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Abstract—Cognitively challenging training sessions during
robot-assisted gait training after stroke were shown to be key
requirements for the success of rehabilitation. Despite a broad
variability of cognitive impairments amongst the stroke popu-
lation, current rehabilitation environments do not adapt to the
cognitive capabilities of the patient, as cognitive load cannot be
objectively assessed in real-time. We provided healthy subjects
and stroke patients with a virtual task during robot-assisted gait
training, which allowed modulating cognitive load by adapting
the difficulty level of the task. We quantified the cognitive load
of stroke patients by using psychophysiological measurements
and performance data. In open-loop experiments with healthy
subjects and stroke patients, we obtained training data for a
linear, adaptive classifier that estimated the current cognitive load
of patients in real-time. We verified our classification results via
questionnaires and obtained 88% correct classification in healthy
subjects and 75% in patients. Using the pre-trained, adaptive clas-
sifier, we closed the cognitive control loop around healthy subjects
and stroke patients by automatically adapting the difficulty level
of the virtual task in real-time such that patients were neither
cognitively overloaded nor under-challenged.

Index Terms—Bio cooperative control, cognitive control,
Lokomat, psychophysiology, stroke rehabilitation.

I. INTRODUCTION

R OBOT-assisted gait rehabilitation is becoming increas-
ingly common in patients after stroke, spinal cord injury,

traumatic brain injury or cerebral palsy. Cognitively challenging
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training sessions were shown to be key requirements for the suc-
cess of motor learning in general and in rehabilitation [1]–[3].
In addition, research in healthy subjects suggests that motor
learning decreases in the presence of a distracting cognitive task,
which presents a cognitively over-challenging situation [4], [5].
Quantifying and controlling cognitive load in neuro-rehabilita-
tion to avoid tasks that are cognitively too demanding or too
easy, has the potential to increase motor learning and thereby the
training efficiency and therapeutic outcome of neurological re-
habilitation [1], [3]. In the context of robot-assisted gait training,
we define cognitive load as the amount of attention and focus the
patient has to dedicate towards the task in order to successfully
fulfill this task.

Despite existing tools used to modulate patient motivation
such as virtual environments [6], the rehabilitation environment
does not yet adapt to the cognitive load of the patient. One major
reason is that the current cognitive load of patients cannot be ob-
jectively assessed. Questionnaires can be used to obtain subjec-
tive information, but only at discrete time-points after training
has ceased. They can therefore not be used in real time.

Psychophysiological measurements can provide real-time
information on the cognitive load of subjects [7], [8], as physio-
logical processes were shown to reflect behavioral-, cognitive-,
emotional-, and social interaction [9]. Heart rate variability
(HRV) was shown to decrease with cognitive load [10] and
negative emotions [11]. Skin conductance has previously been
used as a measure for arousal [12], [13] and was found to in-
crease during demanding tasks compared to a rest period [14].
Breathing frequency was found to increase during cognitive
effort [15], negative emotions [16] and also during physical
activity [17]. However, not all physiological signals that pro-
vide information on cognitive load are unambiguous. Heart
rate (HR) was found to increase due to stress or negative emo-
tions [8], [18], but decreased in reaction to unpleasant stimuli
[19]–[21]. Skin temperature decreased with increased cognitive
load [22], but increased in response to positive emotions [23].

Psychophysiological measurements can be used to perform
bio-cooperative control by putting the human in a psycholog-
ical closed control loop [24]. Previously, mental engagement of
neurological patients has been automatically quantified during
robot assisted rehabilitation using psychophysiological signals
[25], [26]. Real-time stress level estimation from analysis of
HRV has previously been performed in healthy subjects [27].
However, these approaches were neither adaptive, nor was cog-
nitive load controlled to a desired level.
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The first objective of this paper was to evaluate if psychophys-
iological signals would allow bio-cooperative control of cogni-
tive load during robot assisted gait therapy in the presence of
physical effort induced by walking. We induced different levels
of cognitive load and used physiological measurements in com-
bination with real-time machine learning techniques to objec-
tively quantify the current cognitive load and control it to a de-
sired level.

The second objective was to determine if performance met-
rics could be used as a proxy, instead of psychophysiological
signals. While performance metrics might be less accurate, they
are more practical to obtain in a clinical setting and might re-
place psychophysiological signals. We, therefore, compared a
closed loop controller using physiological signals with a simple
task performance controller that only controlled task success
without the use of physiological signals.

II. METHODS

We provided subjects with a virtual task, which was used to
modulate cognitive load of subjects during robot-assisted gait
training. Details on the possibility of using virtual environments
to modulate cognitive load during robot-assisted gait training
can be found in [25]. In brief, the task was either too easy such
that cognitive load was very low, too difficulty such that cogni-
tive load was very high, or adjusted such that subjects were cog-
nitively capable of fulfilling the task if they concentrated on it.
Psychophysiological recordings were used to objectively quan-
tify the changes in cognitive load. We set up a linear classifier
and enhanced it with a Kalman filter. This classifier was trained
with data from open loop experiments in healthy subjects and
stroke patients. After the initial training of the classifier, we per-
formed bio-cooperative closed loop control of cognitive load in
both healthy subjects and patients. In the following paragraphs,
we first describe the training environment and the physiolog-
ical signals that were used for automatic classification of cog-
nitive load. Then we explain the open loop experiments which
were performed for classifier training and the closed loop ex-
periments used for bio-cooperative closed loop control.

