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Psychophysiological Measurements in a
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Abstract—This paper examines the usefulness of psychophys-
iological measurements in a biocooperative feedback loop that
adjusts the difficulty of an upper extremity rehabilitation task.
Psychophysiological measurements (heart rate, skin conductance,
respiration, and skin temperature) were used both by themselves
and in combination with task performance and biomechanics.
Data fusion was performed with discriminant analysis, and a
special adaptive version was implemented that can gradually
adapt to a subject. Both healthy subjects and hemiparetic patients
participated in the study. The accuracy of the biocooperative
controller was defined as the percentage of times it matched the
subjects’ preferences. The highest accuracy rate was obtained for
task performance (approximately 82% for both healthy subjects
and patients), with psychophysiological measurements yielding
relatively low accuracy (approximately 60%). The adaptive ap-
proach increased accuracy of psychophysiological measurements
to 76.4% for healthy subjects and 68.8% for patients. Combining
psychophysiology with task performance yielded an accuracy rate
of 84.7% for healthy subjects and 89.4% for patients. Results
suggest that psychophysiological measurements are not reliable
as a primary data source in motor rehabilitation, but can provide
supplementary information. However, it is questionable whether
the amount of additional information justifies the increased com-
plexity of the system.

Index Terms—Biocooperative robotics, human factors, multi-
modal interfaces, psychophysiological measurements, rehabilita-
tion robotics.

I. INTRODUCTION

R OBOTIC interfaces are becoming increasingly common
in motor rehabilitation [1]. In the long term, exercise with

such devices yields results comparable to intensive exercise with
a therapist [2]. Additionally, they offer an objective estimation
of the patient’s motor performance and functional improvement
[3]. Frequently, they are combined with virtual environments in
order to make rehabilitation more interesting and motivational
[4].
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Early rehabilitation robots were able to provide active assis-
tance to the patient, but did not adapt their movement to the ac-
tivity (or passivity) of the patient. Instead, the affected limb was
moved along a predefined, fixed trajectory. This problem was
addressed by patient-cooperative or “assist as needed” control
techniques. By recognizing the patient’s movement intentions
and motor abilities, these techniques adapt the robotic assistance
to the activity (or passivity) of the patient. They have been suc-
cessfully used for rehabilitation of both the lower (e.g., [5]) and
upper extremities (e.g., [6]). Recently, the concept of patient-co-
operative robotics has been extended to biocooperative robotics,
which take into account not only the forces and movements ap-
plied by the subjects, but also psychological states.

Psychological factors such as motivation are known to be
very important to the success of rehabilitation. Numerous re-
views have shown that it is important to start intensive therapy
as early as possible and that therapeutic outcome improves with
increasing training intensity (e.g., [7]). Encouraging unmoti-
vated patients thus improves the likelihood of their eventual re-
covery [8], [9]. The goal of biocooperative rehabilitation is thus
to automatically adjust the therapy parameters so that the patient
is challenged in a moderate but engaging and motivating way
without causing undue stress or harm, thus hopefully resulting
in longer and more intensive therapy [10]. However, measuring
psychological states has proven to be more difficult than mea-
suring forces and movements. Questionnaires are not a good so-
lution, as they require therapy to be interrupted and only provide
information “after the fact.” In biocooperative robotics, an un-
obtrusive, real-time method of measuring psychological states
would be very useful.

A possible solution to indirectly measure the subject’s
psychological state would be through psychophysiological
measurements, which can be defined as the measurements
of physiological responses to changes in psychological state.
Perhaps the best-known psychophysiological responses are
increased sweating and changes in heart rate as a result of anx-
iety, but psychophysiological responses have been connected
to other emotions such as anger, fear, and sadness. A thorough
review of psychophysiological responses to different emotions
was recently performed by Kreibig [11].

