Adaptive integration of psychophysiological variables for robotic training

(Adaptivna integracija psihofizioloških spremenljivk za robotsko urjenje)

Domen Novak, univ. dipl. inž. el.

Univerza *v Ljubljani* Fakulteta *za elektrotebnik*o

Rehabilitation robotics

MIT Manus, Boston

ARMin II, Zurich

Gentle/S, Ljubljana

BioRobotics, Washington

patient-cooperative robots:

recognize and adapt to patient movement intentions and motor abilities

- robots that recognize <u>psychological</u> <u>factors</u>: stress, boredom...
- psychological factors (esp. motivation) very important for rehabilitation, but <u>hard</u> to measure
- possible solution:
 <u>psychophysiological measurements</u>

Psychophysiological measurements

Measure how <u>psychological</u> stimuli affect <u>physiological</u> responses

Example: skin conductance

Physiological feature extraction

Well-established in literature!

- psychophysological measurements
 suggested for use in motor rehabilitation,
 but never implemented or analyzed
- sensor integration and interpretation a big challenge in general psychophysiology

- integration of <u>psychophysiological</u> <u>measurements</u> with <u>biomechanical and</u> <u>other</u> measurements in a biocooperative <u>feedback loop</u>
- biocooperative feedback loop: <u>adapt task</u> <u>difficulty</u> so that patient always faces a <u>moderate challenge</u> that motivates and does not cause stress

Dissertation structure

- Analysis of rehabilitation-specific factors
 - Effects of physical activity
 - Effects of stroke
- Sensor integration and biocooperative control
 - Controlled laboratory setting
 - Clinical rehabilitation task

Dissertation structure

- Analysis of rehabilitation-specific factors
 - Effects of physical activity
 - Effects of stroke
- Sensor integration and biocooperative control
 - Controlled laboratory setting
 - Clinical rehabilitation task

typical psychophysiological task

rehabilitation (video courtesy ETH Zurich)

- <u>Hypothesis</u>: In haptic human-robot interaction, physiological responses are affected by both cognitive and physical workload.
 - The physiological effects of physical and cognitive workload are additive.
 - Both types of workload contribute significantly to physiological responses.

Effects of physical activity

- task with physical and cognitive elements
 - 2 physical levels
- 3 cognitive levels
- 2 rest periods
- 30 subjects

Results

- heart rate: physical activity
- **skin conductance**: both cognitive and physical activity
- **respiration**: cognitive activity
- skin temperature: cognitive activity

Analysis of effects of stroke

- Hypothesis: Stroke patients have weakened or even absent psychophysiological responses compared to control subjects.
 - When performing a purely cognitive task, stroke patients nonetheless exhibit significant responses.
 - When performing a rehabilitation task, stroke patients nonetheless exhibit significant responses.

- task suitable for rehabilitation
- physical control task (left-right movement)
- cognitive control task (Stroop task)
- 23 stroke patients23 controls

RED BLUE GREEN

Rehabilitation task

2 difficulty levels!

Results

Skin conductance:

- few differences
 between controls and
 patients
- large differences between tasks
- well-correlated with self-reported arousal

Skin temperature, heart rate:

 responses much more evident in controls

Respiration:

 no useful information

- respiration and skin temperature less affected by physical activity, but more by stroke
- skin conductance less affected by stroke, but more by physical activity
 - decision made to nonetheless proceed with sensor integration

Dissertation structure

- Analysis of rehabilitation-specific factors
 - Effects of physical activity
 - Effects of stroke
- Sensor integration and biocooperative control
 - Controlled laboratory setting
 - Clinical rehabilitation task

Sensor integration

Biocooperative feedback loop

Our biocooperative feedback loop

- <u>state of the art</u> in applied psychophysiology:
 - classify 2 or 3 levels of workload
 - predefined action for each possible level (e.g. increase difficulty)
- <u>our implementation</u>:
 - classify task as too easy or too hard
 - too easy \rightarrow increase difficulty
 - too hard \rightarrow decrease difficulty

Sensor integration

Dimension reduction

mean heart rate
SDNN
RMSSD
pNN50
LF/HF ratio
HF power
LF power
skin conductance response frequency
skin conductance response amplitude
skin conductance level
final skin temperature
mean respiratory rate
respiratory rate variability
task score
task difficulty level
mean absolute velocity
mean absolute acceleration
mean frequency of position signal
mean frequency of velocity signal
mean absolute force
total work
mean frequency of force signal

Dimension reduction

 X_1

X₂

 X_3

principal component analysis sequential feature selection

. . .

Classification

- statistics and machine learning
- methods:
 - discriminant analysis
 - naive Bayes
 - nearest-neighbors
 - support vector machine
 - classification tree

- large <u>intersubject differences</u> in physiology
- require an adaptive method of sensor integration that adapts to the current user during the task
- does not yet exist in psychophysiology!

Adaptive discriminant analysis

Adaptive biocooperative feedback

Implementation: laboratory task

- 8 difficulty levels
- 20 subjects
- each subject increases or decreases difficulty 6 times
- measurements: task performance and psychophysiology

Results of classification

(leave-one-subject-out crossvalidation)

- 7 difficulty levels
- each subject changes difficulty 6 times
- two phases:
 - open-loop
 - 24 controls
 - 11 patients
 - closed-loop
 - 10 controls
 - 6 patients

Open-loop results: controls

Open-loop results: patients

- nonadaptive linear discriminant analysis with performance and psychophysiology
- tested <u>online in a fully closed loop</u>
- <u>controls</u>: accuracy of 88.3%
- patients: accuracy of 88.9%

36/40

Conclusions of sensor integration

- online closed loop successfully implemented
- psychophysiological measurements not ideal as a primary source of information
- adaptive method can improve accuracy
- can provide supplementary information
- useful when task performance measures not available (many rehabilitation tasks)
 - potentially very useful for other HCI fields

Original scientific contributions

- Analysis of healthy subjects' psychophysiological responses to a combination of psychological and physical activity in haptic human-robot interaction
- Analysis of psychophysiological differences between healthy subjects and hemiparetic patients in clinical rehabilitation scenarios
- Psychophysiological sensor fusion for task suitability assessment in rehabilitation robotics using different methods
- An adaptive method that can adapt to intersubject differences in psychophysiological responses
- A biocooperative controller that can adapt the parameters of a rehabilitation task based on adaptive fusion of psychophysiological, biomechanical and other sensors

The MIMICS team

- Matjaž Mihelj (almighty advisor)
 - Jaka Ziherl (VR, haptics)
 - Andrej Olenšek (VR)
 - Maja Milavec (psychologist)
 - Nika Goljar (URI–Soča)
 - Metka Javh (URI–Soča)
- Marko Munih (almightier boss) and all the rest...

The end

Thank you for your attention!

"Science is like sex; it may give some practical results, but that's not why we do it."