A. Hardware

The experimental setup consisted of three parts: a commer-
cially available driven gait orthosis (DGO) commonly used
in gait rehabilitation, the virtual reality display system, and
the measurement system for physiological signals (Fig. 1). As
DGO, the Lokomat (Hocoma Inc., Volketswil, Switzerland)
was used for the locomotion training. Drives on hip and knee
joints provide torques to the subject and assist the locomotion
on a treadmill by guiding the subject’s legs along a predefined
trajectory. The display system consisted of a m back-pro-
jection screen in front of the gait robot and a 5.1 surround sound
system. All physiological signals were recorded and amplified
with the g.USBamp (Guger Technologies, Graz, Austria).

B. Input Data for Classification of Cognitive Load

We recorded physiological signals from the subject, force
data from the DGO and task success data from the virtual envi-
ronment. We extracted features from the physiological data as

Fig. 1. Overview system setup. The features from physiological recordings of
the subject, biomechanical recordings from the robot and performance infor-
mation from the virtual environment were used to classify the current cognitive
load of subjects during robot assisted treadmill training. A classifier, pre-trained
on data obtained in open loop experiments, was set up with initial classification
parameters. A Kalman filter adapted the weights of the classifier at run time to
take patient specific responses in physiology into account.

described below, took the mean and standard deviation over 30 s
and fused the data into one feature vector. All signal processing
software was written in Matlab 2008b (The Mathworks, Natick,
MA).

Physiological signals recorded from subjects during Lokomat
walking were HR, breathing frequency, skin conductance and
skin temperature. In previous work, these four signals were es-
tablished to carry the most information while being recordable
with reasonable effort for the clinical personnel [25], [28]. The
electrocardiogram was measured with three surface electrodes.
One electrode was affixed 2 cm below the right clavicula be-
tween the first and the second rib, one was affixed at the fifth
intercostal space on the mid axillary line on the left side of the
body, and a ground electrode was affixed to the right acromion.
HR was computed from electrocardiogram using a real time R
wave detection algorithm [29]. HRV in the time domain was
computed according to the recommendations of Malik [30] as
the square root of the mean squared differences of successive
normal-to-normal intervals (RMSSD). The frequency analysis
of HRV was performed using the ratio of low-frequency com-
ponents and high-frequency components (LF/HF). Using a ther-
mistor flow sensor placed underneath the nose, we recorded the
breathing of subjects and computed breathing frequency and its
derivative using a peak detection algorithm. Changes in skin
conductance were measured with the g.GSR sensor from Guger
Technologies (Graz, Austria) using two electrodes attached on
the proximal phalanx of the second and the fourth fingers on the
left hand or the unaffected hand in stroke patients. Skin conduc-
tance responses (SCR) were detected from the skin conductance
level (SCL) when signal amplitude increased by at least
in less than 5 s [14]. SCL was bandpass filtered with a 20–50 Hz
Butterworth filter to remove sensory artifacts and sensory noise.
Skin temperature was measured using the Guger g.Temp sensor
on the distal phalanx of the fifth finger of the left hand or the
unaffected hand in stroke patients. Signals were sampled at 512
Hz according to the recommendations of Malik et al. [30].
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Fig. 2. Virtual scenario. A cognitive task (question) had to be answered via
biomechanical effort. If the question was correctly posed (alpha is the first letter
of the Greek alphabet), then the subject had to accelerate in the virtual world
and had to collect the box in front of him/her, before it disappeared. Otherwise,
the subject had to decelerate in the virtual world and wait, until the box had
disappeared. The time until the box disappears was coded by arrows that pointed
at the next object, which made the task easier to understand.

Force data from the DGO was weighted and summed for each
step such that it reflected the current physical effort of the sub-
jects [31]. From the virtual environment, we obtained the suc-
cess rate of percent correctly avoided and collected objects and
percent correctly answered questions.

C. Virtual Task

A virtual reality task with adjustable difficulty level was
used to modulate cognitive load during training sessions. The
walking speed in the scenario was controlled via subject’s vol-
untary effort in the DGO. As the DGO was position controlled,
the subject could produce voluntary forces, either pushing into
the movement direction of the orthosis or resisting the gait
movement of the orthosis. An increase in effort yielded to an
increase in virtual walking speed; a decrease in effort resulted
in a decrease in virtual walking speed. While the subject could
influence the virtual walking speed in the scenario, the real
walking speed in the DGO was kept constant.

In the virtual task, subjects had to collect and avoid objects
which were placed on a straight line and disappeared slowly in
front of them. By modulation of their physical effort in the DGO,
the subject could collect objects by increasing effort and avoid
objects by decreasing effort. In addition to this biomechanical
task, subjects had to answer questions during the task, which
were displayed in a box on the screen. If the statement was cor-
rect (e.g., ), subjects had to collect the box before it
disappeared. If the statement was false (e.g., ), subjects
had to avoid it by decreasing the walking speed until the box
disappeared (Fig. 2). Subjects obtained immediate feedback on
their performance via their score (Fig. 2, top), which increased
or decreased by five points if an object or a question was an-
swered correctly or incorrectly.