Psychophysiological measurements can be taken without
the subject’s active cooperation, providing a convenient, ob-
jective, and unobtrusive method of estimating arousal, stress,
engagement, etc. Because of these advantages, they have been
implemented in situations such as flight simulators [12], in-
teraction with mobile robots [13], and interaction with haptic
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Fig. 1. The principle of a biocooperative feedback loop.

robots [14]. After they were suggested for use in motor rehabil-
itation [15], psychophysiological measurements were found to
provide useful information about stroke patients’ psychological
states during robot-aided upper extremity rehabilitation [16].
They could thus be used in a biocooperative feedback loop,
offering information about the patient that cannot be obtained
from forces and movements.

Biocooperative systems have already attempted to either pre-
dict heart rate as a result of physical activity [17] or change the
level of assistance provided by a rehabilitation system based on
heart rate [18]. However, these systems used only one measure-
ment (heart rate). It has long been known that multiple psy-
chophysiological measurements need to be combined in order
to obtain a better estimate of a person’s psychological state
[19]. So far, no closed-loop biocooperative system that com-
bines multiple psychophysiological measurements has been im-
plemented in motor rehabilitation, and such psychophysiolog-
ical closed loops also represent a significant research challenge
in other fields (see [20] for a multidisciplinary review).

Our paper presents a biocooperative feedback loop for upper
extremity rehabilitation that adapts the difficulty of a task based
on a fusion of task performance, biomechanical measurements
(forces and movements), and four psychophysiological signals
(heart rate, skin conductance, respiration, and peripheral skin
temperature). Fusion is performed using discriminant analysis
[21]. Since psychophysiological responses exhibit high inter-
subject variability, we also propose a method of adapting the
system to a particular subject. The system is first trained using
data from other subjects, then gradually adapts to the current
subject as it obtains more and more data about the subject.

The goal of our study was to determine how much informa-
tion psychophysiological measurements can provide in a bio-
cooperative feedback loop, both when used by themselves and
when combined with other sources of information.

II. MATERIALS AND METHODS

The basic building blocks of a biocooperative feedback loop
are shown in Fig. 1: the virtual environment, patient, measure-
ments, data fusion, and biocooperative controller. The hard-
ware underlying the feedback loop is described in Section II-B.
Section II-C describes the virtual environment used by our sub-
jects while Section II-D describes the study protocol and the
measurements. Section II-E gives details on the subjects who

participated in the study. Section II-F describes the measure-
ment processing and the features extracted from the raw mea-
surements. Using methods described in Section II-G, these fea-
tures are then fused into an estimate of whether task difficulty
should be increased or decreased in order to optimally chal-
lenge the patient. The ability of the biocooperative controller
to adapt task difficulty was tested using the approach described
in Sections II-H and II-I.

A. Ethical Approval

Before the study began, ethical approval was obtained both
from the National Medical Ethics Committee of the Republic
of Slovenia and from the Medical Ethics Committee of the Uni-
versity Rehabilitation Institute of the Republic of Slovenia.

B. Hardware

The HapticMaster robot [22], developed by Moog FCS,
was used as the haptic interface. This robot offers movement
with three degrees of freedom. Its end-point is equipped with
force sensors as well as a two-axis gimbal with a two-de-
gree-of-freedom passive grasping module. The subject’s arm
was additionally supported by two cuffs fastened above and
below the elbow. These cuffs were connected to a motorized
pulley which applied a constant pulling force in order to
compensate for the gravity acting on the subject’s arm. A
1.4 1.4-m screen was used to display visual data. Subjects
sat approximately 1.25 m in front of the screen, with the robot
situated between the seat and the screen.

Physiological signals were sampled at 1.2 kHz using a g.US-
Bamp signal amplifier (g.tec Medical Engineering GmbH). The
electrocardiogram (ECG) was recorded using four disposable
surface electrodes placed in a configuration suggested by the
manufacturer of the signal amplifier (two on the chest, one on
the abdomen, and one on the back). Skin conductance was mea-
sured using a g.GSR sensor (g.tec). The electrodes were placed
on the medial phalanges of the second and third fingers of the
idle hand. Respiratory rate was obtained using a thermistor-
based SleepSense Flow sensor placed beneath the nose. Periph-
eral skin temperature was measured using a g.TEMP sensor
(g.tec) attached to the distal phalanx of the fifth finger of the
idle hand.

