORRECT” or 

“FALSE” sign is briefly shown among the blocks before the next sequence begins. 
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1 2 3 4  
Figure 4.3: A sequence of four blocks in the Corsi task. 

 

The advantage of the Corsi task is that difficulty can be easily varied by changing the 

length of the sequence that needs to be repeated. Eight possible difficulty levels were 

implemented, with the lowest difficulty level featuring sequences of two blocks and the 

highest difficulty level featuring sequences of nine blocks. While five or six blocks 

present a moderate challenge, a sequence of nine blocks is extremely difficult and a 

sequence of two is extremely easy.  

 

4.2.2   Measurement protocol 
 

Upon arrival, the task was demonstrated to the subject and the procedure was described. 

The subjects signed an informed consent form and filled out the BAS/BIS questionnaire. 

Then, the physiological measurement equipment was attached and turned on. The subject 

first rested for two minutes, then performed the Corsi task for six two-minute periods (12 

minutes total). Within each period, the subject repeated several sequences of blocks in the 

task at a constant difficulty. At the end of a period, the subject was asked whether he or 

she would prefer the difficulty of the task to increase or decrease. The 9-point arousal and 

valence scales of the SAM were also presented. The difficulty of the task then changed 

randomly by one or two levels in the selected direction. Thus, subjects were able to 

control whether the difficulty will increase or decrease, but not by how much. Subjects 

were not given the option to stay at the same difficulty level.  

 

The randomness in the difficulty change was introduced in order to expose subjects to a 

wider range of difficulty levels. In pretesting, subjects usually stayed within a narrow 

range of difficulty levels (5-7 blocks per sequence) if there was no random element in the 

change of difficulty. Additionally, with no randomness, subjects would often alternate 
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between increasing and decreasing difficulty, making classification very easy (a rule 

saying ‘pick the opposite of what you did last time’ would be sufficient).  

 
After the experiment had been completed and the subject had left the laboratory, the 

collected psychophysiological and performance data were processed and normalized 

features were extracted for each time period, including the initial rest period. Since each 

subject had performed the task for six two-minute periods, six different data points were 

thus obtained for each subject. 

 

4.2.3   Participants 
 

Twenty undergraduate students from the Faculty of Electrical Engineering at the 

University of Ljubljana participated in the study. Seventeen were male, three were 

female. Age range was 21-25, mean 22.6 years, standard deviation 1.3 years. 

 

4.2.4   Fusion methods 
 

In addition to the normalized psychophysiological features described in section 2, four 

task performance features were extracted for each time period: 

- difficulty level (2-9), 

- time period (1 – first time period, 6 – last time period), 

- percentage of correctly repeated sequences, 

- mean time needed to repeat a sequence (whether correctly or incorrectly). 

Thus, there were three possible data sets to classify: only psychophysiological features, 

only performance features and both types of features. Each data set consisted of six data 

points from each subject (one for each two-minute time period) for a total of 120 data 

points. 

 

Prior to performing classification on this data, correlations were calculated between the 

SAM and performance/psychophysiology, correlations between performance and 

psychophysiology, and correlations between the BAS/BIS scales and 

performance/psychophysiology. This allowed us to validate that the different difficulty 

levels actually induced different psychological states as well as to determine whether task 



135 
 

performance and psychophysiological responses are affected by the subject's innate 

motivational systems. Spearman correlations were used for all correlations involving the 

SAM and BAS/BIS (since the data is ordinal) while Pearson correlations were used in 

other cases. Valence and arousal were normalized by subtracting the baseline value prior 

to calculating correlations. Here, it should be especially emphasized that there are six data 

points for each subject, resulting in correlations where the different data points are not 

completely independent of each other. The correlation significance and coefficient may 

thus be higher than is realistic since the number of data points is not 20 (number of 

subjects), but 120 (number of subjects x 6 periods per subject). 

 

After correlation analysis, binary logistic regression was performed and the Nagelkerke 

R2 coefficient [169] was calculated with different types of input data (performance, 

psychophysiology, BIS/BAS, all) and with the subject's preference (easier/harder) as the 

binary output. The classic R2 coefficient describes the proportion of the variability of a 

data set that is accounted for by a statistical model. The Nagelkerke R2 coefficient is a 

pseudo-R2 coefficient which can be thought of as a generalized equivalent of the classic 

R2 coefficient (which is not defined for logistic regression). In this way, it is possible to 

statistically estimate how well the different types of input data can predict the subject's 

preference before performing classification. 

 

After these two initial statistical analyses, the data was classified using the classifiers 

described in section 4.1.4, and the technique of leave-one-out cross-validation was used 

to evaluate the classifier accuracy. The entire data set was split into the test data (all six 

data points from one subject) and the training data (all other data points from all other 

subjects). The classifiers were built using the training data, then validated using the test 

data. For instance, in the case of LDA, the training data was used to calculate w and b 

using Equations 4.2 and 4.3. Then, the six data points in the test data set were classified 

using Equation 4.1 and the calculated w and b. This procedure was repeated as many 

times as there were subjects, with each subject’s data used as the test data exactly once. 

The classes assigned to the data points from the different test phases were then used to 

calculate the accuracy rate.  

 

The final accuracy rate of a classifier was calculated as the number of correctly classified 

data points divided by the number of all data points across all subjects. For purposes of 
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calculating accuracy rate, all data points are considered to be independent even though 

there are six from each subject. A data point was considered to be correctly classified if 

the class assigned to the data point by the classifier (task is too easy or too hard) for that 

data point was the same as the choice that the subject had made. Given that there are two 

possible classes, a 50% accuracy rate would correspond to chance (random classification) 

while 100% would correspond to perfect classification. A 75% accuracy rate, for 

instance, would mean that 90 out of the total 120 data points (20 subjects with 6 data 

points per subject) were classified correctly.  

 

Since the data was available offline, the adaptive discriminant analysis methods were 

tested as follows. The first data point from each subject (i.e. from the first time period of a 

session) was classified using the initial classifier obtained from the training data 

(Equations 4.6-4.8). Then, the classifier was recursively updated using this data point and 

(in the supervised implementations) the choice that the subject had made according to 

equations 4.9-4.16. The updated classifier was tested on the second data point from each 

subject, once again updated and so on.  

 

Additionally, it would be useful to know which specific combination of features would be 

most informative. After classification, SFFS was used to rank the different features. For 

this purpose, the F-to-enter threshold was lowered to 1.0 and the F-to-remove threshold 

was lowered to 0.8. While these thresholds are too low for accurate classification, they 

can still be used to rank features. It should be emphasized again that SFFS does not rank 

the features independently of each other; in each step, the selected feature is the one that 

provides the most additional information for classification, taking the contributions of the 

already selected features into account. 
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4.2.5   Results 
 

4.2.5.1   Correlation and regression analysis 

 

4.2.5.1.1 Correlations: SAM and performance  

 

Significant Spearman correlations between valence and arousal on one hand and the 

different performance features on the other are listed in Table 4.2. 

 
Table 4.2: Significant correlations between SAM and performance. 

feature 1 feature 2 p ρ 

valence 

arousal 0.016 -0.22 
difficulty level < 0.001 -0.50 

percentage of correctly repeated sequences < 0.001 0.58 
mean time needed to repeat a sequence < 0.001 -0.47 

arousal 
difficulty level < 0.001 -0.46 

percentage of correctly repeated sequences < 0.001 0.36 
mean time needed to repeat a sequence < 0.001 -0.42 

 
Difficulty level and the percentage of correctly repeated sequences were significantly 

correlated with each other (r = -0.73, p < 0.001), as were difficulty level and mean time 

needed to repeat a sequence (r = 0.74, p < 0.001). 

 

4.2.5.1.2 Correlations: SAM and psychophysiology 

 

Significant Spearman correlations between valence and arousal on one hand and the 

different psychophysiological features on the other are listed in Table 4.3. 
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Table 4.3: Significant correlations between SAM and psychophysiology. 

feature 1 feature 2 p ρ 

valence 

SDNN 0.046 -0.19 
LF/HF ratio 0.001 -0.32 

total LF power 0.002 -0.29 
respiratory rate variability 0.003 -0.27 

arousal 

mean heart rate 0.01 -0.24 
SDNN 0.004 0.26 

RMSSD < 0.001 0.33 
pNN50 0.014 0.23 

total LF power 0.05 0.18 
mean respiratory rate < 0.001 -0.33 

mean SCL 0.022 -0.21 
SCR frequency 0.004 0.27 

final skin temperature < 0.001 0.49 
 

 

4.2.5.1.3 Correlations: BAS/BIS scales and performance 

 

Significant Spearman correlations were found between the different BAS subscales and 

task performance features. BAS Fun Seeking was significantly correlated with mean time 

needed to repeat a sequence (ρ = -0.26, p = 0.006) while BAS Reward Responsiveness 

was significantly correlated with difficulty level (ρ = -0.19, p = 0.048) and mean time 

needed to repeat a sequence (ρ = -0.28, p = 0.002). There was no correlation between the 

BIS scale and task performance. 

 

There were also significant correlations between the different BAS/BIS scales 

themselves. BAS Drive was significantly correlated with BAS Fun Seeking (ρ = -0.30, p = 

0.001), BAS Reward Responsiveness (ρ = -0.21, p = 0.025) and BIS (ρ = -0.37, p < 

0.001). 
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4.2.5.1.4 Correlations: Performance and psychophysiology 

 

Significant Pearson correlations between task performance features and 

psychophysiological features are listed in Table 4.4. 

 

Table 4.4: Significant correlations between performance and psychophysiology. 

feature 1 feature 2 p r 

difficulty level 

SDNN 0.003 0.28 
total LF power < 0.001 0.36 

respiratory rate variability 0.022 0.22 
mean SCL 0.049 0.18 

percentage of correctly  

repeated sequences 

SDNN 0.03 -0.20 
LF/HF ratio 0.039 -0.19 

total LF power 0.009 -0.25 
respiratory rate variability 0.047 -0.19 

mean SCL 0.017 -0.22 

mean time needed to  

repeat a sequence 

SDNN < 0.001 0.38 
RMSSD 0.016 0.23 

total HF power 0.02 0.22 
total LF power < 0.001 0.50 

respiratory rate variability 0.002 0.29 

time period 
mean heart rate 0.02 -0.22 

pNN50 0.049 0.19 
total HF power 0.039 -0.19 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



140 
 

4.2.5.1.5 Correlations: BAS/BIS scales and psychophysiology 

 

Significant Spearman correlations between the different BAS/BIS subscales and 

psychophysiological features are listed in Table 4.5. 

 
Table 4.5: Significant correlations between BAS/BIS scales and psychophysiology. 

feature 1 feature 2 p ρ 

BAS Drive 

mean heart rate 0.004 -0.27 
SDNN < 0.001 0.44 

RMSSD < 0.001 0.42 
pNN50 < 0.001 0.37 

total HF power 0.001 0.31 
total LF power 0.045 0.19 

BAS Fun Seeking 

SDNN < 0.001 -0.34 
RMSSD 0.027 -0.21 
pNN50 0.003 -0.27 

LF/HF ratio < 0.001 -0.31 
total LF power 0.017 -0.22 

mean SCR amplitude 0.001 0.30 
final skin temperature 0.008 0.25 

BAS Reward  

Responsiveness 

mean heart rate 0.004 -0.27 
mean respiratory rate < 0.001 -0.36 

mean SCL 0.001 -0.31 
SCR frequency 0.02 -0.22 

BIS 

SDNN 0.014 0.23 
RMSSD 0.001 0.31 
pNN50 < 0.001 0.35 

total HF power 0.012 0.23 
total LF power < 0.001 0.36 

mean respiratory rate 0.001 -0.31 
respiratory rate variability 0.041 0.19 

mean SCL 0.014 -0.23 
SCR frequency < 0.001 -0.37 
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4.2.5.1.6 Logistic regression 

 

Table 4.6 shows the Nagelkerke R2 coefficient for logistic regression using different types 

of input data (performance, psychophysiology, BAS/BIS and various combinations) and 

the subject's preference (easier/harder task) as the binary output. 