The task difficulty could be increased by increasing the
question difficulty, by decreasing the time available to read
and answer the question, by decreasing the distance between
objects, and increasing the time until the objects disappeared.
Conversely, the difficulty could be decreased by posing easier
questions, allowing more time to read and react to the question,
by increasing the distance between objects and decreasing the

time until the objects disappeared. As subjects showed indi-
vidual differences in how fast they read question, decelerated
or accelerated in the virtual environment or decided how to
answer a question, each of these variables needed to be adjusted
for each subject individually.

There were over 200 questions in total, divided into nine
categories: science, mathematics, history, geography, sports,
art, nature, general, and music. They were presented from all
categories evenly, and the same question was never given twice
to the same subject. Since the questions all had yes/no answers,
they were set up so that, at lower difficulties, the questions
would not be a strong distractor (i.e., the answer was very ob-
vious) while at higher difficulties both answers were probable
and required the subject to think carefully. The difficulty of the
questions was rated independently by two psychologists on a
scale from 1 to 10, and a third rater was consulted when the
opinions of the first two raters differed by more than two. While
a perfect scaling of difficulty levels cannot be guaranteed due
to inter-individual differences in knowledge, a definite trend
thus exists.

D. Modulating Cognitive Load

We induced three distinct levels of cognitive load by ad-
justing the task difficulty. In condition one, subjects were
bored and under-challenged; condition two provided a cog-
nitive challenge which was difficult, but feasible; condition
three over-challenged and overstressed subjects with an unfea-
sibly difficult task. Task difficulty was set individually: in the
under-challenging condition, the task was adjusted such that
subjects succeeded in over 90% of cases. The questions were
very simple, the objects were placed far away and disappeared
slowly such that subjects had a long time to think about the
answer. In the challenging condition, question difficulty and
the required reaction time were adjusted so that the success
rate was between 40%–80%. In the over-challenging condition,
subjects had very little time to answer very difficult questions
with a success rate of maximally 20%. The task difficulty was
set individually to take inter-subject differences into account:
subjects with a high general level of knowledge or a lower level
of impairment, for instance, would be able to answer more
difficult questions. The selection of task success thresholds was
established previously in our laboratory [25].

E. Questionnaires

We asked the subjects, how difficult they perceived the task
in terms of physical effort as well as cognitive load on a five
point scale. 1 was not physically exhausting and 5 was extremely
physical exhausting. Similarly, 1 on the cognitive difficulty scale
represented no cognitive challenge while 5 represented an ex-
treme cognitive challenge. All questions were posed nonver-
bally as a pictorial questionnaire, as not to disturb the breathing
frequency analysis by speaking and also to reduce the com-
plexity of responding to the questionnaire for aphasic stroke pa-
tients or patients with cognitive impairments.

F. Classifier Training

1) Experimental Protocol of Training Dataset Recordings:
Developing an algorithm that estimated only cognitive load re-
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Fig. 3. Study protocol open loop experiments. The virtual task is presented
three times, each time with a different task difficulty to induce three different
levels of cognitive load. The order of the conditions is randomized.

quired us to verify that cognitive load and physical effort were
dissociated. This was necessary, as the virtual task was con-
trolled by modulation of physical effort. We, therefore, collect
data in which cognitive load (task difficulty) and physical effort
(required energy to walk and to control the virtual task) were
not co-varied in our main protocol.

Before the beginning of the recording session, subjects were
familiarized with the questionnaires. Each recording session
started with a 4-min baseline period, in which physical effort
was varied, but no cognitive task was present (“no task” con-
dition, Fig. 3). During this initial period, subjects completed
two walking behaviors: passive, such that the robot provided
most of the physical effort and active, overemphasizing the gait
pattern and expending additional energy.

The initial 4-min period of only physical effort was followed
by 5 min of exercise time, during which subjects could get ac-
quainted with the addition of the virtual task. Meanwhile, the ex-
perimenter determined the levels of cognitive load by adjusting
the distance between objects and the question difficulty level
such that the task success for each condition was reached as de-
scribed above.

After the baseline measurement, three different cognitive load
conditions were presented in randomized order, each 2.5 min
long (cognitive task with randomized task difficulty, Fig. 3).
The three different levels of cognitive load were induced by ad-
justing the difficulty of the task at the beginning and, as neces-
sary, during the condition such that the subjects could reach a
desired task success. Difficulty was modulated by question dif-
ficulty, distance between objects and the time before the next
object would disappear.

After baseline and after each condition, subjects were asked
to answer questionnaires on cognitive load, in order to verify
if we really under-challenged, challenged and over-challenged
the subjects cognitively. In addition, we asked the subjects, how
difficult they perceived the task in terms of physical effort.

2) Correlation Between Physical Effort and Cognitive Load:
To verify that cognitive load and physical effort were dissoci-
ated, we tested questionnaire results from physical effort and
cognitive difficulty level for significant differences between the
two baseline conditions (Fig. 3, No task condition). We also
tested, if the change in physical effort was significantly higher
than the change in cognitive load for the two baseline conditions.
Both tests were performed using the Friedman test followed by a
Wilcoxon test for paired comparison. To get further information,
if cognitive load and perceived physical effort were dissociated,

we computed the coefficient of determination R2 between cog-
nitive load and perceived physical effort.