A recent review of psychophysiological studies found that
heart rate and skin conductance are by far the most commonly
studied psychophysiological measurements of the autonomic
nervous system, with respiration and skin temperature also
frequently used [11]. They were thus included in our study.
Measurements such as electroencephalography and facial elec-
tromyography were initially considered, but we chose to focus
on autonomic nervous system measurements where the sensors
are unobtrusive and can be attached or removed quickly.

C. Virtual Rehabilitation Task

The rehabilitation task was previously used in a study of
stroke patients’ psychophysiological responses to robot-aided
rehabilitation [16]. It combines reaching and grasping exercise.
In the center of the screen, there is a table sloped toward the
subject. At the beginning of the task, a ball appears at the top
of the slope and starts rolling downward. The subject’s goal is
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Fig. 2. The virtual rehabilitation task. A ball appears on the top of a sloped
table (1) and begins to roll down. The subject then catches it (2) and carries
it toward a basket that appears above the table (3). Once the ball is above the
basket (4), the subject drops it into the basket and a new ball appears.

to catch the ball before it reaches the lower end of the table.
Once the ball is grasped, a basket appears above the table. The
subject must then place the ball into the basket. Once the ball
is dropped into the basket or falls off the table, another ball
appears at the top of the table, the basket disappears and the
task continues. Screenshots of the task are shown in Fig. 2. The
robot’s haptic feedback allows the subject to feel the forces
associated with each virtual item. A photograph of a subject
performing the task and interfacing with the robot is available
in the previous study [16].

Though various modes of active robotic support were offered
in the original task, only one was used for our study. If a subject
is unable to open or close his or her hand, the robot can auto-
matically grasp the ball as long as the subject’s hand is in the
correct position.

Seven different difficulty levels were implemented, with
higher levels featuring progressively smaller and faster balls.
While the first level is very easy (the ball is very large and
requires approximately 15 s to cross the table), the seventh is
almost impossible (the ball crosses the table in less than 3 s and
has a radius of 1/5 the radius from the first level). The third level
is the one that was used in the previous study. The ultimate
goal of the biocooperative feedback loop was to change the
difficulty level so that the subject is optimally challenged.

D. Study Protocol

The study was divided into two phases: the open-loop phase
(where task difficulty is adjusted manually by the subject and ex-
periment supervisor) and the closed-loop phase (where task dif-
ficulty is adjusted by the biocooperative controller). The open-
loop phase was conducted first, with the goal of obtaining a
larger set of data for analysis and for training a biocoopera-
tive controller. It was performed first with healthy subjects, then
with hemiparetic patients. The open-loop phase was necessary
since the connections between psychophysiological responses
and psychological states are still controversial to a large degree
and are, to some degree, task-specific. Although it is possible
to identify psychological states from psychophysiological re-
sponses using expert-defined rules, without the need for any
training data (e.g., [23]), such an approach can be risky since
the defined rules may be inaccurate. Thus, we felt that it would

be more reliable to first obtain a large open-loop data set which
could be used to train a biocooperative controller. After training
the biocooperative controller using the open-loop data, the con-
troller was tested in the closed-loop phase with a smaller number
of both healthy subjects and hemiparetic patients.

The experiment procedure for both phases was similar. The
experiment was conducted in a dedicated room at the Univer-
sity Rehabilitation Institute of the Republic of Slovenia. Three
people were present: the subject, experiment supervisor, and oc-
cupational therapist. Upon arrival, subjects were informed of
the purpose and procedure of the experiment, then signed an
informed consent form. Then, they were seated in front of the
robot. One arm (the paretic arm for patients, the right arm for
healthy subjects) was strapped into the cuffs and grasping de-
vice, and the physiological sensors were attached. The third
level of the task was demonstrated, and subjects were allowed
to practice it briefly.