 

Table 4.6: Nagelkerke R2 coefficient for logistic regression using different types of input 

data and the subject's preference as the binary output. 

input data Nagelkerke R2 
performance 0.409 

psychophysiology 0.370 
BAS/BIS 0.008 

performance + BAS/BIS 0.432 
performance + psychophysiology 0.644 

performance + psychophysiology + BAS/BIS 0.677 
 

4.2.5.2   Classification 

 

Table 4.7 shows classification results for established classification methods while Table 

4.8 shows classification results for different types of adaptive discriminant analysis. The 

best value is bolded and underlined for each input data type. 

 

Table 4.7: Classification results in a non-rehabilitation setting for methods already 

established in psychophysiology. Results are shown for different input data types 

(performance, psychophysiology, both) and for different methods of dimension reduction 

(none, PCA, SFFS). 

  performance psychophysiology both 
dimension reduction none PCA SFFS none PCA SFFS none PCA SFFS 

LDA 77.5 76.7 76.7 69.2 75.0 70.8 68.3 73.3 74.2 
QDA 75.8 76.7 77.5 70.0 64.2 75.0 70.0 67.5 70.8 

diagonal LDA 78.3 76.7 76.7 68.3 75.0 67.5 75.0 73.3 77.5 
diagonal QDA 76.7 76.7 77.5 61.7 69.2 66.7 70.0 69.2 70.8 

kNN (Euclidean) 77.5 77.5 77.5 65.0 65.8 67.5 70.8 65.8 73.3 
kNN (Mahalanobis) 74.62 76.7 75.0 70.0 69.2 67.5 68.3 68.3 70.0 

tree 80.8 67.5 70.0 75.0 73.3 71.7 85.0 72.5 66.7 
SVM 69.2 75.0 77.5 71.7 68.3 70.0 70.8 79.2 79.2 
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Table 4.8: Classification results in a non-rehabilitation setting for adaptive discriminant 

analysis. Results are shown separately for supervised and unsupervised methods, for 

different input data types (performance, psychophysiology, both) and for different 

methods of dimension reduction (none, PCA, SFFS). 

  performance psychophysiology both 
dimension reduction none PCA SFFS none PCA SFFS none PCA SFFS

su
pe

rv
is

ed
 KALDA 77.5 76.7 77.5 79.2 66.7 79.2 71.9 69.3 77.2 

ADIM 75.8 76.7 79.2 80.0 78.3 86.7 81.6 80.7 78.9 

diagonal KALDA 77.5 76.7 77.5 80.0 77.5 77.5 86.0 79.0 81.6 

diagonal ADIM 80.8 78.3 77.5 84.2 77.5 82.5 84.2 78.1 78.1 

un
su

pe
rv

is
ed

 KALDA 77.5 77.5 77.5 77.5 73.3 70.0 70.8 76.7 75.0 
ADIM 78.3 77.5 78.3 80.0 68.3 72.5 80.8 76.7 77.5 

diagonal KALDA 78.3 76.7 76.7 79.2 75.0 75.0 84.2 77.5  81.7 
diagonal ADIM 76.7 77.5 73.3 84.2 74.2 81.7 82.5 75.0 75.0 

 

When ranking features from healthy subjects with a F-to-enter threshold of 1.0 and a F-

to-remove threshold of 0.8, SFFS took the following steps: 

1. Entered: percentage of correct answers (F to enter = 45.40), 

2. Entered: respiratory rate variability (F to enter = 13.59), 

3. Entered: mean heart rate (F to enter = 3.31), 

4. Entered: total power in the HF heart rate band (F to enter = 2.00), 

5. Entered: SCR frequency (F to enter = 1.54). 

6. Entered: difficulty level (F to enter = 1.43). 

SFFS did not remove any features during the sequence. 

 

If task performance measures were excluded, SFFS took the following steps: 

1. Entered: respiratory rate variability (F to enter = 11.22),  

2. Entered: mean heart rate (F to enter = 12.27),  

3. Entered: mean respiratory rate (F to enter = 7.13),  

4. Entered: total power in the low-frequency heart rate band (F to enter = 2.06),  

5. Entered: SCR frequency (F to enter = 1.71). 

SFFS did not remove any features during the sequence. 
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4.2.6   Discussion 
 

4.2.6.1   Correlation and regression analysis 

 

Results of the SAM confirmed that the different difficulty levels induced different 

psychological states. As expected, self-reported valence decreased as the difficulty 

increased. Surprisingly, however, self-reported arousal also decreased as the difficulty 

increased. It had been expected to increase since more cognitive effort would be required 

to remember the longer block sequences. Correlations between the SAM and 

psychophysiology also produce unexpected results: mean respiratory rate, mean SCL, 

and SCR frequency all decrease as arousal increases while final skin temperature 

increases together with arousal. All of these correlations are at odds with existing 

literature as well as the research performed in section 3. 

 

Correlations between performance and psychophysiology, on the other hand, are as 

expected. For instance, increasing difficulty level also increases mean SCL as predicted by 

the literature and research in section 3. The percentage of correctly repeated sequences is 

negatively correlated with HRV and respiratory rate variability, which is also expected - 

as cognitive requirements become too high and performance begins to suffer, both HRV 

and respiratory rate variability increase. This was previously noted for respiratory rate 

variability in the inverted pendulum task (section 3.2) and for HRV by other authors 

[170].  

 

Thus, there seems to be a disagreement between the SAM and performance measures. 

Though this is not supported by quantitative observations, one possibility is that the 

disagreement was caused by the subjects' response to high difficulty levels. In many 

cases, the experimenter observed that, when faced with a high difficulty level, the 

subjects simply chose blocks randomly and reported a low arousal due to (in their own 

words) "not really trying". Though this is a valid course of action, it emphasized the need 

for an alternative method of monitoring the subject. The experimenter's opinion was thus 

'officially' later used for data fusion in rehabilitation (section 4.3). Another possibility 

would be to include additional performance features that could provide information about 

the subject’s behavior. For instance, to determine whether subjects choose blocks 
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randomly and whether this affects their arousal, mean answer time could be split into two 

features: the mean answer time for correctly answered questions and the mean answer 

time for incorrectly answered questions. 

Results of the BAS/BIS showed that the innate motivational systems indeed affect 

performance in the task, as subjects with higher scores on the BAS subscales repeated 

block sequences more quickly. Interestingly, BAS Reward Responsiveness was also 

negatively correlated with difficulty level, suggesting that subjects with higher reward 

responsiveness prefer to stay at lower difficulties. Though there are few rewards in the 

task (only “CORRECT” or “FALSE” signs) and the correlation is not especially strong, it 

makes sense; those who focus on reward are likely to prefer lower difficulties where 

questions are easier to answer correctly. 

 

There were also several correlations between the BAS/BIS and psychophysiology, 

showing that a subject’s innate psychological properties affect his or her 

psychophysiological response to a specific task. All four of the psychophysiological 

signals are affected, and different BAS subscales even show notably different correlations 

(e.g. BAS Drive has a +0.44 Spearman correlation coefficient with SDNN while BAS Fun 

Seeking has a -0.34 correlation coefficient with SDNN). These results emphasize the 

effects of intersubject variability in both psychological and psychophysiological 

responses to tasks. 

 

Finally, results of logistic regression analysis suggest that performance and 

psychophysiology provide a similar amount of information about the subject’s preference 

(Nagelkerke’s R2 was 0.409 for performance and 0.370 for psychophysiology) while a 

combination of the two provides a larger amount of information (Nagelkerke’s R2 was 

0.644 for a combination of performance and psychophysiology). This is an encouraging 

result that suggests that classification with both data sources should be more accurate than 

with only one data source. 

 

4.2.6.2   Classification 

 

From Table 4.7, it is evident that all established classification methods give similar results 

when used on the same type of data. Most methods produce a classification accuracy of 
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75-80% with performance features and 65-75% with psychophysiological features. In the 

case of psychophysiology, the methods that perform best all contain some form of 

dimension reduction: either PCA, SFFS, or the dimension reduction inherently present in 

the creation of a classification tree. Interestingly, despite dimension reduction, many 

established methods produce a worse result when all features are used than when only 

performance features are used. This is most likely because the data dimensionality is large 

(4 performance features + 13 psychophysiological features) and the available data set is 

small (20 subjects with 6 feature vectors each), so it is difficult to create a robust 

classifier with limited data. Dimension reduction does improve results in most cases when 

both performance and psychophysiological features are included, and the most accurate 

classifier is again the classification tree (which already includes dimension reduction). 

Thus, it appears that, at least in this case, the choice of classification method is not quite 

as important as selecting the most informative features. 

 

Perhaps the exception here is adaptive discriminant analysis. Though it offers no 

improvement for performance data, adaptive discriminant analysis noticeably improves 

classification accuracy for psychophysiological data (best accuracy 75.0% for 

nonadaptive methods and 86.7% for supervised adaptive methods). Supervised adaptive 

discriminant analysis generally outperforms unsupervised analysis when 

psychophysiological features or both types of features are used. This is not surprising, as 

methods that do not use the subject’s actual input must generate an estimate of that input, 

which can hardly be more accurate than the subject’s actual input. The difference in 

accuracy between supervised and supervised methods ranges between very small and 

quite sizeable, with unsupervised methods even performing slightly better in a few cases. 

However, it is difficult to say whether this is a case of ‘statistical noise’ or actual 

systematic differences between methods that allow better or worse unsupervised 

adaptation.  

 

Supervised adaptive discriminant analysis outperforms established classification methods 

when used with psychophysiological features or both types of features, and unsupervised 

adaptive discriminant analysis still outperforms established methods when used with only 

psychophysiological features. This confirms its usefulness in psychophysiological data 

fusion.  
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The results show that the implemented data fusion methods are capable of estimating the 

suitability of the task for the current subject from both performance and 

psychophysiological data when used in a controlled laboratory setting on a relatively 

homogenous population (undergraduate engineering students). However, the question 

remains whether they are equally effective in rehabilitation, especially due to the effects 

of physical activity and pathological states. This is explored in the next section.  

 

4.2.7  Others' contributions 
 

Matjaž Mihelj helped design the experiment protocol while Maja Milavec helped prepare 

the computerized version of the Corsi task. Matjaž Mihelj also had the idea to combine 

Kalman filtering with classification, resulting in the use of adaptive discriminant analysis. 

 

 

4.3 Data fusion and biocooperative control in rehabilitation 
 

Having tested a multitude of classification methods in a controlled setting and obtained 

good results, it was decided to continue by implementing them in a physically demanding 

rehabilitation task and use them in a biocooperative feedback loop with both hemiparetic 

patients and healthy controls. A lower classification accuracy was expected due to the 

effects of physical activity and pathological conditions, though it was uncertain just how 

strongly the accuracy would be affected.   

 

4.3.1   Task 
 

Since the ball-catching task had already been used to study stroke patients’ 

psychophysiological responses in section 3.3, it was reused for purposes of data fusion 

and biocooperative control. This allowed us to build on already obtained knowledge. The 

basic premise of the task remains the same: In the centre of the screen, there is a table 

sloped toward the subject. At the beginning of the task, a ball appears at the top of the 

slope and starts rolling downward. The subject’s goal is to catch the ball before it reaches 

the lower end of the table. Once the ball is grasped, a basket appears above the table. The 

subject must then place the ball into the basket. Once the ball is dropped into the basket or 
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falls off the table, another ball appears at the top of the table, the basket disappears and 

the task continues.  

 

For purposes of data fusion, seven different difficulty levels were implemented, with 

higher levels featuring progressively smaller and faster balls. While the first level is very 

easy (the ball is very large and requires approximately fifteen seconds to cross the table), 

the seventh is almost impossible (the ball crosses the table in less than three seconds and 

has a radius of 1/5 the radius from the first level). The third level is the one that was used 

in the section 3.3. The ultimate goal of the biocooperative feedback loop was to change 

the difficulty level so that the subject is optimally challenged. 