3) Classifier Setup: We investigated a classic linear discrimi-
nant analysis (LDA) [32] classifier as well as a Kalman adaptive
version of the LDA. Both classifiers were trained to classify cog-
nitive load from the recorded physiological variables and per-
formed classification once every 30 s.

The classic LDA tries to separate two classes by mapping the
input vector to a one dimensional output using the weights

after is computed by maximizing the cost function

(1)

where and are the between-class covariance matrices
and the within-class covariance matricies of the two classes
that are to be separated. With four classes to be distinguished
(no task, under-challenged, challenged, over-challenged), we
trained four two-class LDA classifiers . The
class was then identified as .

All data recorded in the “no task” condition, regardless of the
level of physical effort, was labeled as baseline to the classifier.
This ensured that the classifier estimated only cognitive load and
not physical effort.

Kalman adaptive linear discriminant analysis (KALDA) is an
adaptive version of the classic LDA classifier where the weights

are updated recursively using a Kalman filter when new data
become available [33]. Every 30 s, when a new input vector

and its corresponding known output become known, the
weights are updated according to the following equations:

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

where are the old weights, are the updated weights,
is the one-step prediction error, is the estimated prediction
variance, is the old a priori state error correlation matrix,

is the new a priori state error correlation matrix, is an
intermediate value needed to compute , is the variance of
the innovation process, is the Kalman gain, UPC is the update
coefficient, and is the number of elements of . The starting
values of and as well as the optimal value of UPC are
computed from the training data set, with possible values of
UPC limited to the interval of .

Originally designed for analysis of electroencephalographic
data [33], KALDA has already been used for two-class classifi-
cation of physiological measurements and motor activity mea-
surements in upper extremity rehabilitation [34]. The original
KALDA was designed for two classes, but it can be expanded to
four classes by running the update process for all four two-class
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classifiers in parallel. When an updated took place, we updated
the classifier corresponding to the correct class.

An important problem with the original implementation of
KALDA is that it is supervised; as can be seen from (3), the
correct output class ( ) is required to update the weights. Since
this information is generally not available in practice, one al-
ternative is to modify KALDA so that, once the current class is
estimated as , is passed to (3) in place of .
Thus, in essence, KALDA updates the classifiers using its own
estimate of the output class rather than the correct output class.
However, such an approach could also amplify errors and lead
to instability if unchecked. If an incorrect estimate is used to
update the discriminant function, the discriminant function will
become worse.

We addressed this potential instability by only performing the
update process if the classifier has a high probability of being
correct. As previously mentioned, the estimated class is defined
using all four classifiers as . If
is much higher than other elements of , it is more likely to be
correct. If, on the other hand, all elements of have roughly
the same value, the estimated class should be considered unre-
liable. Our implementation of unsupervised KALDA was thus
as follows:

• compute as per (1);
• if ( —second-largest value of ) , proceed

with (2)–(9);
• otherwise proceed to the next time period without up-

dating.
was considered to be a “reliability threshold”—how prob-

able the classification result needs to be. The optimal value of
was calculated from the training data set using a sensitivity

analysis. Performing “leave one out” classification, we com-
puted the classification results for for each
subject. We averaged the results for each value of over all
subjects and selected for the best average classification re-
sult.

We acknowledge that this unsupervised method does not have
a strong theoretical basis and could become unstable with in-
appropriate values of UPC and . It has already been tested
with similar input variables in upper extremity rehabilitation
and found to be more accurate than classic LDA [34], but this
is only an empirical confirmation. Thus, our plan was to test
both classic LDA and adaptive LDA with open-loop data. The
one that would prove more accurate would be then used in the
closed-loop phase.

4) Performance Evaluation: The quality of the classi-
fier training was quantified by computing percent correctly
classified between the estimated and the actual cognitive
load. The actual cognitive load was labeled as cognitively
under-challenging, challenging but feasible and over-chal-
lenging, according to the condition the subject was in, as
explained in the section “Modulating cognitive load.” We
investigated how well the classifier could generalize across
subjects by training the classifier on all but the th subject and
performing classification on the th subject, commonly called
“leave one out” classification. This was done separately for
the data of healthy subjects and for the pooled data of healthy
subjects and patients.

To investigate, if physiological signals alone would suffice to
classify cognitive load, we trained the classifier with five dif-
ferent input vectors (conditions 1–5).

• C1: Physiological signals alone.
• C2: Physiological signals with task success data from the

virtual environment.
• C3: Physiological signals with force data from the robot.
• C4: A joint input vector of physiological signals, task suc-

cess, and force data.
• C5: Only task success from the virtual environment.

We compared the classification results for the five input vectors
for healthy subjects and for patients. We then checked, if the
KALDA would significantly improved classification compared
to the classic LDA. All statistical tests were performed using the
Friedman test. Afterwards, a post-hoc Wilcoxon test for paired
comparison with Bonferroni correction was performed. Due to
the paired comparison of five conditions, the significance level
was set to 0.01.

G. Closed Loop Control of Cognitive Load

1) Adaptation of Virtual Environment: The goal of the closed
loop experiment was to reach a challenging, but feasible task
difficulty for each subject, independent of the subject’s abilities
and the initial settings of the virtual task. We had intentionally
set up a four class classifier that could distinguish between three
classes of cognitive load and a baseline. The virtual environ-
ment however only allowed making the task easier or harder.
We, therefore, had to reduce three classes of cognitive load to
the binary decision easier or harder.