After practice, the subject rested for 2 min while baseline
physiological measurements were recorded. Then, the subject
began performing the task at level 3, 4, or 5 (randomly chosen).
After 2 min of performing the task at that difficulty level, the
task was paused briefly and the subject was asked whether he
or she would prefer the difficulty of the task to increase or de-
crease. Subjects were not given the option to stay at the same
difficulty level. Obviously, it is possible that a subject finds the
current difficulty to be “just right” and does not wish to change
it. However, we chose to offer only two choices for two reasons.
First, this simplifies data fusion by reducing the problem to two
choices rather than three. Second, we found in pretesting that
subjects tended to disproportionately keep difficulty at the same
level if offered the option, even if visibly frustrated or bored and
even if encouraged by the experimenter to change the difficulty.
This was likely due to a desire to please the experimenter and
therapist by not reporting any dissatisfaction with the system.

Before asking the subject about his or her preference, the
experimenter also noted his own opinion of whether difficulty
should increase or decrease. We thus obtained a second, more
objective opinion of what difficulty would be appropriate for the
subject. The issue of the reliability of self-report measures has
been previously raised in psychophysiology, and the opinions of
an observer have been suggested as an alternative or validation
measure [24]. The experimenter’s opinion was, of course, also
subjective to a degree and was based on factors such as the pa-
tient’s task performance, level of physical exertion, verbal com-
ments, and facial expressions.

In the open-loop phase, once the subject had stated his or her
preference, the difficulty changed by one or two levels in the di-
rection chosen by the subject. This randomness was introduced
in order to expose subjects to a wider range of difficulty levels
and create a more robust training data set. If difficulty had al-
ways changed by one level, the system would have most likely
quickly reached a “steady state” where difficulty alternated be-
tween increasing and decreasing. In the closed-loop phase, the
difficulty changed in the direction chosen by the biocooperative
controller.

After task difficulty was changed, the task began again at
the new difficulty. In total, the subject went through six 2-min
periods, with the subject’s preference noted and the difficulty
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changing after each one. After the final task period, the experi-
ment was concluded.

E. Subjects

Twenty-four healthy subjects (20 males, four females, age
years, age range 21–61) and 11 hemiparetic patients

(eight males, three females, age years, age range
22–69) participated in the open-loop phase of the study. Ten
healthy subjects (nine males, one female, age years,
age range 22–62) and six hemiparetic patients (four male, two
female, age years, age range 54–67) participated in
the closed-loop phase of the study. All patients were undergoing
motor rehabilitation at the University Rehabilitation Institute of
the Republic of Slovenia and were tested with the Functional
Independence Measure (FIM) [25] and Mini-Mental State Ex-
amination (MMSE) [26] within a week of the experiment ses-
sion. All patients scored at least 26 out of a possible 30 on the
MMSE and can thus be considered cognitively intact. None of
the patients had been diagnosed with visual neglect.

The patients in the open-loop group were hemiparetic as a
result of intracerebral hemorrhage (three subjects), cerebral in-
farction (four subjects), or surgery of a neoplasm of the brain
(four subjects). Time since stroke onset or surgery was

days (minimum 14, maximum 749). Score on the FIM was
(out of a possible 126). Six suffered from hemiparesis

of the left side of the body and five suffered from hemiparesis
of the right side of the body.

The patients in the closed-loop group were hemiparetic as a
result of subarachnoid hemorrhage (one subject), intracerebral
hemorrhage (two subjects), cerebral infarction (two subjects),
or surgery of a neoplasm of the brain (one subject). Time since
stroke onset or surgery was days (minimum 110, max-
imum 202). Score on the FIM was . Three suffered from
hemiparesis of the left side of the body and three suffered from
hemiparesis of the right side of the body.

A majority of the patients had received secondary stroke pre-
vention drugs (including antihypertensives) prior to participa-
tion in the study. Seven patients in the open-loop group and one
patient in the closed-loop group had received low doses of psy-
chotropics that had no noticeable side-effects.