 

Though various modes of active robotic support had been offered in section 3.2, only one 

was used here. If a subject is unable to open or close his or her hand, the robot can 

automatically grasp the ball as long as the subject’s hand is in the correct position. A 

requirement for this study was that the subjects be able to catch and carry the ball 

themselves. This was done to minimize intersubject variability caused by different levels 

of motor ability. 

 

4.3.2   Measurement protocol 
 

The study was divided into two phases: the open-loop phase (where task difficulty is 

adjusted manually by the subject and experiment supervisor) and the closed-loop phase 

(where task difficulty is adjusted by the biocooperative controller). The open-loop phase 

was conducted first, with the goal of obtaining a larger set of data that could be used to 

train the classifiers needed for a biocooperative controller. It was performed first with 

healthy subjects, then with hemiparetic patients.  After training the biocooperative 

controller using the open-loop data, the controller was tested in the closed-loop phase 

with a smaller number of both healthy subjects and hemiparetic patients. 

 

The experiment procedure for both phases was similar. The experiment was conducted in 

a dedicated room at the University Rehabilitation Institute of the Republic of Slovenia. 

Three people were present: the subject, experiment supervisor and occupational therapist. 

Upon arrival, subjects were informed of the purpose and procedure of the experiment. 
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The description of the open-loop and closed-loop procedures differed as follows: subjects 

in the open-loop phase were told that task difficulty would be changed according to their 

wishes while subjects in the closed-loop phase were told that task difficulty would be 

changed according to a computer program and may not perfectly agree with their wishes. 

After being informed of the purpose and procedure of the experiment, subjects signed an 

informed consent form and were seated in front of the robot. One arm (the paretic arm for 

patients, the right arm for healthy subjects) was strapped into the cuffs and grasping 

device, and the physiological sensors were attached. The third level of the task was 

demonstrated, and subjects were allowed to practice it briefly.  

 

After practice, the subject rested for two minutes while baseline physiological 

measurements were recorded. Then, the subject began performing the task at level 3, 4 or 

5 (randomly chosen). After two minutes of performing the task at that difficulty level, the 

task was paused briefly and the subject was asked whether he or she would prefer the 

difficulty of the task to increase or decrease. Subjects were not given the option to stay at 

the same difficulty level. Obviously, it is possible that a subject finds the current 

difficulty to be ‘just right’ and does not wish to change it. However, only two choices 

were offered for two reasons. First, this simplifies data fusion by reducing the problem to 

two choices rather than three. Second, it was found in pretesting that subjects tended to 

disproportionately keep difficulty at the same level if offered the option, even if visibly 

frustrated or bored and even if encouraged by the experimenter to change the difficulty. 

This was likely due to a desire to please the experimenter and therapist by not reporting 

any dissatisfaction with the system. 

 

Before asking the subject about his or her preference, the experimenter also noted his own 

opinion of whether difficulty should increase or decrease. A second, more objective 

opinion of what difficulty would be appropriate for the subject was thus obtained. The 

issue of the reliability of self-report measures has been previously raised in 

psychophysiology, and experience from the analysis of the effects of stroke (section 3.3) 

and data fusion in a non-rehabilitation setting (section 4.2) suggested that the subject’s 

opinion can be unreliable or influenced by unexpected factors. The opinions of an 

observer have been suggested as an alternative or validation measure [83]. The 

experimenter’s opinion was, of course, also subjective to a degree and was based on 
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factors such as the subject’s task performance, level of physical exertion, verbal 

comments and facial expressions. 

 

In the open-loop phase, once the subject had stated his or her preference, the difficulty 

changed by one or two levels in the direction chosen by the subject. This randomness was 

introduced in order to expose subjects to a wider range of difficulty levels and create a 

more robust training data set. If difficulty had always changed by one level, the system 

would have most likely quickly reached a ‘steady state’ where difficulty alternated 

between increasing and decreasing. In the closed-loop phase, the difficulty changed in the 

direction chosen by the biocooperative controller, and the subject was informed about the 

actual change in difficulty.  

 

After task difficulty was changed, the task began again at the new difficulty. In total, the 

subject went through six two-minute periods, with the subject’s preference noted and the 

difficulty changing after each one. After the final task period, the experiment was 

concluded. 

 

4.3.3   Participants 
 

Twenty-four healthy subjects (20 males, 4 females, age 31.1 ± 10.9 years, age range 21-

61) and eleven hemiparetic patients  (8 males, 3 females, age 43.2 ± 13.5 years, age range 

22-69) participated in the open-loop phase of the study. Ten healthy subjects (9 males, 1 

female, age 33.9 ± 12.6 years, age range 22-62) and six hemiparetic patients (4 male, 2 

female, age 58.3 ± 6.3 years, age range 54-67) participated in the closed-loop phase of the 

study. No subject participated in both phases. All patients were undergoing motor 

rehabilitation at the University Rehabilitation Institute of the Republic of Slovenia and 

were tested with the FIM [100] and MMSE [99] within a week of the experiment session. 

All patients scored at least 26 out of a possible 30 on the MMSE and can thus be 

considered cognitively intact. None of the patients had been diagnosed with visual 

neglect. 

 

The patients in the open-loop group were hemiparetic as a result of intracerebral 

hemorrhage (3 subjects), cerebral infarction (4 subjects), or surgery of a neoplasm of the 
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brain (4 subjects). Time since stroke onset or surgery was 216 ± 228 days (minimum 14, 

maximum 749). Score on the FIM was 103 ± 14 (out of a possible 126). Six suffered from 

hemiparesis of the left side of the body and five suffered from hemiparesis of the right 

side of the body.  

 

The patients in the closed-loop group were hemiparetic as a result of subarachnoid 

hemorrhage (1 subject), intracerebral hemorrhage (2 subjects), cerebral infarction (2 

subjects), or surgery of a neoplasm of the brain (1 subject). Time since stroke onset or 

surgery was 166 ± 34 days (minimum 110, maximum 202). Score on the FIM was 108 ± 

5. Three suffered from hemiparesis of the left side of the body and three suffered from 

hemiparesis of the right side of the body.  

 

A majority of the patients had received secondary stroke prevention drugs (including 

antihypertensives) prior to participation in the study. Seven patients in the open-loop 

group and one patient in the closed-loop group had received low doses of psychotropics 

that had no noticeable side-effects. 

 

With 24 healthy subjects and 11 patients in the open-loop phase, there were thus 144 data 

points for healthy subjects and 66 data points for patients in the open-loop phase. With 10 

healthy subjects and 6 patients in the closed-loop phase, there were thus 60 data points for 

healthy subjects and 36 data points for patients in the closed-loop phase. 

 

4.3.4   Fusion and control methods 
 

In addition to the normalized psychophysiological features and biomechanical features 

described in section 2, four task performance features were extracted for each time 

period: 

- difficulty level (1-7),  

- time period (1 – first time period, 6 – last time period),  

- percentage of caught balls,  

- percentage of balls placed into the basket. 
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4.3.4.1   Open-loop cross-validation 

 

Before performing classification, binary logistic regression was performed and the 

Nagelkerke R2 coefficient [169] was calculated with different types of input data from the 

open-loop phase (performance, psychophysiology, biomechanics, all) and with the 

subject's preference (easier/harder) as the binary output. The classic R2 coefficient 

describes the proportion of the variability of a data set that is accounted for by a statistical 

model. The Nagelkerke R2 coefficient is a pseudo-R2 coefficient which can be thought of 

as a generalized equivalent of the classic R2 coefficient (which is not defined for logistic 

regression). In this way, it is possible to statistically estimate how well the different types 

of input data can predict the subject's preference before performing classification.  

 

After logistic regression, classification was performed with four possible data sets: only 

performance features, only biomechanical features, only psychophysiological features and 

all types of features. They were used with the classifiers described in section 4.1.4, and 

the technique of leave-one-out cross-validation was used to evaluate the classifier 

accuracy. The entire data set was split into the test data (all six data points from one 

subject) and the training data (all other data points from all other subjects). The classifiers 

were built using the training data, then validated using the test data. For instance, in the 

case of LDA, the training data was used to calculate w and b using Equations 4.2 and 4.3. 

Then, the six data points in the test data set were classified using Equation 4.1 and the 

calculated w and b. This procedure was repeated as many times as there were subjects, 

with each subject’s data used as the test data exactly once. The classes assigned to the 

data points from the different test phases were then used to calculate the accuracy rate. 

 

The final accuracy rate of a classifier was calculated as the number of correctly classified 

data points divided by the number of all data points across all subjects. For purposes of 

calculating accuracy rate, all data points are considered to be independent even though 

there are six from each subject. A data point was considered to be correctly classified if 

the class assigned to the data point by the classifier (task is too easy or too hard) for that 

data point was the same as the choice that the subject had made. Given that there are two 

possible classes, a 50% accuracy rate would correspond to chance (random classification) 

while 100% would correspond to perfect classification. In the case of healthy subjects, for 
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instance, a 75% accuracy rate would mean that 108 out of the total 144 data points (24 

subjects with 6 data points per subject) had been correctly classified. 

 

Since the data was available offline, the adaptive discriminant analysis methods were 

tested as follows. The first data point from each subject (i.e. from the first time period of a 

session) was classified using the initial classifier obtained from the training data 

(Equations 4.6-4.8). Then, the classifier was recursively updated using this data point and 

(in the supervised implementations) the choice that the subject had made according to 

equations 4.9-4.16. The updated classifier was tested on the second data point from each 

subject, once again updated and so on.  

 

Classifiers were first built and cross-validated with data from only healthy subjects, then 

separately built and cross-validated with data from only hemiparetic subjects. Finally, the 

classifiers were also built using data from all healthy subjects and tested them on data 

from hemiparetic subjects. This allowed us to see whether information obtained from 

healthy subjects can be applied to patients. From previous experience obtained in section 

3.3, it was expected that, at the very least, classifiers incorporating psychophysiological 

features could not be directly transferred from healthy subjects to patients. 

 

Additionally, it would be useful to know which specific combination of features would be 

most informative. After classification, SFFS was used to rank the different features. For 

this purpose, the F-to-enter threshold was lowered to 1.0 and the F-to-remove threshold 

was lowered to 0.8. While these thresholds are too low for accurate classification, they 

can still be used to rank features. It should be emphasized again that SFFS does not rank 

the features independent of each other; in each step, the selected feature is the one that 

provides the most additional information for classification, taking the contributions of the 

already selected features into account. 

 

4.3.4.2   Closed-loop validation 

 

The classifier that yielded the highest accuracy rate in open-loop cross-validation was 

selected for implementation in a closed-loop biocooperative controller. Due to expected 

differences between healthy subjects and patients, two classifiers were trained: one for 
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healthy subjects and one for patients. They were trained using data from the open-loop 

cross-validation phase. 

 

As mentioned in section 4.3.2, the closed-loop measurement protocol was similar to the 

open-loop protocol. At the end of each period, the biocooperative controller output 

whether the task difficulty should be increased or decreased. The output was shown on 

the screen to the experimenter, but not to the subject. The subject was asked about his or 

her preference, but task difficulty was changed according to the output of the controller. 

Accuracy rate was again calculated as the number of matches divided by the number of 

all estimates made.  

 

The goal of closed-loop validation was not to compare different methods, classifiers or 

features; this was done with the larger set of data from the open-loop phase. Instead, the 

goal was to demonstrate online task difficulty adaptation in a biocooperative feedback 

loop. 