If cognitive load was classified as under-challenging, task
difficulty was increased with a large adaptation step in the virtual
environment. Ifcognitive loadwasclassifiedasover-challenging,
task difficulty was decreased with a large adaptation step. If
cognitive load reached a state in which it was classified as
challenging but feasible, the classifier evaluated if the task
was by trend too easy or too hard and then also performed
an update of the task difficulty, but with smaller adaptation
steps (Fig. 4). This allowed fast convergence to a state in
which the subject was cognitively challenged and prevented
oscillatory behavior of the task difficulty. Theoretically, the
classifier could also detect baseline. While this situation never
occurred, the adaptation rules stated that no change would
be undertaken in this case.

2) Experimental Protocol: Subjects started to walk in the
Lokomat and were given 5 min to exercise the task. The assistive
force of the Lokomat was set to 100%, which corresponds to po-
sition control of the gait trajectory. Testing the controller based
on physiological signals, we started the training session in an
extreme condition (either too easy or too difficult), pseudo-ran-
domized for each subject. Every 60 s, the classifier provided a
real-time estimation of the current cognitive load, based on the
last 30 s of data, and updated the virtual task difficulty. We al-
lowed 10 update steps of the virtual environment, which resulted
in 10 min Lokomat walking.

This protocol was run in two randomized conditions to eval-
uate the necessity of psychophysiological recordings for auto-
matic classification of cognitive load: once, the experiment was
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Fig. 4. Adaptation of virtual environment based on the result of the classifier. The classifier determines the probability p for each of the four classes (BL: baseline,
UC: under-challenged, CH: challenged, OC: over-challenged) and determines the current cognitive load from the largest probability. In the extreme cases ( UC
, OC), large adaptation steps are done when adapting the virtual task. Adaptation also happens if the classifier detects the class CH (� larger than all other
probabilities). By comparing the � versus � , the algorithm determines if the subject tends towards under-challenged or over-challenged and performs small
adaptation steps.

performed with the KALDA classifier; input to the system was
the full feature vector as described above. Once, only task suc-
cess without additional physiological recordings was controlled
to a desired level. The controller tried to set the task level diffi-
culty such that success rate reached 70%, which was defined as
challenging, but not too difficult.

3) Performance Evaluation of Closed Loop Experiments:
While in the open loop experiments, the subjects had time to
answer the questions after each condition, in the closed loop
experiments we did not want to interrupt the immersion and focus
on the game. We, therefore, decided against asking subjects the
full set of questionnaires on cognitive load and physical effort
during the closed loop experiments. Assuming that we were able
to really modulate cognitive load as suggested by the results of
the open loop experiments, we only tested whether or not the
subjects agreed with the adaptation step of the virtual environ-
ment. The correctness of the classifier’s decision was verified by
asking subjects at each update step if they would want the task to
be easier or harder. This meant that evaluation of the closed loop
experiments was only done with two decisions (easier/harder),
compared to four classes in the open loop experiments (Fig. 4).

While the subject’s answer to the questions was not taken
into account for the classifiers decision, it allowed comparison
between the subjects’ opinion and the adaptation steps taken in
the virtual environment. Also, for comparison, the experimenter
rated the performance of subjects and noted, if the task should
be easier or harder from the therapeutic point of view. To avoid
a bias, the experimenter rated the performance before asking
the subject. Also, the experimenter could not see the classifier’s
decision.

Comparing the percent match between subject-classifier and
experimenter-classifier was of particular interest to quantify how
patients perceived and rated their own performance. While we
excluded patients with cognitive impairments in this study,
patients might not be able to rate their own performance
subjectively compared to objective expert-rating of the therapist.

Using a Friedman test with post-hoc Wilcoxon test, we com-
pared the closed loop system with physiological data, robot data
and score information to the system that only controlled score.
Significance level was set to 0.05, as no Bonferroni correction
was necessary.

H. Subject Data

Both open and closed loop experiments were performed with
naïve subjects that had never seen the virtual environment be-

TABLE I
CHARACTERISTICS OF PATIENTS FOR OPEN LOOP CLASSIFIER

TRAINING AND CLOSED LOOP CONTROL OF COGNITIVE LOAD.
GENDER: M=MALE, F=FEMALE

fore. Open loop experiments were performed in nine healthy
subjects (5 female, 4 male, 29 years ) and four stroke sub-
jects (Table I, top). Closed loop experiments were performed
in five healthy subjects (1 female, 4 male, 32 years ) and
five stroke patients (Table I, bottom). Subjects were excluded if
cognitive impairments prevented them from reading and under-
standing the questions on the screen. Subjects were asked to re-
frain from coffee, tea and cigarette consumption four hours prior
to the recording. Upon arrival, the task and the questionnaires
were explained to all subjects. All subjects gave informed con-
sent. Subjects were fixed into the DGO with a harness around
the hip and cuffs around the legs and walked at 2 km/h, which
was found to be a comfortable walking velocity for healthy sub-
jects and a feasible walking velocity for all patients. All sub-
jects walked at the same velocity to record physiological signals
at comparable conditions. For safety reasons, all subjects were
connected to the body weight support system. Approval for all
studies was obtained from local ethics committees, and all sub-
jects gave written informed consent before data collection.

