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ABSTRACT 
In this paper, we describe a method for estimating task 
difficulty in human-robot interaction using a combination 
of motor actions and psychophysiology. A number of 
variables are calculated from kinematics, dynamics, heart 
rate, skin conductance, respiration and skin temperature. 
Discriminant analysis of the variables is used to determine 
whether the user finds the task too easy or too hard. The 
discriminant function is recursively updated with Kalman 
filtering in order to better adapt to the current user. The 
method was tested offline in a task with 20 subjects. In 
cross-validation, nonadaptive discriminant analysis yielded 
a classification accuracy of 80.2 % while adaptive 
discriminant analysis yielded a classification accuracy of 
84.3 %.  
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INTRODUCTION 
In the last few decades, robots have been developed that 
interact with humans in many different environments. For 
instance, humanoid robots provide entertainment and 
companionship while haptic robots assist patients in motor 
rehabilitation. However, studies have shown that it is 
difficult to fully evaluate and interpret the interaction 
between a robot and a human [1]. While most robots are 
equipped with sensitive force and position sensors that can 

measure the user's motor actions, such sensors cannot 
reveal information about the user's subjective feelings: 
stress, engagement etc. Such information could be obtained 
through the use of so-called psychophysiological 
measurements. Defined as measurements of physiological 
responses to psychological stimuli, these have been 
extensively used for user state estimation in various 
situations. For instance, users’ emotional responses to 
computer games are reflected in their heart rate, skin 
conductance and skin temperature [5]. 

Once motor actions and psychophysiology are measured, 
they can be used in a feedback loop: while the user interacts 
with the robot in order to perform a task, the task difficulty 
is adjusted in order to avoid frustration (task is too hard) or 
boredom (task is too easy). The principle of such a 
feedback loop is illustrated in Figure 1.  
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Figure 1: Basic principle of task difficulty adaptation. 

Such a feedback loop was successfully created using only 
psychophysiological measurements in a flight simulator [2]. 
However, in that system, task difficulty was estimated 
somewhat arbitrarily: if physiological signals exceeded a 
manually set threshold, the task was considered too hard. 
For practical use, a more advanced method of task difficulty 
estimation is required. One possible method is discriminant 
analysis, a statistical method for classification of 
multidimensional data into two or more classes. Two 
classes (‘too easy’ and ‘too hard’) should be sufficient for 
basic task difficulty estimation. 
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Since psychophysiological responses exhibit large inter-
individual differences, an optimal task difficulty estimation 
method would be able to adapt to a user as the task 
progresses and the system obtains data about that particular 
user. A variant of discriminant analysis, Kalman adaptive 
discriminant analysis [6], can be used here. With this 
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method, the classifier is created offline from training data, 
recursively updated online after every new data point. The 
system can thus adapt to a particular user. The principle of 
such an approach is shown in Figure 2.  
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Figure 2: Task difficulty adaptation with task difficulty 

estimator updating. 

We examined the suitability of using adaptive discriminant 
analysis of motor actions and psychophysiology for task 
difficulty estimation. Our first hypothesis was that adaptive 
methods would be more accurate than nonadaptive ones. 
Our second hypothesis was that classification based on both 
motor actions and psychophysiology would be more 
accurate than classification based on a single type of data. 

MATERIALS AND METHODS 

Task 
For our task, we used a scenario previously used for 
reaching and grasping exercise in rehabilitation robotics [3]. 
A photo of a subject performing the task is shown in Figure 
3. In the centre of the screen, there is a table sloped toward 
the subject. At the beginning of the task, a ball appears at 
the top of the slope and starts rolling downward. The 
subject’s goal is to catch the ball using a haptic robot (the 
HapticMaster, manufactured by Moog FCS) before it 
reaches the lower end of the table. Once the ball is grasped, 
the subject must then hold the ball and place it in a basket 
above the table. Once the ball is dropped into the basket or 
falls off the table, another ball appears at the top of the table 
and the task continues. The haptic robot’s grasping device 
allows the subject to feel each virtual item. Seven different 
difficulty levels were implemented, with each higher 
difficulty level featuring smaller and faster balls so that 
they were harder to catch. 

Experiment procedure 
Twenty students and staff members (16 males, 4 females) 
from the University of Ljubljana participated in the study. 
Mean age was 27.3 years, standard deviation 4.6 years. 

Upon arrival, the task was explained and demonstrated to 
the subject. The physiological measurement equipment was 
attached. The subject rested for two minutes, then 
performed the task for six two-minute periods (12 minutes 
total). Within each period, the task difficulty was constant. 
At the end of a period, the subject was asked whether he or 
she would prefer the difficulty of the task to increase or 
decrease. The difficulty of the task then changed randomly 
by one or two levels in the selected direction. This 

randomness was introduced in order to expose subjects to a 
wider range of difficulty levels.  