 

4.3.5   Results 
 

4.3.5.1   Open-loop cross-validation – healthy subjects 

 

Table 4.9 shows the Nagelkerke R2 coefficient for logistic regression using different types 

of input data (performance, biomechanics, psychophysiology, and various combinations) 

and the subject's preference (easier/harder task) as the binary output. Results for 

established classification methods are shown in Table 4.10 while results for adaptive 

discriminant analysis are shown in Table 4.11. The best value is bolded and underlined 

for each input data type. The experimenter and subject agreed on whether difficulty 

should be increased or decreased in 87.6% of all cases. 
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Table 4.9: Nagelkerke R2 coefficient for logistic regression using different types of input 

data and the subject's preference as the binary output. Calculated for healthy subjects in 

the open-loop phase. 

input data Nagelkerke R2 
performance 0.574 
biomechanics 0.500 

psychophysiology 0.340 
performance + biomechanics 0.615 

performance + psychophysiology 0.744 
performance + biomechanics + psychophysiology 0.768 

 

Table 4.10: Classification results for healthy subjects in the open-loop phase for methods 

already established in psychophysiology. Results are shown for different input data types 

(performance, biomechanics, psychophysiology, all) and for different methods of 

dimension reduction (none, PCA, SFFS). 

  performance biomechanics psychophysiology all 
dimension reduction none PCA  SFFS none PCA SFFS none PCA SFFS none PCA SFFS

LDA 81.9 81.9 81.9 75.0 73.6 73.6 56.9 58.3 56.9 75.7 68.1 84.7 
QDA 81.9 81.9 81.9 76.4 73.0 68.8 56.9 57.6 56.3 68.1 65.3 81.9 

diagonal LDA 80.6 81.3 81.9 74.3 75.0 70.9 60.4 58.3 56.3 77.8 68.8 81.9 
diagonal QDA 79.9 82.6 81.9 75.0 70.1 68.8 60.4 57.6 53.5 79.9 66.0 81.3 

kNN (Euclidean) 77.1 77.1 81.3 73.6 73.6 56.9 60.4 60.4 55.6 62.5 60.4 80.6 
kNN (Mahalanobis) 81.9 81.9 81.3 70.8 68.8 66.7 56.9 55.6 52.0 66.7 66.7 81.3 

tree 79.9 81.9 78.5 70.1 75.0 67.4 62.5 54.9 53.5 77.1 63.9 78.5 
SVM  81.3 78.5  81.3 73.6 75.0 72.2 56.9  58.3 56.9 71.5  68.1   82.6
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Table 4.11: Classification results for healthy subjects in the open-loop phase for adaptive 

discriminant analysis. Results are shown separately for supervised and unsupervised 

methods, for different input data types (performance, biomechanics, psychophysiology, 

all) and for different methods of dimension reduction (none, PCA, SFFS). 

  performance biomechanics psychophysiology all 
dimension reduction none PCA SFFS none PCA SFFS none PCA SFFS none PCA SFFS

su
pe

rv
is

ed
 KALDA 82.6 82.6 82.6 75.7 68.8 73.6 71.5 71.5 60.4 75.7 72.9 84.7

ADIM 81.9 80.6 81.9 77.8 76.4 68.8 66.0 66.0 60.4 80.6 68.8 81.9
diagonal KALDA 82.6 79.2 82.6 80.6 73.6 82.6 76.4 77.1 76.4 83.3 76.4 84.7
diagonal ADIM 79.9 75.7 79.2 75.0 74.3 72.2 66.0 67.4 65.3 79.9 70.2 79.9

un
su

pe
rv

is
ed

 

KALDA 82.6 81.9 81.9 75.0 66.7 73.6 68.8 68.1 56.3 75.7 70.2 84.7
ADIM 81.9 79.9 81.9 77.1 71.5 68.8 63.2 62.5 56.3 73.6 65.3 81.9

diagonal KALDA 80.6 74.3 82.6 78.5 73.6 78.5 70.8 71.5 70.1 79.9 66.7 83.3
diagonal ADIM 79.9 74.3 79.9 75.0 65.3 71.5 64.6 63.2 62.5 79.9 68.8 81.3

 

When ranking features from healthy subjects with a F-to-enter threshold of 1.0 and a F-

to-remove threshold of 0.8, SFFS took the following steps: 

1. Entered: percentage of caught balls (F to enter = 129.87),  

2. Entered: mean SCR amplitude (F to enter = 3.94),  

3. Entered: pNN50 (F to enter = 4.19),  

4. Entered: total power in the LF heart rate band (F to enter = 2.25),  

5. Entered: SCR frequency (F to enter = 1.87),  

6. Entered: mean absolute acceleration (F to enter = 2.82), 

7. Entered: mean frequency of the acceleration signal (F to enter = 2.04), 

8. Entered: respiratory rate variability (F to enter = 1.97), 

9. Entered: mean SCL (F to enter = 1.63), 

10. Entered: LF/HF ratio (F to enter = 3.40), 

11. Entered: percentage of balls placed into the basket (F to enter = 1.36), 

12. Entered: final skin temperature (F to enter = 1.07). 

SFFS did not remove any entered features. 

 

As an illustration of how classification accuracy changes with time, Figure 4.4 shows the 

accuracy rate of three established classification methods as a function of time period 

when used on psychophysiological data or performance data from healthy subjects. 

Furthermore, as an illustration of how adaptive methods improve accuracy, Figure 4.5 

shows a comparison of nonadaptive and supervised adaptive diagonal LDA as a function 
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of time period when used on psychophysiological data from healthy subjects. Although 

both nonadaptive and adaptive diagonal LDA yield the same accuracy rate during the first 

task period, accuracy is higher for the adaptive approach afterwards. Finally, as an 

illustration of how the size of the training set improves classification accuracy, Figure 4.6 

shows the accuracy rate of the best nonadaptive method as a function of training set size 

for different types of data from healthy subjects.  

 
     Psychophysiology               Performance 

   
Figure 4.4: Accuracy rate as a function of time period for open-loop cross-validation of 

three established classification methods: LDA, k-nearest neighbours with Euclidean 

distance, and a classification tree. The inputs are psychophysiological (left) or 

performance (right) features from healthy subjects. 

 
Figure 4.5: Accuracy rate as a function of time period for open-loop cross-validation of 

nonadaptive and supervised adaptive diagonal LDA. The inputs are psychophysiological 

features from healthy subjects. 
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Figure 4.6: Accuracy rate as a function of training set size for different types of input data 

in open-loop cross-validation. Accuracy rate is taken for the best nonadaptive method. All 

data are from healthy subjects. 

 

4.3.5.2   Open-loop cross-validation - patients 

 

Table 4.12 shows the Nagelkerke R2 coefficient for logistic regression using different 

types of input data (performance, biomechanics, psychophysiology, and various 

combinations) and the subject's preference (easier/harder task) as the binary output. 

 

Table 4.12: Nagelkerke R2 coefficient for logistic regression using different types of input 

data and the subject's preference as the binary output. Calculated for patients in the open-

loop phase. 

input data Nagelkerke R2 
performance 0.722 
biomechanics 0.672 

psychophysiology 0.527 
performance + biomechanics 0.921 

performance + psychophysiology 0.974 
performance + biomechanics + psychophysiology 0.975 

 

Classifiers were first built and cross-validated with data from only hemiparetic subjects. 

Results for established classification methods are shown in Table 4.13. Results for 

adaptive discriminant analysis are shown in Table 4.14. The best value is bolded and 
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underlined for each input data type. The experimenter and subject agreed on whether 

difficulty should be increased or decreased in 97.0% of all cases. 

 

Table 4.13: Classification results for hemiparetic patients in the open-loop phase for 

methods already established in psychophysiology. Results are shown for different input 

data types (performance, biomechanics, psychophysiology, all) and for different methods 

of dimension reduction (none, PCA, SFFS). 

  performance biomechanics psychophysiology all 
dimension reduction none PCA  SFFS none PCA SFFS none PCA SFFS none PCA SFFS

LDA 81.8 81.8 81.8 75.8 65.2 75.8 54.5 56.1 60.6 75.8 83.3 89.4
QDA 80.3 80.3 83.3 66.7 62.1 75.8 56.1 57.6 57.6 62.1 63.6 86.4

diagonal LDA 81.8 83.3 81.8 71.2 63.6 71.2 60.6 56.1 57.6 75.8 83.3 83.3
diagonal QDA 83.3 80.3 83.3 66.7 63.6 69.7 56.1 56.1 56.1 81.8 77.3 83.3

kNN (Euclidean) 77.3 77.3 83.3 60.6 60.6 66.7 57.6 57.6 57.6 57.6 62.1 75.8
kNN (Mahalanobis) 80.3 80.3 81.8 66.7 65.2 69.7 53.0 50.0 63.6 57.6 63.6 80.3

tree 78.8 83.3 81.8 75.8 60.6 78.8 60.6 54.5 53.0 74.2 66.7 81.8
SVM 78.8 77.3 83.3 68.2 56.1 77.3 56.1 60.6 57.6 56.1 56.1 81.8

 

Table 4.14: Classification results for hemiparetic patients in the open-loop phase for 

adaptive discriminant analysis. Results are shown separately for supervised and 

unsupervised methods, for different input data types (performance, biomechanics, 

psychophysiology, all) and for different methods of dimension reduction (none, PCA, 

SFFS). 

  performance biomechanics psychophysiology all 
dimension reduction none PCA SFFS none PCA SFFS none PCA SFFS none PCA SFFS

su
pe

rv
is

ed
 KALDA 81.8 81.8 81.8 75.8 72.7 75.8 68.2 65.2 68.2 75.8 60.6 89.4

ADIM 80.3 80.3 83.3 72.7 71.2 75.8 66.7 63.6 66.7 62.1 65.2 86.4
diagonal KALDA 81.8 78.8 81.8 71.2 74.2 75.8 68.2 77.3 69.7 75.8 80.3 81.8
diagonal ADIM 83.3 75.8 83.3 74.2 74.2 75.8 68.2 74.2 69.7 81.8 77.3 86.4

un
su

pe
rv

is
ed

 

KALDA 81.8 81.8 81.8 75.8 68.2 75.8 63.6 63.6 68.2 75.8 68.2 89.4
ADIM 80.3 80.3 83.3 71.2 65.2 75.8 62.1 62.1 63.6 62.1 63.6 86.4

diagonal KALDA 81.8 77.3 81.8 71.2 71.2 72.7 65.2 71.2 65.2 75.8 77.3 81.8
diagonal ADIM 83.3 75.8 83.3 72.7 69.7 69.7 63.6 69.7 65.2 81.8 77.3 83.3
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When ranking features from hemiparetic patients with a F-to-enter threshold of 1.0 and a 

F-to-remove threshold of 0.8, SFFS took the following steps: 

1. Entered: percentage of balls placed into the basket (F to enter = 100.55), 

2. Entered: respiratory rate variability (F to enter = 3.71), 

3. Entered: total power in the high-frequency heart rate band  (F to enter = 7.73), 

4. Entered: RMSSD (F to enter = 5.02), 

5. Entered: final skin temperature (F to enter = 2.82), 

6. Entered: mean absolute force (F to enter = 1.41), 

7. Entered: difficulty level (F to enter = 2.08), 

8. Entered: mean respiratory rate (F to enter = 1.56), 

9. Entered: mean heart rate (F to enter = 1.22), 

10. Entered: SDNN (F to enter = 2.58), 

11. Removed: RMSSD (F to remove = 0.23), 

12. Entered: mean absolute acceleration (F to enter = 1.95), 

13. Removed: mean absolute force (F to remove = 0.20). 

 

Classifiers were also trained with data from healthy subjects, then tested on patient data. 

In this case, results for established classification methods are shown in Table 4.15 while 

results for adaptive discriminant analysis are shown in Table 4.16. 

 

Table 4.15: Classification results for methods already established in psychophysiology 

when classifiers are trained with data from healthy subjects, then tested on patient data.  