III. RESULTS

A. Training Experiments

Physical effort and perceived cognitive load were dissociated
in both healthy subjects and patients. While not perfectly inde-
pendent, the coefficient of determination between physical
effort and cognitive load was 0.22 for healthy subjects and 0.33
for patients.

In healthy subjects, at two distinct levels of physical effort
without virtual task, the reported physical effort of healthy
subjects increased significantly for the harder physical effort
condition compared to the easier physical effort condition
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Fig. 5. Boxplots of perceived physical effort and cognitive load in healthy sub-
jects and patients. The graph shows median and 25%–75% percentiles of ques-
tionnaire answers.

. Meanwhile the reported cognitive load increased,
but not significantly (Fig. 5, top left) from easy to hard physical
effort. While perceived physical effort and perceived cognitive
load both increased, the increase in physical effort was sig-
nificantly higher compared to the increase in cognitive load

. Conversely, in the cognitive task conditions, the
reported physical effort did not increase significantly while
the perceived cognitive load increased significantly from the
under-challenged to the over-challenged condition ( ,
Fig. 5, top right). Again, perceived physical effort and per-
ceived cognitive load both increased. However, in the cognitive
task condition, the increase in cognitive load was significantly
higher compared to the increase in physical effort .

In patients, changes in perceived physical effort and per-
ceived cognitive load showed similar trends as in healthy
subjects. None of the results in patients were statistically sig-
nificant, which could possibly be attributed to the small sample
size. The change in physical effort during the no task condition
increased, but not significantly ( , Fig. 5, bottom left).
The increase in physical effort was almost significantly higher
compared to the increase in cognitive load . In the
condition with cognitive task, cognitive load increased, but
again not significantly ( , Fig. 5 bottom right).

B. Classification Performance of Training Experiments

The classification results from all classification experiments
for healthy subjects and patients are summarized in Table II.
With four classes, 25% correct classification would correspond
to chance. In healthy subject, the classic LDA as well as the
KALDA only reached a level slightly above chance when used
on physiological signals alone. Physiological signals in combi-
nation with force data from the robot did not improve classifica-
tion results of the classic LDA; the Kalman filter however could

improve the classification based on physiological signals and
force data by 12%. A key input was the task success in the vir-
tual environment (score), which raised the classification results
to 88% correct classification. In patients, the LDA performed
equally poor in data sets with physiological signals alone or
physiology signals in combination with robot force data. How-
ever, the patients could benefit to a much larger extend from the
KALDA approach compared to healthy subjects, as improve-
ments of up to 25% correct classification could be achieved. In-
terestingly, in patients, score information from the virtual envi-
ronment could not improve classification results of the KALDA
classifier.

In healthy subjects and patients, the statistical tests showed
a significant improvement of classification results if score in-
formation was present. Classifier C1 and C2 had score infor-
mation available and classified cognitive load better than clas-
sifiers C3 and C4 that did not have score information available

. The KALDA did not significantly improve the
classification results neither in healthy subjects , nor
in patients .

The classifier with all information available (C1) did classify
cognitive load better than the classifier base only on score (C5).
However, results were not statistically significant after the Bon-
ferroni correction was applied ( in healthy subject,

in patients).

C. Classifier Performance During Closed Loop Control of
Cognitive Load

On average, classification of cognitive load in healthy sub-
jects during closed loop control was achieved with
correct classification. As explained above, this number refers
to the percent match of the classifiers result with the question-
naire answer of the subject. In healthy subjects, the experimenter
rating of cognitive load coincided to over 95% with the decision
of the subject. This system used a joint input vector of physi-
ological data, force data from the robot and task success data
from the virtual environment in combination with the KALDA
classifier. Controlling only task success without the use of phys-
iological signals, we obtained an average classification result of

correctly classified (Table III).
In patients, the percent match between the patient’s deci-

sion and the KALDA classifier was very low However, the
experimenter matched the decision of the classifier with 80%
(Table III). In healthy subjects, the closed loop system with
physiological data, robot data and score data performed signifi-
cantly better than the system based only on score information

.

IV. DISCUSSION

We performed bio-cooperative, closed loop control of cogni-
tive load during robot assisted gait training in healthy subjects
and neurological patients after stroke. Using psychophysiolog-
ical measurements, robot force data and performance data from
a virtual environment from open loop experiments, we trained
a linear discriminant analysis classifier. As stroke is reported
to cause disturbances in autonomic functions and therefore in
physiological signals [35]–[37] we used a Kalman filter based,
auto-adaptive system (KALDA), which automatically adapted
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TABLE II
OPEN LOOP, “LEAVE ONE OUT” CLASSIFICATION RESULTS FOR HEALTHY SUBJECTS AND PATIENTS FOR FOUR DIFFERENT

KINDS OF INPUT VECTORS. RESULTS ARE PRESENTED AS PERCENT CORRECTLY CLASSIFIED ����� � ���	

TABLE III
RESULTS OF CLOSED LOOP EXPERIMENTS IN HEALTHY SUBJECTS AND PATIENTS. RESULTS ARE PRESENTED AS PERCENT MATCH BETWEEN THE DECISION OF

THE CLASSIFIER AND THE DECISION OF SUBJECT OR EXPERIMENTER. ALTHOUGH THE SUBJECTS AND EXPERIMENTERS WERE ASKED FOR THEIR PERSONAL

RATING, THIS INFORMATION DID NOT INFLUENCE THE ADAPTATION OF THE CLOSED LOOP SYSTEM. RESULTS ARE PRESENTED AS PERCENT CORRECTLY

CLASSIFIED ����� � ���	

the classifier to the physiological responses of subjects. The
KALDA generated data labels based upon its own class prob-
abilities and therefore did not need any further input from ther-
apist or subject.