 
Figure 3: A subject performing the task using a haptic robot 
(1) and grasping device (2) while his/her arm is supported by 
cuffs (3). The screen (4) shows a sloped table, a ball (5) and a 

basket (6).  

Input variables for classification 
The variables used for classification were divided into two 
groups: motor variables and psychophysiological variables. 
A feature vector was defined as the vector of all variables 
from a single time period from a single subject.  

Motor variables describe how well subjects did and how 
they moved during a particular time period. Measured using 
the robot's force and position sensors, they include variables 
such as the percentage of balls caught by the subject, the 
subject’s mean velocity in different directions, and the 
mean forces exerted by the subject. 

Physiological signals were sampled at 600 Hz using a 
g.USBamp amplifier (g.tec Medical Engineering GmbH). 
The electrocardiogram was recorded using disposable 
surface electrodes placed on the torso. Skin conductance 
was measured using a g.GSR sensor (g.tec). The electrodes 
were placed on the second and third fingers of the 
nondominant hand. Respiratory rate was obtained using a 
thermistor-based SleepSense Flow sensor placed beneath 
the nose. Peripheral skin temperature was measured using a 
g.TEMP sensor (g.tec) attached to the fifth finger of the 
nondominant hand.  

Thirteen variables were extracted from the physiological 
signals. From the electrocardiogram, mean heart rate as 
well as seven time- and frequency-domain measures of 
heart rate variability were extracted. Detailed information 
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about these variables is available in an extensive paper [4]. 
From the skin conductance signal, three variables were 
extracted: mean skin conductance, skin conductance 
response frequency and mean skin conductance response 
amplitude. Skin conductance responses are defined as 
transient increases in skin conductance whose amplitude 
exceeds 0.05 μS. From the respiration signal, two variables 
were extracted: mean respiratory rate and standard 
deviation of respiratory rate. From the skin temperature 
signal, mean temperature was extracted.  

Linear discriminant analysis 
Linear discriminant analysis (LDA) is a well-known 
method for feature extraction and classification, used to 
find a linear discriminant function that best separates data 
points into two or more classes. The discriminant function 
is built using a set of feature vectors (training data), each of 
which has a known class label assigned to it. This 
discriminant function is then used to determine the best 
class label for new feature vectors. 

As previously noted, the goal of the discriminant analysis 
was to classify a measurement as either too easy or too 
hard. Thus, there were two possible classes. Two methods 
of discriminant analysis were used. The first was the 
classic, nonadaptive LDA, which is well-described in 
statistical literature. The second method was Kalman 
adaptive linear discriminant analysis (KALDA), an 
adaptive version of the LDA in which the weights of the 
discriminant function are recursively estimated online using 
a Kalman filter as new data becomes available. The Kalman 
gain varies the update coefficient and changes the 
adaptation speed depending on the properties of the data. 
Detailed equations can be found in [6]. 

Classifier fusion 
While it is possible to use discriminant analysis to build a 
single, multivariate classifier using all the input variables at 
once, another option is to build a separate univariate 
classifier for each input variable. While the accuracy of any 
individual univariate classifier would be low, fusing the 
large number of classifiers may result in high accuracy. For 
classifier fusion, the result of each classifier was weighed 
according to its estimated accuracy, which was estimated 
from previously obtained training data. For instance, a 
classifier that was able to correctly classify 100% of the 
training data would be weighted with a factor of 1, a 
classifier that was able to correctly classify 75% of the 
training data would be weighted with a factor of 0.5, and a 
classifier that was able to correctly classify 50% or less of 
the training data would be weighted with a factor of 0. 
Classifier fusion is then done using the following formula: 

 

where  is the class assigned to the feature vector by 
classifier i,  is the weighting factor of classifier i, and  is 
the final assigned class. If  can either be -1 (class 1) or +1 
(class 2), the feature vector is assigned to class 1 if  is 

equal to or less than zero and assigned to class 2 if  is 
greater than zero.  

Both multivariate classifiers with no classifier fusion and 
weighted vote fusion of univariate classifiers were tested.  

Cross-validation 
To test the accuracy of our classifiers, we used leave-one-
out cross-validation. For a classifier, the entire data set was 
split into the test data (all data from one subject) and the 
training data (all data from all other subjects). The classifier 
was built using the training data, then validated using the 
test data. This procedure was repeated as many times as 
there were subjects, with each subject’s data used as the test 
data exactly once. The accuracy rate of a classifier was 
calculated as the number of correctly classified feature 
vectors divided by the number of all feature vectors. A 
feature vector was considered to be correctly classified if 
the classifier’s estimate (too easy or too hard) was the same 
as the choice that the subject had made. 