Results are shown for different input data types (performance, biomechanics, 

psychophysiology, all) and for different methods of dimension reduction (none, PCA, 

SFFS). 

  performance biomechanics psychophysiology all 
dimension reduction none PCA  SFFS none PCA SFFS none PCA SFFS none PCA SFFS

LDA 78.8 78.8 83.3 63.6 65.2 62.1 54.6 54.6 53.0 71.2 48.5 81.8
QDA 80.3 80.3 78.8 65.2 54.6 60.6 45.5 50.0 59.1 60.6 50.0 78.8

diagonal LDA 81.8 83.3 78.8 65.2 68.2 69.7 50.0 54.6 59.1 69.7 50.0 78.8
diagonal QDA 80.3 80.3 78.8 57.6 57.6 60.6 47.0 51.5 60.6 63.6 50.0 78.8

kNN (Euclidean) 80.3 83.3 84.9 63.6 68.2 54.6 43.9 47.0 56.1 50.0 48.5 81.8
kNN (Mahalanobis) 84.9 84.9 81.8 62.1 62.1 62.1 48.5 50.0 59.1 57.6 51.5 81.8

tree 80.3 75.8 86.4 71.2 71.2 54.6 51.5 54.6 56.1 74.2 56.1 86.4
SVM 81.8 75.8 84.9 66.7 68.2 66.7 56.1 53.0 62.1 56.1 45.5 84.9
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Table 4.16: Classification results for adaptive discriminant analysis when classifiers are 

trained with data from healthy subjects, then tested on patient data. Results are shown 

separately for supervised and unsupervised methods, for different input data types 

(performance, biomechanics, psychophysiology, all) and for different methods of 

dimension reduction (none, PCA, SFFS). 

  performance biomechanics psychophysiology all 
dimension reduction none PCA SFFS none PCA SFFS none PCA SFFS none PCA SFFS

su
pe

rv
is

ed
 KALDA 78.8 75.8 83.3 68.2 63.6 71.2 66.7 59.1 56.1 68.2 54.6 81.8

ADIM 80.3 80.3 78.8 63.6 57.6 69.7 63.6 54.6 59.1 62.1 54.6 78.8
diagonal KALDA 78.8 81.8 81.8 63.6 68.2 71.2 60.6 60.6 57.6 63.6 57.6 78.8
diagonal ADIM 80.3 80.3 80.3 65.2 66.7 65.2 62.1 60.6 60.6 63.6 57.6 78.8

un
su

pe
rv

is
ed

 

KALDA 78.8 75.8 83.3 62.1 63.6 60.6 50.0 51.5 54.6 65.2 45.5 81.8
ADIM 78.8 80.3 78.8 60.6 57.6 69.7 48.5 47.0 54.6 57.6 47.0 75.8

diagonal KALDA 78.8 80.3 81.8 59.1 54.6 62.1 45.5 47.0 53.0 63.6 50.0 78.8
diagonal ADIM 80.3 80.3 80.3 65.2 54.6 63.6 48.5 50.0 54.6 60.6 48.5 78.8

 

4.3.5.3   Closed-loop validation 

 

As seen in the open-loop phase, the most accurate type of classifier was (adaptive or 

nonadaptive) LDA with all data types and SFFS. Thus, LDA with SFFS was chosen for 

closed-loop testing in both healthy subjects and patients. For healthy subjects, three 

features exceeded the SFFS F-to-enter threshold and were thus included: the percentage 

of caught balls, mean SCR amplitude and pNN50. For patients, four features exceeded the 

SFFS F-to-enter threshold and were thus included:  percentage of balls placed into the 

basket, respiratory rate variability, total power in the high-frequency heart rate band and 

RMSSD. In closed-loop testing, this approach yielded an accuracy rate of 88.3% for 

healthy subjects and 88.9% for patients.  The experimenter and subject agreed on whether 

difficulty should be increased or decreased in 91.7% of all cases for healthy subjects and 

in 97.2% of all cases for patients. 

 

In a follow-up offline analysis, the closed-loop data was also passed through the most 

accurate classifier based only on performance data (also trained using data from the open-

loop phase). Performance data yielded an accuracy rate of 86.7% for healthy subjects and 

83.3% for patients. For an example of psychophysiology increasing accuracy, see Figure 

4.7. Additionally, in a second follow-up offline analysis, the closed-loop data was passed 
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through supervised KALDA with SFFS. However, the adaptive version yielded the same 

accuracy rates as the nonadaptive version for both healthy subjects and patients. 

 

 
Figure 4.7: One hemiparetic patient in the closed-loop phase: two input features (one 

performance, one psychophysiological), the output of LDA, and the subject’s preferences. 

High performance and a low respiratory rate variability (even, regular breathing) indicate 

an easy task. For the first, second, fourth and fifth task periods, task performance would 

have been sufficient to change the difficulty. During the third period, task performance is 

moderately high, but breathing becomes very uneven, indicating stress. If only task 

performance had been taken into account in this case, the incorrect decision would have 

been made (the patient was successful at the task, but was stressed and wanted difficulty 

to decrease). During the last period, both performance and psychophysiology are 

unreliable, and the patient stated that he would most prefer difficulty to stay the same. 

 

4.3.6   Discussion 
 

4.3.6.1   The usefulness of different data types 

 

Results of logistic regression, conducted prior to performing open-loop cross-validation 

of the different classifiers, already suggested that the most useful type of data would be 

task performance (Nagelkerke R2 of 0.574 for healthy subjects and 0.722 for patients), 

with biomechanics providing less information (Nagelkerke R2 of 0.500 for healthy 
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subjects and 0.672 for patients) and psychophysiology providing the least information 

(Nagelkerke R2 of 0.340 for healthy subjects and 0.527 for patients). It also suggested that 

combining different data sources, particularly performance and psychophysiology 

(Nagelkerke R2 of 0.744 for healthy subjects and 0.974 for patients), would yield more 

accurate information about the subject’s preference than using a single data source. 

Furthermore, it suggested that predicting patients’ preferences would be easier than 

predicting healthy subjects’ preferences. 

 

As suggested by logistic regression, task performance was clearly the most accurate type 

of data in open-loop cross-validation, with an accuracy rate of over 80% for both healthy 

subjects and patients. Biomechanical data similarly had an accuracy rate of over 75% for 

both healthy subjects and patients. Psychophysiological measurements, on the other hand, 

yielded noticeably worse results. Nonadaptive methods yielded an accuracy rate of 62.5% 

for healthy subjects and 63.6% for patients. Supervised adaptive methods were able to 

improve the accuracy rate of psychophysiological measurements to 77.1% for healthy 

subjects and 77.3% for patients, but these results are still worse than results for task 

performance. This suggests that psychophysiological measurements by themselves are not 

reliable in a biocooperative feedback loop for upper extremity rehabilitation.  

 

Combining multiple types of data often actually lowers the overall accuracy rate. As in 

section 4.2, this is most likely due to the small sample size problem: with a large number 

of features (26 in total) and a limited training set, it is difficult to find an accurate 

classifier. This is especially noticeable in Figure 4.6, where the accuracy rate when using 

all data types together rises steadily as the size of the training set increases. Using SFFS 

can improve the accuracy rate when using all types of data noticeably, and it appears to 

outperform PCA. This is not surprising, as PCA is unsupervised and the extracted 

principal components may not be related to the classification problem (as described in 

section 4.1.1.2). Nonetheless, PCA has its uses: in the case of adaptive methods, the 

highest accuracy rates are obtained using PCA rather than SFFS. 

 

In open-loop cross-validation, combining multiple data types using SFFS increases the 

accuracy rate from 82.6% (performance data only) to 84.7% for healthy subjects and from 

83.3% to 89.4% for patients. In closed-loop validation, combining multiple types of data 

increases the accuracy rate from 86.7% (performance data only) to 88.3% for healthy 
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subjects and from 83.3% to 88.9% for patients. While SFFS identifies task performance 

as the most important source of data, several psychophysiological features are also 

selected, suggesting that they can provide some supplementary information as predicted 

by logistic regression.  

 

Of course, an accuracy rate of 100% is most likely unrealistic. In a number of cases, 

subjects were uncertain how they wanted the difficulty to change (if at all), and responded 

with comments such as ‘I don’t know, either is fine’. In such a case, the best choice may 

have been not to change the task difficulty at all. During the closed-loop phase, it was 

observed (though only on a subjective, qualitative level) that the output of LDA (ܦሺ࢞ሻ in 

Equation 4.5) tended to be closer to zero in such cases as well, suggesting that the output 

of the discriminant function was also ‘uncertain’ in a way.  

 

The reliability of the subject’s opinion was also taken into account by comparing the 

subject’s opinion to the experimenter’s opinion. These matched in over 90% of cases, 

with most disagreements being due to either the subject wanting to try a difficulty level 

that he/she had never encountered before or the subject being tired despite doing well. 

Thus, the relatively poor accuracy of psychophysiological measurements cannot be (only) 

due to subjects’ inaccurate opinions. 

 

To summarize the above paragraphs: if measures of task performance are available and 

relevant, psychophysiological measurements are probably unnecessary. Designers could 

take this into account by creating exercises where performance is easy to quantify. 

However, psychophysiology may prove useful when task performance and biomechanical 

measures are not readily obtainable or not necessarily connected to the subject’s 

psychological state. It could also be used to change elements other than the difficulty of 

the task - for instance, the appearance of a virtual scenario. 
 

Finally, a word on biomechanical measurements: the first five features selected by SFFS 

include only task performance and psychophysiology. This does not mean that 

biomechanical measurements are useless. Before any features are included, the F-value 

(criterion for inclusion) of biomechanical features is higher than that of 

psychophysiological features. However, once the first feature (a task performance feature 

for both healthy subjects and patients) has been taken into account, biomechanical 
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features offer less additional information than psychophysiological ones. Similarly, the 

Nagelkerke R2-coefficient is higher for biomechanical data features than for 

psychophysiological features, but the Nagelkerke R2-coefficient for a combination of 

performance and psychophysiology is higher than the Nagelkerke R2-coefficient for a 

combination of performance of biomechanics. This again suggests that 

psychophysiological measurements offer information that cannot be obtained from forces 

and movements. 

 

4.3.6.2  Comparison of classifiers 

 

From Tables 4.10 and 4.13, it is evident that there is no clear 'best' method among the 

classifiers already established in psychophysiology. All give similar results when used on 

the same type of data. While some methods give worse results than others with a specific 

set of data (e.g. k-nearest neighbours with Euclidean distance has a worse accuracy rate 

than other methods when used with biomechanical data from patients), this does not 

generalize across data types or even to the other type of subjects (e.g. k-nearest 

neighbours with Euclidean distance has a similar accuracy rate as other methods when 

used with biomechanical data from healthy subjects). 

 

As in section 4.2, the methods that perform best on psychophysiological data all contain 

some form of dimension reduction: either PCA, SFFS, or the dimension reduction 

inherently present in the creation of a classification tree. However, due to the low 

accuracy rates when using psychophysiological data alone, the difference is fairly small 

and may not be important in practice. Dimension reduction, however, is crucial when 

combining different types of data. As mentioned, this is most likely due to the small 

sample size problem: with a large number of features and a limited training set, it is 

difficult to find an accurate classifier. 

 

In many cases, several different methods produce exactly the same classification accuracy 

rate. This is especially true for classification of performance data and may seem 

surprising at first. However, it can be explained by several factors. First of all, given that 

the accuracy rate is calculated as the percentage of correct classifications out of a limited 

number of cases (144 for healthy subjects and 60 for patients in the open-loop phase), it 
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cannot take any possible value. For instance, 82.6% in Table 4.10 represents 124 

correctly classified data points out of a possible 144. Furthermore, when performance 

data is included, a single performance feature often contains more information than the 

other remaining features. For instance, in sections 4.3.5.1 and 4.3.5.2, the first selected 

feature is a performance feature and has a F-value of over 100. For both healthy subjects 

and patients, however, the second selected value has a F-value of less than 5. We can see 

that the majority of relevant information can be obtained from a single feature. It is thus 

not surprising that all methods that include SFFS give the same accuracy rate since only a 

few features are included in classification, reducing the problem to a relatively simple 

one.  

 

If using only performance data, classification is even simpler. SFFS on healthy subjects' 

performance data is as follows. Before any features are included, the highest-ranked 

feature is percentage of caught balls (F to enter = 129.9). Once this feature has been 

included, the highest-ranked remaining feature is difficulty level (F to enter = 0.5), with 

percentage of balls placed into the basket (F to enter = 0.04) and time period (F to enter = 

0.00) providing even less additional information. Thus, since practically all relevant 

information can be obtained from a single feature and since there are only four 

performance features in total (so that there are no problems due to high data 

dimensionality), little difference in accuracy is to be expected between different 

dimension reduction and classification methods in the case of performance data. 

 

A special case among classifiers is adaptive discriminant analysis, covered separately in 

the next subsection. 