A. Classification Performance

In open loop experiments, 88% correct classification was pos-
sible in healthy subjects. The KALDA could only further im-
prove the results of classification that did not rely on the score
from the virtual environment. However, in patients, the KALDA
allowed for up to 75% correct classification. The score informa-
tion from the virtual environment was a key input for the clas-
sifier, in healthy subjects and patients alike. This appears log-
ical, as the different levels of cognitive load were induced by
adjusting task difficulty via task success.

While closed loop control of cognitive load could be achieved
with 88% correct predictions in healthy subjects, patient re-
sults show only 53% correct classification (Table III). When
comparing the results of the classifier with the information ob-
tained from asking the patients, the controller only performed
3% above chance level, as we had asked subjects only if they
wanted the task to be easier or harder. However, taking into
account possibly decreased self assessment capabilities, the re-
ported answers of patients did often not reflect the objective as-
sessment of the therapist.

In this light, we argue that the of correct match
between the classifiers decision compared to the experimenters
rating reflects the capabilities of the classifier more realistically
(Table III). Patient 4 for example started the experiment with a
virtual task that over-challenged him. Although he obtained a
score of 0% in the first 3 min, he wanted the task to be more
difficult.

A broader basis of patient data could have potentially im-
proved the open loop and closed loop classification results. In
healthy subject, gender [38], age [39], and the presence of other
people [40] were shown to have an effect of psychophysiolog-
ical responses. In stroke and traumatic brain injured patients,
changes in heart rate and skin conductance as reaction to stress

were shown to be reduced for patients with right hemispheric
injury compared to patients with left hemispheric injury [41].
The classification results might therefore improve with a larger
pool of patient data or with data from an age matched group
of healthy subjects. The low sample size might be responsible
for the large standard deviations in the classification results (Ta-
bles II and III). In addition, the low sample size might explain
why the classic LDA classifier performed worse with all phys-
iological data (Table II, first row) compared to classification
with only physiological signals and score information ( Table II,
second row).

Furthermore, LDA assumes that the input data are normally
distributed. However, this was later found not to be the case
for several inputs, including score for healthy subjects. Despite
the assumption, LDA is to some degree robust to violations of
normality, as is for example evidenced by the good classification
performance using only healthy subjects’ score. Nonetheless,
we acknowledge that future studies may wish to evaluate other
classifiers that do not require this assumption.

B. The Influence of Physical Effort in Classifying Cognitive
Load

If employed during robot-assisted gait training, psychophys-
iological recordings might be influenced by both motor and
cognitive task. Synergistic physiological responses to combined
physical and cognitive workload were for example investigated
by Novak et al. [42] or Wasmund et al. [43]. Both found that
physical effort influenced recordings during dual tasks, but that
the effects on physiology were mostly decoupled.

In our experiments, physical and cognitive activity were dis-
sociated to some degree, since question difficulty was indepen-
dent of physical activity. However, they were also connected
since the cognitive task had to be solved by performing a phys-
ical action and was thus embedded into the task to some degree.
A full separation of physical effort and cognitive load would
of course be desirable from classification point of view. It was,
however, therapeutically not desired to fully separate physical
effort and cognitive load, as physical effort was shown to be
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crucial for rehabilitation success [2]. We had, therefore, inten-
tionally designed the setup such that patients had to solve the
cognitive tasks with a modulation of motor effort.

While the dissociation of perceived physical effort and per-
ceived cognitive load was not perfect, the change in physical
effort was significantly larger than the change in cognitive load
during the “no task” condition. Conversely, the change in cog-
nitive load from under-challenged to over-challenged was sig-
nificantly larger than the change in physical effort (Fig. 5).

This verified that the classifier did indeed classify cognitive
load, despite the similar trends of both quantities. HR, HRV,
breathing frequency, and skin temperature are influenced by
physical effort. This was taken into account in the choice of
the baseline measurement. During the baseline measurement,
subjects had to vary their physical effort (Fig. 3, “no task con-
dition”). This data was labeled as “baseline” to the classifier.
Training the classifier on data that did not include the initial
baseline measurement, the classification performance dropped
to values below 30% (results not reported).

C. Necessity for Kalman Filters in Neurological Patients

A disturbance of the autonomic functions was often described
to affect physiological processes in cerebro-vascular diseases
[35]–[37]. In this context, a decrease in HRV (standard devi-
ation of RR intervals, low frequency and high frequency) was
found for stroke patients [35], [37] . In addition, it was shown
that skin temperature was lower on the contralesional side after
stroke [44] and that the sympathetic skin conductance was al-
tered in amplitude and delay [45]. Furthermore, medication of
stroke patients can influence physiological signals, as for ex-
ample beta blockers, which alter the cardio-vascular response
to psychological or physical stress. In addition, patients can get
exhausted during training. As changes in physiological record-
ings caused by exhaustion can potentially occur during a long
training session, the KALDA with its updating frequency of
1 Hz can take these changes into account.