With 24 healthy subjects and 11 patients in the open-loop
phase, there were thus 144 task periods for healthy subjects and
66 task periods for patients in the open-loop phase. With 10
healthy subjects and six patients in the closed-loop phase, there
were thus 60 task periods for healthy subjects and 36 task pe-
riods for patients in the closed-loop phase.

F. Feature Extraction

Twenty-six features were calculated from the raw signals for
each 2-min task period. They can be divided into three groups:
task performance (four features), biomechanics (eight features),
and psychophysiology (14 features).

1) Task Performance: Performance features describe how
well a subject did during a particular time period and how
long he or she had been performing the task. The four features
used were the difficulty level (1–7), the time period (1—first,
6—last), the percentage of caught balls, and the percentage of
balls placed into the basket.

2) Biomechanics: Biomechanical features describe the
forces and movements applied by the subjects. The eight fea-
tures used were mean absolute force, mean absolute velocity,
mean absolute acceleration, total work, mean frequency of the
position signal, mean frequency of the velocity signal, mean
frequency of the acceleration signal, and mean frequency of the
force signal. All of these were calculated only for movement in
the horizontal plane when the subject is trying to catch the ball
(since the part of the task where the subject is placing the ball
into the basket remains the same in all difficulty levels). Mean
frequencies were calculated using Welch’s method of modified
periodograms.

3) Psychophysiology: Four physiological signals were
recorded: the electrocardiogram, skin conductance, respiration,
and skin temperature. From the ECG, the intervals between
two normal heartbeats (NN intervals) were extracted. Then,
mean heart rate as well as several measures of heart rate
variability (HRV) were calculated: the standard deviation of
NN intervals (SDNN), the square root of the mean squared
differences of successive NN intervals (RMSSD), the number
of interval differences of successive NN intervals greater than
50 ms divided by the total number of NN intervals (pNN50),
total power in the high-frequency heart rate band, and total
power in the low-frequency heart rate band. More information
about all these measures of HRV is available in [27].

The skin conductance signal can be divided into two compo-
nents: the skin conductance level (SCL) and skin conductance
responses (SCRs). The SCL is the baseline level of skin con-
ductance in the absence of discrete environmental events. Mean
SCL and mean derivative of SCL were calculated. SCRs are tran-
sient increases in skin conductance whose amplitude exceeds

and whose peak occurs less than 5 s after the beginning
of the increase. SCR frequency and mean SCR amplitude were
calculated.

Mean respiratory rate and standard deviation of respiratory
rate were calculated from the respiration signal.

Final skin temperature was calculated as the mean tempera-
ture during the last 5 s of each period. Additionally, the mean
derivative of skin temperature was calculated over the entire
time period.

Due to large intersubject differences in baseline values, ab-
solute values of most psychophysiological features were not
used in data fusion. Instead, relative values were calculated by
subtracting the baseline value from the absolute value or by sub-
tracting the baseline value from the absolute value and dividing
the result by the baseline value. The second definition was used
for features where baseline values varied among subjects by a
factor of more than two: SCR frequency, standard deviation of
respiratory rate, and all measures of HRV except pNN50. There
were only two psychophysiological features where absolute
values were used: the mean derivative of SCL and mean deriva-
tive of skin temperature (which are already time-derivatives).

G. Data Fusion

After the feature extraction step, a number of different fea-
tures are available for each time period. These features must then
be fused into a common estimate of how task difficulty should be
changed. As previously mentioned in Section II-D, we felt that
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the easiest approach to data fusion would be to create a training
data set where the subject’s preference is known and then use
statistical or machine learning methods on this data set to build
the data fusion rules.