 

4.3.6.3   Adaptive discriminant analysis 
 

In open-loop cross-validation, supervised adaptive discriminant analysis offers no 

improvement over established classification methods in the case of performance features 

and only slight improvement in the case of biomechanical features (accuracy rate 

increases from 76.4% to 82.6% for healthy subjects when adaptive discriminant is used, 

but classification trees outperform adaptive discriminant analysis for patients). In the case 

of psychophysiological features, however, supervised adaptive discriminant analysis 
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increases the accuracy rate from 62.5% to 77.1% for healthy subjects and from 63.6% to 

77.3% for patients. Unsupervised adaptive discriminant analysis also increases the 

accuracy rate, though to a lesser degree. 

 

It is currently uncertain why the improvement is greater for psychophysiological features 

than for other features, but results nonetheless show that the system can gradually adapt 

itself to a given subject to some degree. Since rehabilitation is usually a long-term 

process, it would be interesting to see what kind of improvement adaptive methods could 

provide over multiple sessions. 

 

4.3.6.4  Accuracy as a function of time period 

 

From Figures 4.4 and 4.5, we see that classification accuracy is not the same throughout 

the experiment. In Figure 4.4b, for instance, there is a noticeable decrease in accuracy rate 

for all three classifiers in the fifth period of the experiment. Similarly, in Figure 4.5, there 

is a noticeable decrease in accuracy rate for both classifiers in the fourth period of the 

experiment. Furthermore, we see that not accuracy rate does not change the same way for 

all classifiers: in Figure 4.4a, the accuracy rates of the three classifiers change quite 

differently as a function of time period.  

 

The different accuracy rates of the three classifiers used on psychophysiological data are 

likely a case of ‘statistical noise’. Since there is a low number of subjects and the 

classifiers use different rules to classify a large number of features, one classifier may 

purely randomly exhibit a higher accuracy rate than another in a certain time period. It is 

less certain why all three classifiers in Figure 4.4b and both classifiers in Figure 4.5 have 

a lower accuracy rate in one time period than the others. Given the low number of 

subjects, it may again be caused by statistical noise, but it may be caused by some other, 

unknown reason (e.g. tiredness). 

 

Finally, Figure 4.5 shows the difference in accuracy rate between nonadaptive and 

adaptive diagonal LDA. What is surprising is that the difference in accuracy rate does not 

gradually increase with time as the Kalman filter learns and adapts, but that the difference 

in accuracy rate is similar across all time periods. Though not shown graphically, similar 



167 
 

results were observed for example for nonadaptive and adaptive QDA. One possible 

explanation is that adaptation is very fast and thus does not increase greatly after the first 

period. Another possibility is that the state of the patient changes constantly (e.g. 

increased tiredness, increased experience with the task…), requiring the Kalman filter to 

constantly adapt in order to maintain the same advantage over nonadaptive discriminant 

analysis. However, it is impossible to determine the true reason from the data recorded in 

this study. 

 

4.3.6.5   Differences between healthy subjects and patients 
 

Based on previous studies that have shown weakened psychophysiological responses as a 

result of stroke and other pathological conditions and experiences from section 3.3, it was 

expected that fusion of psychophysiological measurements would be less accurate in 

patients than in healthy subjects. However, this does not appear to be the case; accuracy 

rates are similar in healthy subjects and patients. Interestingly, accuracy rates are similar 

for both groups even though the patient group is much smaller.  

 

As Tables 4.15 and 4.16 show, classifiers based on biomechanical or psychophysiological 

measurements cannot simply be transferred from healthy subjects to patients, as many 

classifiers suffer a noticeable decrease in accuracy rate. SFFS also selects different 

features in healthy subjects and patients. 

  

It is easy to understand why results of biomechanical measurements are different between 

groups: hemiparetic patients, by definition, cannot move their affected limb as well as 

healthy subjects can. This was evident, for instance, in their response to high difficulty 

levels. While all healthy subjects reacted to very fast balls by rapidly moving around the 

virtual table trying to catch the ball, many patients preferred to simply stay in one area of 

the table and catch only the balls passing through that area.  

 

Psychophysiological measurements are, to some degree, obviously different due to the 

aforementioned effects of stroke and other pathological conditions. Additionally, for 

patients, higher task difficulty levels may also be physically demanding since they 

involve fast movement which the patients may not be physically capable of. This would 
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result in both a physical and cognitive challenge that would evoke strong physiological 

responses. For healthy subjects, on the other hand, fast movement would not present a 

physical challenge (since the subjects are physically capable of fast movement) but only a 

cognitive one (since the movement must be planned more quickly) and thus evoke weaker 

physiological responses. However, this is primarily speculation. The study in section 3.3, 

which also includes patients, neither confirms nor denies it since it does not vary physical 

and cognitive workload in the same task – physical workload is expected to be similar in 

the physical control task, the virtual rehabilitation task and the harder virtual 

rehabilitation task. An interesting test would be to perform an experiment similar to the 

inverted pendulum in section 3.2 (where both cognitive and physical workload are 

changed as independently as possible in the same task) on hemiparetic patients. 

 

4.3.6.6   Study limitations 

 

In the course of the two data fusion studies presented in section 4, a few limitations 

became apparent. A few are fairly general and are thus listed in section 5.2 of the overall 

discussion, but a few are task- or method-specific. 
 

First, the choice of the ball-catching task may not have been optimal for data fusion. 

Since little psychophysiological work had been done in rehabilitation prior to the 

beginning of the dissertation, it was not known what type of rehabilitation task would be 

optimal in a psychophysiological study of rehabilitation. Thus, in section 3.3 a task that 

had already been developed in our laboratory was used. Since good results were obtained 

with the task in section 3.3, it was also selected for use in data fusion. However, one 

component of the task (placing the ball in the basket) does not depend on the difficulty 

level since the difficulty level only affects the size and speed of the ball. 

Psychophysiological differences between difficulty levels thus may not have been as 

large as they would have been if all task components had been affected by the difficulty 

level, and this may have contributed to the limited usefulness of psychophysiological 

measurements. Future studies may prefer to focus on a task with only a single component 

(e.g. only horizontal reaching).   
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Second, it is impossible to say with absolute confidence that adaptive classifiers better 

adapt themselves to the individual user’s psychophysiological state. Though the results 

show that adaptation clearly takes place, it is possible that the adaptive classifiers 

recognize certain other trends not related to the current user. For instance, once users have 

spent some time performing the task, they are likely to desire higher difficulty levels. 

Adaptive classifiers could thus learn to increase the chance of choosing ‘task is too easy’ 

as time passes. This would not be a negative effect since it would still result in more 

accurate classification, but we should keep it in mind nonetheless. 

 

Finally, it is difficult to quantitatively validate whether the differences between difficulty 

levels were sufficiently large to evoke different psychological states and thus cause 

different psychophysiological responses. In the Corsi task, this had been confirmed by 

SAM results which showed a significant correlation between valence and difficulty level, 

among others. The SAM was not used in this task, primarily since it had not provided 

reliable results with patients (section 3.3). The subjects’ and therapists’ verbal comments 

during the task as well as the experimenter’s opinion indicated that the difficulty levels 

were certainly different enough to induce boredom, frustration or satisfaction. However, it 

is difficult to assess quantitatively just how different the various difficulty levels felt for 

the subjects. Thus, it is also impossible to say with absolute certainty that the subjects 

were optimally challenged; while it is assumed that they were led toward an optimally 

challenged state by the classifier, future work should make use of questionnaires to 

validate this assumption. 

 

4.3.7  Others' contributions 
 

Matjaž Mihelj helped design the experiment protocol and also had the idea to combine 

Kalman filtering with classification, resulting in the use of adaptive discriminant analysis. 

The ball-catching scenario and the HapticMaster control algorithms were programmed by 

Jaka Ziherl and Andrej Olenšek. Marko Munih oversaw the study at the Faculty of 

Electrical Engineering. Nika Goljar, MD, of the University Rehabilitation Institute 

oversaw the study at the Institute and selected suitable patients. Metka Javh was the 

occupational therapists who guided the patients during the experiment sessions and 

ensured their safety.  
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5 Overall discussion 

 

 

5.1 The usefulness of psychophysiology in motor 

rehabilitation 
 

In section 3, it was demonstrated that both physical activity and pathological conditions 

significantly affect psychophysiological responses. Physical activity partially masks the 

contribution of psychological states while pathological conditions weaken 

psychophysiological responses in general. In section 4.3, it was furthermore shown that 

data fusion in rehabilitation using psychophysiological measurements alone is relatively 

inaccurate compared to other sources of information that are already available in motor 

rehabilitation. However, fusion of psychophysiological features yielded higher accuracy 

in a non-rehabilitation setting. The accuracy rate in a non-rehabilitation setting using only 

psychophysiological features was 75.0% for the best nonadaptive method and 86.7% for 

the best supervised adaptive method (section 4.2). On the other hand, the accuracy rate in 

the ball-catching task using only psychophysiological features was 62.5% for the best 

nonadaptive method and 77.1% for the best adaptive method (section 4.3, healthy 

subjects). The difference of 12.5% for nonadaptive methods and 9.6% for adaptive 

discriminant analysis suggests that the low accuracy rate in the ball-catching task is not 

the fault of the data fusion methods themselves, although the number of subjects is 

relatively small (N = ~20 in both sections) and thus cannot guarantee that this difference 

is significant. Similarly, the experiment protocol is likely not to blame since the same 

protocol was used in sections 4.2 and 4.3. There are thus three remaining options for the 

relative inaccuracy of data fusion in rehabilitation: physical activity, pathological 

conditions or something else. 
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Pathological conditions apparently did not noticeably affect the effectiveness of data 

fusion, as classification accuracy was very similar for both healthy subjects and 

hemiparetic patients. Different features were, however, selected for healthy subjects and 

patients. This confirms the findings of section 3: that, while psychophysiological 

responses are generally weakened, they are not all weakened to the same degree. Enough 

information may remain so that classification accuracy can be similar for healthy subjects 

and patients. A second possibility is that hemiparetic patients find the task to be 

physically demanding while healthy subjects do not. Physical activity would be expected 

to increase with task difficulty, so the physiological effects of physical activity may have 

made data fusion easier in patients.  

 

Physical activity may have been responsible for the low psychophysiological 

classification accuracy in rehabilitation, as the task proved to be quite demanding for 

some subjects. Here, not only the physiological effects of physical activity should be 

taken into account; there is also the possibility that the measurement process itself is 

affected by physical activity. As the subject moves around, motion-related artefacts can 

be recorded by the sensors. For instance, in the case of the ECG, increased noise is to be 

expected as the cables between the electrodes and the amplifier move and pull on the 

electrodes. This increased noise could potentially obscure the R-peaks of the ECG itself 

and can only be avoided by minimizing the movement of the cables. For the skin 

conductance sensor, it was observed in one test that any damage to the cables can cause 

motion-related artifacts in the signal that resemble SCRs. Thus, it is important to also 

keep the sensors in good condition.  

  

Additionally, there is a possible alternate reason for poor data fusion accuracy in the 

rehabilitation task: that the task itself may not have been optimal for accurate 

psychophysiological data fusion. As mentioned in section 4.3.6.6, one component of the 

rehabilitation task (placing the ball in the basket) does not depend on the difficulty level 

since the difficulty level only affects the size and speed of the ball. Psychophysiological 

differences between difficulty levels thus may not have been as large as they could have 

been. However, this weakness would be inherent in most rehabilitation tasks since they 

are necessarily complex. 
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Combining psychophysiological measurements with task performance and biomechanics 

increases classification accuracy in data fusion as long as proper dimension reduction 

methods are used. This suggests that psychophysiological measurements can provide 

supplementary information that cannot be gleaned from task performance or 

biomechanics. The question here is whether the increase in accuracy rate due to 

psychophysiology is sufficient to justify the increased complexity of the system. If 

measures of task performance are readily available and relevant, psychophysiological 

measurements are most likely unnecessary. Designers could take this into account by 

creating virtual environments in which performance is easy to quantify, although this may 

be difficult to achieve in non-game scenarios such as activities of daily living. In such 

cases, psychophysiology could prove useful since task performance measures are often 

not obtainable or not connected to the subject’s psychological state. It could also be used 

to change elements other than the difficulty of the task - for instance, to change the visual 

appearance of a scenario or to select the music played. 