Since the data was available offline, adaptive classifiers 
were tested as follows. The first feature vector from each 
subject (i.e. from the first time period of a session) was 
classified using the initial classifier obtained from the 
training data. Then, the classifier was recursively updated 
using this feature vector and the choice that the subject had 
actually made. The updated classifier was tested on the 
second feature vector from each subject, once again 
updated and so on. The weakness of such an approach is 
that, in online task difficulty estimation, the choice that the 
subject had made would not be available. This problem is 
further explored in the Discussion section. 

RESULTS 
Table 1 shows the accuracy rates for different classifier 
types and different input data (motor actions, 
psychophysiology or both). In the multivariate classifiers, a 
single classifier is made using all available inputs. In the 
weighted univariate classifiers, one classifier is made for 
each input variable and the classifiers are then fused as 
described in the ‘Classifier fusion’ section. 

motor. psychophys. both 

multivar. LDA  79.3 % 60.3 % 71.1 %

weighted univar. LDA  79.3 % 61.6 % 80.2 %

multivar. KALDA  79.3 % 66.9 % 72.7 %

weighted univar. KALDA 81.0 % 76.0 % 84.3 %

Table 1: Classification accuracy rates for different 
classification methods. 

DISCUSSION 

Comparison of different classifiers 
In all cases, KALDA yields higher classification accuracy 
than LDA. This confirms the hypothesis that adaptive 
methods improve classification accuracy. In weighted 
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fusion of univariate classifiers, using both motor actions 
and psychophysiology yields higher classification accuracy 
than using only one data source. This is in agreement with 
our second hypothesis that multiple data sources improve 
classification accuracy. Interestingly, in the case of 
multivariate classifiers, nonadaptive classification using 
both data sources produces a worse result than using only 
motor actions. This may be because the data dimensionality 
is large, so it is difficult to find a single robust discriminant 
function. Weighted vote fusion of univariate classifiers 
should be more robust since each individual discriminant 
function covers only one dimension. 

While nonadaptive task difficulty estimation using motor 
actions already gives a classification accuracy of almost 80 
%, nonadaptive classification using psychophysiology 
yields an accuracy of less than 62 %. However, using 
adaptive methods can greatly increase accuracy even over a 
short time period. In our case, the task was only performed 
for a total of 12 minutes, and increasing the length of the 
task may allow even greater improvement in classification 
accuracy when using psychophysiological measurements. 
Nonetheless, results suggest that, at least in haptic 
interaction, motor actions should be used as a primary data 
source with psychophysiology providing supplementary 
information.  

Naturally, perfect classification accuracy should not be 
expected. Several subjects occasionally expressed the desire 
to stay at the same difficulty level, but this option was not 
available. Additionally, it is not certain whether subjective 
choices are always perfectly reflected in measurable 
responses and thus whether completely accurate 
classification is even theoretically possible.    

Use in online task difficulty adaptation 
Since our classifiers can be used to determine whether a 
task is too easy or too hard, they can be directly used for 
online task difficulty adaptation. If the task is too hard, the 
system should decrease the difficulty. If the task is too easy, 
the system should increase the difficulty. Methods of 
increasing or decreasing difficulty must be defined in 
advance and can range from simple to very complex.  

In our implementation, the user’s direct input (task is too 
easy / too hard) was used to update the KALDA classifiers. 
However, in a real-world application, this information 
would not be available and the update process would need 
to use its own estimate of the current class rather than the 
actual class. This would need to be done carefully since 
such an approach can also amplify classification errors. If 
an incorrect class estimate is used to update the classifier, 
the classifier will become worse. One way to address this 
would be to generate a measure of how ‘reliable’ the 
estimate is. The system would then only update the 
classifier if the estimate was sufficiently reliable. A simple 
variant of this has already been tested and resulted in a 
classification accuracy of 72.1 % with only 
psychophysiological inputs (compared to 76.0 % when the 

user’s actual input is available). Another possibility would 
be for the system to explicitly ask the user for input if 
certain potentially erroneous trends are detected (e.g. if the 
classifier repeatedly estimates that the task is too easy even 
though the user has reached a very high difficulty level). 

CONCLUSION 
We have demonstrated a classification method that can be 
used to estimate task difficulty in human-robot interaction 
based on motor actions and psychophysiology. The 
classifier can be recursively updated as new data becomes 
available, allowing it to gradually adapt to a particular user.  
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