During the open-loop phase of the study, subjects were regu-
larly asked whether they would prefer the next task difficulty to
be easier or harder, and their responses were noted. Assuming
that the responses were true and accurate, this gave us a training
data set with known inputs (performance, biomechanics, and
psychophysiology) and known desired outputs (subject’s pref-
erence). Since there are only two possible outputs (harder/easier
difficulty), it is possible to use any of several available classifica-
tion methods (e.g., discriminant analysis, neural networks, sup-
port vector machines, etc.) in order to translate input to output.
After testing several classification methods on the open-loop
cross-validation data from healthy subjects, we decided to focus
on linear discriminant analysis since it outperformed more ad-
vanced methods such as support vector machines or neural net-
works and since some of its variants can be used to address chal-
lenges such as intersubject variability and online adaptation (as
explained in Sections II-G2 to II-G5).

1) Linear Discriminant Analysis: Originally developed by
Fisher [21], linear discriminant analysis (LDA) is a well-known
method for feature extraction and classification. It is used to find
a linear combination of features which best separate data points
into two or more classes. The LDA equation for classification
of data into two different classes (class 1 and class 2) can be
written as

(1)

(2)

(3)

(4)

where is the vector of input features, is the discriminant
function, and are the weights of , is the covariance
matrix for class , is the mean value for class , and
is the class to which is assigned.

In our case, LDA can be used to classify the multiple input
features into an estimate of how task difficulty should be
changed (easier or harder difficulty). However, there are two
problems. First, there are a very large number of available
features, some of which may not even be relevant. If all of
them are used in discriminant analysis, a very large training set
is required to obtain an accurate discriminant function. Two
possible solutions are discussed in Sections II-G2 and II-G3.

Second, biomechanical and especially psychophysiological
features exhibit high intersubject variability. A discriminant
function trained using data from multiple subjects will be
generally accurate, but may fail for some subjects. As a subject
performs rehabilitation exercises, it would be useful for the
biocooperative feedback loop to gradually adapt to that subject
and become more accurate. A possible method for this is
Kalman adaptive LDA, described in Sections II-G4 and II-G5.

2) Stepwise Linear Discriminant Analysis: Stepwise LDA is
a variant of LDA where, instead of all the features being entered

simultaneously, a discriminant function is built step-by-step.
Starting with no features in the function, at each step all the
features are evaluated to determine which one will contribute
most to the discrimination between classes. That feature is in-
cluded in the function, and the process starts again. At each step,
a feature already in the function can also be removed if it does
not contribute sufficiently to discrimination. The stepwise pro-
cedure is usually guided by the statistical -value of a feature,
which indicates its statistical significance in discrimination be-
tween classes. The feature selection process ends when no fea-
ture has a sufficiently high -value to be added to the function
or a sufficiently low -value to be removed. This approach has
been used for analysis of different types of data, including psy-
chophysiological responses [28].

In our biocooperative feedback loop, we can use stepwise
LDA on the training data set to select the most relevant features
for task difficulty adaptation. The threshold -value to add a
feature was 3.5 while the threshold -value to remove a fea-
ture was 3. An exception was made if no features exceeded the
threshold -value to add a feature. This often occurred when
only psychophysiological data was entered into the stepwise
procedure. In this case, both thresholds were lowered in steps of
0.5 until at least one feature’s -value exceeded the threshold.

3) Diagonal Linear Discriminant Analysis: Diagonal LDA
is a special case of LDA where all class densities are assumed
to have the same diagonal covariance matrix. Thus, the class of
an input vector can be determined as

(5)

where is the mean value of element for class , is the
standard deviation of element , is the number of elements of

, and is the class to which is assigned.
Though diagonal LDA ignores correlations between input

features, it is very effective for classification [29]. In our bioco-
operative feedback loop, it may be a useful alternative to normal
LDA since it usually requires a smaller training set.