 

Nonetheless, despite the discouraging performance of psychophysiological measurements 

in data fusion and biocoperative feedback in this dissertation, this does not mean that 

psychophysiological measurements are useless for rehabilitation, and it certainly does not 

mean that the idea of biocooperative robotics is wrong. Several possibilities for future 

work into biocooperative robotics are presented in section 5.2, and biocooperative 

robotics can be considered as an extension of patient-cooperative robotics [5] that 

attempts to bring the robot closer to the role of the physical or occupational therapist. 

While the therapist has a complete overview of the patient's biomechanical, psychological 

and physiological state, patient-cooperative robots only have an insight into the patient's 

biomechanical state. Biocooperative robotics extend this by attempting to obtain an 

insight into the patient's physiological and psychological states as well, and this is an idea 

worth exploring further. 

 

Furthermore, psychophysiological measurements are not necessarily useful only as part of 

a feedback loop. In general applied psychophysiology, psychophysiological 

measurements are often used simply as general measures of psychological factors in the 

same way as questionnaires. Though high accuracy is not expected in such cases (much 

like questionnaires are not expected to be perfectly accurate in all subjects), a sufficiently 

large sample of subjects could nonetheless reveal interesting trends. This would also be 
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possible in rehabilitation, as results showed that certain psychophysiological features 

show significant differences between conditions or correlate significantly with self-report 

measures. Skin conductance appears to be the most useful of the four evaluated signals in 

this case, and it could thus be used as an alternative or complementary option to 

questionnaires (particularly those that measure arousal or related constructs) in motor 

rehabilitation. 

 

Finally, these physiological measurements should be considered as a supplement to task 

performance and biomechanics in rehabilitation without necessarily focusing on their 

psychological component. For instance, treating heart rate simply as a measure of 

physical workload may prove more useful than trying to determine stress or boredom 

from it, especially since the physical workload can obscure information about 

psychological states. This could be an alternative direction for biocooperative 

rehabilitation, which focuses on both physiological and psychological aspects on the 

patient. It has been recently explored by Koenig et al. [171], who controlled heart rate in 

lower extremity rehabilitation by means of visual feedback. 

 

 

5.2 Possible improvements and further work 
 

5.2.1   A different upper extremity rehabilitation task 
 

As mentioned in both sections 4.3.6.6 and 5.1, the choice of the ball-catching task in 

section 4.3 may not have been optimal for data fusion. One component of the task 

(placing the ball in the basket) does not depend on the difficulty level since the difficulty 

level only affects the size and speed of the ball. Psychophysiological differences between 

difficulty levels thus may not have been as large as they would have been if all task 

components had been affected by the difficulty level, and this may have contributed to the 

limited usefulness of psychophysiological measurements.  

 

Most tasks performed in upper extremity rehabilitation are activities of daily living and 

are thus necessarily complex, involving many different components (e.g. reaching, 

grasping, lifting). Since such tasks lead to more effective rehabilitation, they should 
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certainly not be changed for the sake of psychophysiology. However, since 

psychophysiology in motor rehabilitation is not yet a mature field, future 

psychophysiological studies in upper limb rehabilitation may prefer to start small: by 

having, for instance, a simple task with few components so that the effect of each 

component on psychophysiological responses would be easier to discern. If 

psychophysiological data fusion in such a simple task proved accurate, it would then be 

possible to gradually add more components, studying their effects on psychophysiology 

and data fusion. In such a way, it would eventually be possible to perform accurate 

psychophysiological data fusion in complex rehabilitation tasks or at least identify how 

complex a task can be before psychophysiological data fusion becomes impractical.  

For instance, the ball-catching task from sections 3.3 and 4.3 could be simplified to only 

require horizontal movement as follows: The ball would appear at the top of the slope and 

begin rolling downward. The subject would then need to reach it as in the existing task, 

but once the ball was reached, it would for instance bounce back to the top of the slope. In 

this simplified task, it would still be possible to adjust task difficulty by changing the size 

and speed of the ball. If data fusion in this task were accurate, grasping and lifting the ball 

could be added, gradually extending the knowledge of psychophysiological responses to 

different components of the task. The ultimate goal would, of course, be to implement 

data fusion in complex tasks that yield the best rehabilitation outcome. A preliminary 

study with a simple task that only requires horizontal reaching has recently been 

conducted by Guerrero et al. [172], though not enough has been done yet to ascertain the 

effectiveness of the approach.  

 

5.2.2   Lower extremity rehabilitation 
 

All of the studies in this dissertation were performed with hardware and virtual scenarios 

for upper extremity rehabilitation. However, lower extremity rehabilitation also 

represents a major research field, and psychophysiological measurements could be 

potentially useful there. A team at ETH Zurich and the Neurological Clinic of Bad 

Aibling investigated the use of psychophysiological measurements for classification and 

control of cognitive workload in the Lokomat, a driven gait orthosis. Their initial 

approach used neural networks and has been recently published [173].  
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Following the use of adaptive discriminant analysis in the ball-catching scenario (section 

4.3), ETH Zurich also chose to adopt adaptive discriminant analysis, and the Ljubljana 

team assisted them with transferring the classification algorithms to the Lokomat 

platform. The Lokomat implementation has been expanded to include multiple possible 

classes (task is too easy / task is appropriate / task is too hard), and attempts have also 

been made to separate the effects of physical and cognitive workload. The multiclass 

classification has proven effective. Though task performance again provides the most 

information, psychophysiological signals increase accuracy to a greater degree than in the 

upper extremity rehablitation task covered in section 4.3. A joint paper (though ETH 

Zurich did the overwhelming majority of the work) describing this work has also recently 

been published [174].  

 

5.2.3   Additional sensors 
 

A biocooperative rehabilitation system is one in which the parameters of the task are 

automatically adjusted so that the patient is challenged in a moderate but engaging and 

motivating way without causing undue stress or harm. The first ideas on the topic 

emphasized psychophysiological measurements of the autonomic nervous system as a 

convenient way of measuring psychological factors such as boredom, stress or motivation 

[9], so the dissertation also focused on these measurements. However, they are not the 

only way to measure psychological factors.  

 

The general field of systems that can recognize human emotions is called affective 

computing and covers many possible affect recognition methods. Two methods that could 

be especially useful in rehabilitation are facial expression recognition and eye movement 

analysis. It was previously mentioned that many psychophysiological studies have 

monitored facial expressions through electromyography [16, 46] and found them to be a 

very useful complement to autonomic nervous system responses since they are very good 

at recognizing emotional valence while autonomic nervous system responses are more 

sensitive to arousal. However, facial electromyography is unlikely to be clinically 

practical since the needed electrodes require precise positioning, are time-consuming to 

apply, and are considered fairly obtrusive by the subject (since they are placed around the 

eyes and along the jaw). A good alternative would be to recognize facial expressions with 
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machine vision methods, which have also proven to be a useful complement to autonomic 

nervous system responses in affective computing [106, 121].  

 

Similar machine vision equipment could be used to measure and analyze eye movements, 

which have also proven to be a useful complement to autonomic nervous system 

responses in affective computing [69, 121]. Eye movements could also be measured using 

electrooculography [122, 139, 140], but this approach suffers from the same weakness as 

facial electromyography: the needed electrodes require precise positioning, are time-

consuming to apply, and are considered fairly obtrusive by the subject. A potential 

recently developed solution are wearable goggles with built-in dry electrodes [175], 

which would be much faster to apply and far less obtrusive.    

 

Of course, though the above two may be the most promising, many other affect 

recognition methods exist. Electroencephalography has seen extensive research [116, 122, 

129], but also suffers from the problem of obtrusive, time-consuming electrodes. Speech 

recognition and general body movement recognition in general could also be useful and 

have recently been reviewed in an extensive paper [176]. Though biocooperative 

rehabilitation robotics has so far been mostly studied with psychophysiology, there is no 

need to limit ourselves to physiological measurements in the future; the ultimate goal is to 

keep the patient from becoming bored or frustrated, no matter what sensors are used. 

 

It is thus evident that many additional sensors could be used. However, in addition to 

effectiveness, user-friendliness should be considered. The optimal selection of sensors 

would be able to determine the suitability of the task for the patient while not obstructing 

or annoying the patient. If only using autonomic nervous system responses, we might 

want to actually reduce the number of sensors by omitting the respiration sensor (which, 

of the four physiological sensors used in the dissertation, was the most unpleasant for the 

patient) and using a finger photoplethysmography sensor instead of ECG electrodes 

(since heart rate was found to be mostly an indicator of physical workload). Such a 

physiological sensor setup would only require the attachment of three sensors to a single 

hand and would thus be very user-friendly. For better accuracy, it could be expanded with 

a camera for eye tracking and/or facial expression recognition, which would not require 

attaching anything to the subject. This may be the most practical option for 

biocooperative robotics. It would also be relatively accurate, as heart rate, skin 
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conductance and skin temperature would allow accurate estimation of the subject’s 

arousal while eye tracking and facial expression recognition systems would allow 

contactless estimation of valence, which cannot be estimated by the autonomic nervous 

system measurements used in this dissertation.  

 

5.2.4   Expanded classification options and validation measures 
 

A limitation of the data fusion studies in this dissertation is that subjects were only given 

two choices: to ‘prefer easier’ or to ‘prefer harder’ task difficulty. There were thus only 

two possible states for classification. Obviously, it is possible that a subject finds the 

difficulty to be ‘just right’ and does not wish to change it. A possible follow-up study 

would thus be to utilize more than two states. The simplest option would be to define a 

third class called ‘task is appropriate’ where task difficulty would not be changed. Such a 

study has recently been made with our assistance by a team at ETH Zurich as mentioned 

in 5.2 and achieved promising results [174].  

 

Another possibility would be a four-class setup based on the four quadrants of the 

arousal-valence space. Such a psychological model has already been used in many 

psychophysiological studies (as described in section 4.1.2) and would be quite relevant 

for rehabilitation. The goal would be to keep the patient in the high arousal/positive 

valence quadrant, and different actions could be taken depending on the current quadrant. 

This was considered early on, but was not used since autonomic nervous system 

measurements are relatively poor at distinguishing different levels of valence. However, 

with additional sensors such as facial expression recognition and eye tracking, it should 

be possible to estimate both arousal and valence to some degree. This has been shown to 

be effective outside rehabilitation [16, 75], but it is uncertain how useful this would be in 

rehabilitation practice. A third possibility would be to use estimation rather than 

classification, using methods such as fuzzy logic to map psychophysiological features to 

variables such as ‘stress’ or ‘workload’. This was also briefly considered early on, but not 

used since classification is much better-established in psychophysiological literature. 

However, taking these ideas into account, there are three broad possibilities for 

psychophysiological feedback in rehabilitation: 
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- feedback without mapping psychophysiological features to psychological states; 

- feedback by first mapping psychophysiological features to discrete psychological 

classes; 

- feedback by first mapping psychophysiological features to continuous 

psychological variables. 

 

Larger amounts of classes or the use of continuous psychological variables would require 

proper validation that the subject is actually in a certain state. This would most likely 

need to be done with self-report measures (questionnaires) or the opinions of independent 

observers. The data fusion studies in this dissertation could, in fact, have benefitted from 

the use of more detailed questionnaires, even though their reliability is uncertain. Even 

for a simple two- or three-state model (task is too easy / appropriate / too hard), more 

detailed self-report methods can be envisioned. For instance, the subject could provide his 

or her opinion on a 5- or 7-point Likert scale (from ‘task should be much easier’ through 

‘task should stay the same’ to ‘task should be much harder’), and these responses could 

be compared to biomechanical and psychophysiological measurements. Even if data 

fusion is only performed with a limited number of classes, it may still make sense to track 

a larger number of classes or psychological dimensions using questionnaires, though the 

questionnaires would need to be short enough to avoid excessively prolonging the 

experiment. These questionnaires would also allow us to determine whether the patient is 

actually optimally challenged as desired, something that could not be determined with 

absolute certainty in this dissertation. 