The classical LDA only reached open loop classification result
of 45%–65% correct classification (Table II) due to the large va-
riety of possible changes in physiological responses compared
to healthy subjects. Also, the task might have been physically
much more demanding for patients, which would alter effort re-
lated physiological signals such as mean HR, HRV, or breathing
frequency. The Kalman adaptive classifier (KALDA) could take
alterations of physiological signals caused by the stroke into ac-
count and improved the classification by up to 25% to a maximal
classificationresultof75%.Notethat,withfourclasses,25%clas-
sification correctness would correspond to chance. For daily clin-
ical use, the basis of patient data will have to be increased to in-
clude patients with a variety of different lesions and of different
age. The fact that the Kalman Filter did not result in statistically
significant improvements of classification compared to the stan-
dard LDA is likely the result of the small sample size.

The efficacy of the KALDA for classification of neurological
patients became even more apparent when compared to clas-
sification results of healthy subjects: the classifier, trained on
healthy and patient data, could achieve 88% correct classifier
even in its none-adaptive version. Possibly, this is due to the

Fig. 6. Exemplary plot from data of healthy subject 4 from closed loop con-
trol of cognitive load using the KALDA classifier with physiological input. C:
classifiers decision, S: subjects decision.

fact that most healthy subjects responded to our intervention in
a similar manner.

However, we must acknowledge that our implementation
of unsupervised KALDA was validated empirically rather
than theoretically. With improperly selected parameters of
the update process, instability could occur, leading to poor
classification and decisions that could be detrimental to the
patient. In our case, UPC and were specifically trained to
avoid such an occurrence, and KALDA thus resulted in better
classification than classic LDA. Still, the stability of KALDA
in an unsupervised setting should be more extensively validated
both theoretically and empirically before it can be introduced
into clinical practice.

D. The Necessity of Physiological Signals in a Clinical Setting

From the viewpoint of clinical applicability, a classifier based
on task performance alone would be preferable compared to a
classifier which also included physiological signals. Measuring
physiological signals always included sensor placement, which
was time consuming for the experimenter and uncomfortable for
the subject. In particular, the time to place the sensors will be
an issue during rehabilitation, as training-time is limited. With
a classifier based on task performance, no further physiological
measurements such as ECG, skin conductance, breathing, or skin
temperature would be necessary. All information needed for the
classification would be provided by the virtual environment.

We, therefore, examined the necessity of physiological
signals for classification of cognitive load compared to a con-
troller that adapted the virtual environment solely based on the
subject’s performance in the task (Table III). The score alone
provided 74% correct classification in healthy subjects and
60% correct classification in patients. The physiological signals
only improved the results by 13% and 15% in healthy subjects
and patients, respectively (Table II). In healthy subjects, this
increase was however significant. While this is only a small
improvement compared to the additional effort of attaching the
sensors, the importance of physiological data in the decision
process of classification is exemplified with data from healthy
subject 4 (Fig. 6). The classifier only takes the last 30 s of
data into account (dashed box in plot). The classifier (C) with
physiological signals as input decided in decision 1 to make
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the task easier, and in decision 3 to make the task harder. In
both cases, the classifier’s decision coincided with the decision
of the subject (S). The score controller would have decided
in both cases to make the task harder, as the optimal range
of task success was not yet reached and the data
for the decision, acquired in the last 30 s, was similar in both
cases. Therefore, the physiological data provided the deciding
information on the cognitive load of the subject.

This shows that for control of cognitive load, physiological
signals can be a necessary source of information required by
the classifier. The score-based classifier showed good perfor-
mance for extreme conditions under-challenged and over-chal-
lenged, but its performance dropped for situations, in which the
subject reached a challenged state. However, for clinical use,
down-scaling of the required physiological signals might pro-
vide a good tradeoff between effort for therapeutic staff involved
with attachment of sensors and the benefit of assessing cogni-
tive load. The large standard deviation in results of “only score”
classification in patients (Table III) might result from the small
sample size. For a definite answer if psychophysiological sig-
nals improve the classification statistically significantly, further
recordings have to be performed.

V. CONCLUSION AND OUTLOOK

The key result of this study is that real time, objective assess-
ment and control of cognitive load was possible by using a com-
bination of psychophysiological measurements and task perfor-
mance as source for state estimation. For the first time, closed
loop control of cognitive load has been performed in neuro-
logical patients during robot-assisted gait training. Performance
metrics can be used to replace psychophysiological recordings;
this however decreases the classification quality and classifica-
tion quality suffers.

Byputting thehumanintothecenterofacognitivecontrol loop,
the classical master–slave paradigm could be avoided, which re-
quires the user to adapt to the robotic system. Focusing on inte-
grating bio-cooperative closed loop control based on physiolog-
ical signals reflecting psychological parameters could result in a
setup, in which the robotic system adapts to the user. The use of
adaptive algorithms for intelligent machine learning as described
above could be the basis for future rehabilitation devices that au-
tomaticallyadapt to thespecificneedsanddemandsof thepatient.
In general, our adaptive algorithms for classification and control
of cognitive load are not limited to rehabilitation, but could be
used during any human–machine interaction.
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