4) Kalman Adaptive Linear Discriminant Analysis: Origi-
nally developed for electroencephalography [30], Kalman adap-
tive linear discriminant analysis is a variant of LDA where the
discriminant function is initialized using the training data set,
then recursively updated online as new information becomes
available (in our case, after every 2 min of the task). The up-
date process adjusts the weights of the discriminant function
(the contribution of each input feature) using Kalman filtering.
For this process, (1)–(4) are expanded with [30]

(6)

(7)

(8)

(9)

(10)

(11)

(12)
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Fig. 3. Our implementation of the biocooperative feedback loop which can
adapt to the current subject. Previously recorded and labeled training data is
used to initialize the fusion rules, which are then recursively updated (with an
optional reliability estimator for unsupervised learning) while the subject is in-
teracting with the virtual environment.

where is the one-step prediction error, is the current class
label, is the current input vector, is the state vector (

, the estimated weights for the LDA), is the estimated
prediction variance, is the a priori state error correlation
matrix, is an intermediate value needed to compute ,
is the Kalman gain, is the update coefficient and is the
number of elements of . The starting values of and as
well as the optimal value of are computed from the training
data set.

In our biocooperative feedback loop, adaptive discriminant
analysis can be used as follows. The discriminant function is
first initialized with data from the training set. The subject per-
forms the task for 2 min, and then the biocooperative system es-
timates how difficulty should be changed. Once the estimate has
been made, the subject is asked whether he or she would prefer
the task to be easier or harder. The system then updates the dis-
criminant function based on the difference between the system’s
estimate and the subject’s response. The function is updated in
this way after every task period. In this way, we obtain an adap-
tive feedback loop which gradually adapts to the current subject
(Fig. 3). Adaptive LDA can also be used with either stepwise
LDA or diagonal LDA. For stepwise LDA, the stepwise method
is used to select the most important input features, and the adap-
tation only includes those features. For diagonal LDA, the initial
weights of the discriminant function are calculated with a diag-
onal covariance matrix and then entered into the update process.

5) Unsupervised Kalman Adaptive Linear Discriminant
Analysis: A limitation of KALDA is that it is a supervised
learning method: as can be seen from (7), the subject’s actual
preference is required to update the weights. Since our
goal was to see how useful psychophysiological responses
could potentially be, we used this supervised KALDA to eval-
uate whether a biocooperative system can adapt to a particular
subject in a “best case” scenario: if given accurate data about

that subject. However, a supervised approach is inappropriate in
practice—if the subject’s preference is available, no automated
feedback loop is necessary.

Thus, we have also modified KALDA so that it updates the
weights using its own estimate of the subject’s preference rather
than the subject’s actual preference (as seen in Fig. 3). While
this makes KALDA unsupervised, it needs to be done carefully
since such an approach can also amplify errors. If an incorrect
estimate is used to update the discriminant function, the func-
tion will become worse. Our method of addressing this was to
generate a measure of how “reliable” the estimate is. The system
then only updates the discriminant function if the estimate is suf-
ficiently reliable. The reliability criterion was relatively simple.
As is evident from (4), the input vector is assigned to one class
if and to the other class if . If the abso-
lute value of is very close to zero, the estimate is likely
to be unreliable. We considered the estimate to be sufficiently
reliable (and updated the weights) if the absolute value of
was larger than a certain reliability threshold. The optimal value
of this threshold is calculated from the training data set. While
the modification used to make KALDA unsupervised is very
simple, it allows us to gauge how accurate an adaptive algorithm
is likely to be when working with realistically available data.

H. Open-Loop Cross-Validation

Data recorded during the open-loop phase of the study (where
task difficulty is adjusted according to the subject’s preferences)
was evaluated using leave-one-out cross-validation. Discrimi-
nant functions were created using data from all subjects except
one, then tested on the remaining subject. This was done as
many times as there were subjects.

Discriminant functions were judged according to how often
their estimate matched the subject’s preference regarding task
difficulty (easier/harder) in cross-validation. The accuracy rate
of a discriminant function was defined as the number of matches
divided by the number of all estimates made.

Several different discriminant functions were created. They
varied according to the type of input data (performance, biome-
chanics, psychophysiology, all) and according to the type of dis-
criminant analysis used (normal, stepwise, diagonal, adaptive,
adaptive stepwise, adaptive diagonal LDA), for a total of 24 dis-
criminant functions. In all cases, the supervised type of adaptive
LDA (as described in Section II-G4) was used. The goal was to
see how accurate psychophysiological data would be compared
to performance and biomechanical data as well as how much
the accuracy rate could be improved using stepwise, diagonal or
adaptive methods. After calculating accuracy rates for all three
variants of supervised adaptive LDA, the most accurate of the
three variants was also used to perform unsupervised adaptation
(as described in Section II-G5).