 

5.2.5   Larger and better-controlled sample groups 
 

The four studies conducted in this dissertation had relatively small sample sizes compared 

to most psychophysiological literature. The majority of psychophysiological studies 

include 20-50 subjects (e.g. 24 in Pastor-Sanz et al. [135], 28 in Frantzidis et al. [122], 34 

in Christie and Friedman [66], 35 in Fairclough and Venables [144], 37 in Kreibig et al. 

[53], 41 in Bailenson et al. [106], 42 in Blechert et al. [128], 43 in Rainville et al. [107]). 

This dissertation, on the other hand, involves smaller sample groups (e.g. 11 patients in 

section 4.3, 23 patients in section 3.3). Furthermore, the sample groups are relatively 

nonhomogenous: patients have different diagnoses, different levels of functional ability, 
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and are treated with different drugs. Even in section 3.2, where the sample group consists 

of 30 healthy subjects, several results are just barely significant and would ideally require 

a larger sample to properly verify. For instance, the effect of cognitive workload on skin 

temperature is significant with p = 0.048 and partial η2 = 0.35. Additionally, important 

differences or correlations may have been missed because the sample size was too small 

to reach statistical significance.  

 

However, small sample sizes are also common in other applied psychophysiological 

studies where it is difficult to recruit a larger group (e.g. six autistic children in Liu et al. 

[18], seven air traffic controllers in Wilson and Russell [116]). For this dissertation, 

recruiting a larger number of patients also proved impractical since a limited number of 

patients were available at the University Rehabilitation Institute. Liu et al. [18] and 

Wilson and Russell [116] partially offset the small sample size by performing multiple 

recordings with each subject, which was also done in sections 4.2 and 4.3 of this 

dissertation.  However, particularly in sections 3.2 and 3.3, larger and more homogenous 

sample groups (e.g. similar levels of functional ability, no drugs that could affect 

psychophysiological responses) may have revealed additional useful information. 

 

 

5.3 Adaptive discriminant analysis 
 

Previously never used outside electroencephalography, adaptive discriminant analysis 

[26] represents a promising method for psychophysiological data fusion and biofeedback 

due to its ability to gradually adapt to the current subject. Though the overall goal of this 

dissertation was primarily to use it in rehabilitation, it can also be used in non-

rehabilitation settings, achieving relatively high classification accuracy. It could thus be 

very useful for psychophysiologists in general human-computer interaction and may be 

potentially applicable to other data sources with high variability.  

 

In the supervised adaptive discriminant analysis, the system was provided with the 

subject’s preference so that it could adapt the discriminant function with accurate 

information. Since this information is generally unavailable, an unsupervised version was 

also developed where the discriminant function is adapted online using the system’s own 



181 
 

estimate of the subject’s preference. This is probably not the optimal unsupervised 

adaptive discriminant analysis, as it was validated empirically rather than theoretically. 

With improperly selected parameters of the update process, instability could occur, 

leading to poor classification and decisions that could be detrimental to the patient. An 

alternative unsupervised adaptive version [177] has been recently developed by the 

original authors of adaptive discriminant analysis and is most likely superior to ours. 

Nonetheless, the implementation used in this dissertation serves as a demonstration that 

even unsupervised adaptation can lead to improved classification results. Two other 

possibilities are also foreseen for adaptive classification.  

 

In one alternative implementation of adaptive discriminant analysis, the patient’s first 

session with the system is a supervised session where the patient regularly inputs his or 

her preference into the system, enabling accurate adaptation. In later sessions, the 

adaptation is turned off. Thus, the system uses the first session to adapt to the patient to 

some degree, and this information is incorporated into the system during later sessions.   

 

In a second alternative implementation of adaptive discriminant analysis, the discriminant 

function would not be adapted on its own, but the subject could manually input his or her 

own preference at any time. The system would then not only change the difficulty of the 

task, but also update its discriminant function with the subject’s input. Another possibility 

would be for the system to explicitly ask the subject for input if certain potentially 

erroneous trends are detected (e.g. if the system repeatedly estimates that the task is too 

easy even though the subject has reached a very high difficulty level). 

 

  



182 
 

  



183 
 

 
 
 

6  Conclusions 
 

This dissertation focuses on the nearly unexplored field of psychophysiology in motor 

rehabilitation, particularly on the creation of a biocooperative feedback loop: a system 

that uses psychophysiological and other measurements to determine the suitability of the 

task for the current patient and then adjust the task in order to keep the patient from 

becoming bored or frustrated. Four psychophysiological responses were measured, 

analyzed and used in data fusion and feedback: heart rate, skin conductance, respiration 

and skin temperature.  

 

An analysis of the effects of physical activity on psychophysiological responses found 

that, at least in the inverted pendulum task, heart rate and skin conductance are strongly 

affected by physical activity. At high levels of physical activity, it is difficult to discern 

any psychological influence on these two physiological responses. Respiration and skin 

temperature, on the other hand, are less strongly affected and show significant differences 

between different levels of cognitive workload even in the presence of physical activity. 

However, multiple physiological sensors are recommended for cognitive workload 

estimation in haptic interaction, and nonphysiological sensors such as force sensors and 

accelerometers should be used to gauge the level of physical activity. 

 

An analysis of the effects of stroke on psychophysiological responses found that 

psychophysiological responses are weakened by stroke, though some are more strongly 

impaired than others. In patients, skin conductance was found to be the most useful for 

psychological state assessment, as skin conductance level differentiated between different 

difficulty levels of a task while skin conductance response frequency was correlated with 

self-reported arousal. Additionally, skin conductance sensors are very easy to attach and 

use. Skin temperature, which is also easy to use, unfortunately showed different results in 

control and patient groups. It also responded to stimuli much more slowly than skin 

conductance.    Heart rate offered uncertain results in patients with regard to 
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psychophysiology, but could at least be used as a measure of physical effort (in which 

case, a simpler measuring method than electrocardiography would suffice).  

 

Data fusion was performed first in a non-rehabilitation setting with healthy subjects and 

no physical activity. Several classification methods were tested, but it appears that, at 

least in this case the choice of classifier is not quite as important as selecting the most 

informative features. The exception was adaptive discriminant analysis, which was more 

accurate than all other classification methods in fusion of only psychophysiological 

features even though it has not been previously used outside of electroencephalography 

(section 4.2: accuracy rate of 75.0% with the best nonadaptive method and 86.7% with 

adaptive discriminant analysis; section 4.3 – healthy subjects: 62.5% with the best 

nonadaptive method and 77.1% with adaptive discriminant analysis; section 4.3 – 

patients: 63.6% with the best nonadaptive method and 77.3% with adaptive discriminant 

analysis). Adaptive discriminant analysis was, however, no more useful than other 

classification methods when task performance features were included. In any case, 

classification accuracy in a non-rehabilitation setting was over 85% for a two-state 

problem (is the task too easy or too hard?), showing that the utilized data fusion methods 

are viable. Such classification accuracy could even be achieved with only 

psychophysiological features, proving that they can be a useful primary source of 

information in a non-rehabilitation setting. 

 

In a motor rehabilitation task, data fusion of the four psychophysiological responses alone 

was not very accurate, although adaptive discriminant analysis improved accuracy. Data 

fusion was much more accurate with task performance and biomechanics. 

Psychophysiological responses thus cannot be used as a primary source of information in 

rehabilitation. If dimension reduction is used, a combination of task performance and 

psychophysiology can achieve the highest accuracy. Psychophysiological measurements 

can thus serve as a supplementary source of information, although it is uncertain whether 

they provide enough additional information to justify the increased cost and complexity 

of the system. They may also be a useful source of information in tasks and environments 

where task performance or biomechanical measurements are either not available or are 

not at all connected to the subject’s mood.   
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However, despite the somewhat discouraging results, there is much room for 

improvement. A number of ideas for future work in biocooperative robotics have been 

suggested, ranging from more thorough validation using questionnaires to the utilization 

of other, nonphysiological sensors. This dissertation lays out some of the first steps in 

implementing biocooperative control, including an operational biocooperative feedback 

loop using psychophysiological measurements. It can be thought of as an extension of 

patient-cooperative robotics that attempts to bring the robot closer to the role of the 

physical or occupational therapist. While the therapist has a complete overview of the 

patient's biomechanical, psychological and physiological state, patient-cooperative robots 

only have an insight into the patient's biomechanical state. The biocooperative feedback 

loop presented in this dissertation extends this by attempting to obtain an insight into the 

patient's physiological and psychological states as well. Whether the idea of 

biocooperative rehabilitation will gain ground remains an open question, but the author of 

this dissertation firmly believes that adjusting the difficulty of the task to keep the patient 

appropriately challenged and motivated would be an important addition to rehabilitation 

robotics and could potentially lead to an improved rehabilitation outcome.  
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7 Original scientific contributions 
 

 

• Analysis of healthy subjects' psychophysiological responses to a combination of 

psychological and physical activity in haptic human-robot interaction; 

The analysis was performed in a study where 30 subjects performed an inverted 

pendulum balancing task with the HapticMaster haptic robot at two levels of physical 

workload and three levels of cognitive workload. Heart rate and skin conductance level 

were primarily influenced by physical workload, and there was also a noticeable 

influence of physical workload on skin conductance response frequency. Neither 

respiration nor peripheral skin temperature were significantly affected by physical 

workload. Respiratory variability decreased from baseline during the moderately 

cognitively challenging condition while skin temperature decreased during the 

cognitively overchallenging condition. This suggests that respiration and skin temperature 

are effective for the estimation of cognitive workload in haptic interaction. 

 

• Analysis of psychophysiological differences between healthy subjects and 

hemiparetic patients in clinical rehabilitation scenarios; 

The analysis was performed in a study where 23 stroke and 23 control subjects performed 

a virtual rehabilitation task and a simple cognitive task (the Stroop word-colour 

interference task). Significant differences between stroke and control groups were found 

especially for heart rate and peripheral skin temperature, with the stroke group exhibiting 

weaker responses to both the rehabilitation task and the cognitive task. Skin conductance 

appears to be the most useful psychophysiological signal in the stroke group, as there is a 

significant correlation with self-reported arousal as well as a significant difference 

between different difficulty levels of the virtual rehabilitation task. 

 

 



188 
 

• Psychophysiological sensor fusion for task suitability assessment in rehabilitation 

robotics using different methods 

A number of different sensor fusion methods were implemented for task suitability 

assessment. Dimension reduction was performed using principal component analysis and 

sequential floating forward selection. Discriminant analysis, diagonal discriminant 

analysis, nearest-neighbor classification, classification trees and support vector machines 

were used to classify psychophysiological and other variables into two classes: the task is 

too easy or too hard. They were implemented in both a simple cognitively challenging 

task and a virtual rehabilitation task. The subject’s and experimenter’s opinions were used 

as validation measures. Psychophysiological variables were less accurate in classification 

than task performance and biomechanics, but provided supplementary information.   

 

• An adaptive method that can adapt to intersubject differences in 

psychophysiological responses 

Kalman adaptive linear discriminant analysis and the adaptive information matrix, 

previously only used in electroencephalography, were transferred to autonomic nervous 

system responses and used to perform online adaptation of the classification rules. They 

were able to improve the classification accuracy for psychophysiological variables over 

established classification methods in both the simple cognitively challenging task and the 

virtual rehabilitation task. Both supervised and unsupervised adaptation was 

demonstrated, though the unsupervised implementation is not optimal.  

 

• A biocooperative controller that can adapt the parameters of a rehabilitation 

task based on adaptive fusion of psychophysiological, biomechanical and other 

sensors. 

After training different data fusion methods on a larger group of subjects, a 

biocooperative feedback loop was implemented and tested on 10 healthy subjects and 6 

stroke subjects performing a virtual rehabilitation task. The controller used sequential 

floating forward selection and discriminant analysis to fuse task performance, 

biomechanics and psychophysiology into an estimate of whether the task difficulty should 

be increased or decreased. Task difficulty was then adjusted accordingly by changing the 

parameters of the virtual scenario. The controller reached approximately 90% agreement 

with the subject’s opinion for both healthy and stroke subjects.  
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