Discriminant functions were first built and cross-validated
with data from only healthy subjects, then separately built and
cross-validated with data from only hemiparetic subjects. Fi-
nally, we also built the discriminant functions using data from
all healthy subjects and tested them on data from hemiparetic
subjects. This allowed us to see whether information obtained
from healthy subjects can be applied to patients. Since stroke pa-
tients, for instance, show long-lasting abnormalities in sweating
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and heart rate variability [31] that have also been noted as a re-
sponse to rehabilitation tasks [16], we expected that, at the very
least, discriminant functions incorporating psychophysiological
data could not be directly transferred from healthy subjects to
patients.

Additionally, we were interested in knowing which specific
combination of features would be most useful in a discriminant
function. The five most relevant features were determined for
both healthy subjects and hemiparetic patients as the first five
features selected by stepwise LDA, whether or not they exceed
the -to-enter threshold chosen in Section II-G2.

I. Closed-Loop Validation

The discriminant function that yielded the highest accuracy
rate in open-loop cross-validation was selected for implementa-
tion in a closed-loop biocooperative controller. Due to expected
differences between healthy subjects and patients, two discrim-
inant functions were trained: one for healthy subjects and one
for patients. The functions were trained using data from the
open-loop cross-validation phase.

As mentioned in Section II-D, the closed-loop measurement
protocol was similar to the open-loop protocol. At the end of
each period, the biocooperative controller output whether the
task difficulty should be increased or decreased. The output was
shown on the screen to the experimenter, but not to the subject.
The subject was asked about his or her preference, but task dif-
ficulty was changed according to the output of the controller.
Accuracy rate was again calculated as the number of matches
divided by the number of all estimates made.

The goal of closed-loop testing was not to compare different
methods or features; this was done with the larger set of data
from the open-loop phase. Instead, the goal was to demonstrate
that discriminant analysis can be used online for task difficulty
adaptation in a biocooperative feedback loop.

III. RESULTS

A. Open-Loop Cross-Validation

Accuracy rates (in percentages) for open-loop cross-valida-
tion of different types of LDA performed on different types of
input data are shown in Table I for healthy subjects and Table II
for hemiparetic patients. Table III shows accuracy rates for
open-loop cross-validation of different types of LDA trained
on data from healthy subjects and then tested on patients. In all
tables, the highest accuracy rates for nonadaptive and adaptive
methods are bolded in each column. The experimenter and
subject agreed on whether difficulty should be increased or
decreased in 87.6% of all cases for healthy subjects and in
97.0% of all cases for patients.

The unsupervised adaptive approach was tested only on psy-
chophysiological data since supervised adaptive LDA offered
little (if any) increase in accuracy over nonadaptive LDA when
other data types were used (as seen in Tables I and II). For
healthy subjects, unsupervised adaptive diagonal LDA achieved
an accuracy rate of 70.8% (compared to 76.4% in the supervised
approach and 60.4% in the nonadaptive approach). For patients,
unsupervised adaptive LDA achieved an accuracy rate of 65.2%

TABLE I
RATES FOR OPEN-LOOP CROSS-VALIDATION OF DIFFERENT TYPES OF LINEAR

DISCRIMINANT ANALYSIS ON DIFFERENT TYPES OF INPUT DATA FROM

HEALTHY SUBJECTS

TABLE II
RATES FOR OPEN-LOOP CROSS-VALIDATION OF DIFFERENT TYPES OF LINEAR

DISCRIMINANT ANALYSIS ON DIFFERENT TYPES OF PATIENT INPUT DATA

TABLE III
RATES FOR OPEN-LOOP CROSS-VALIDATION OF DIFFERENT TYPES OF

LINEAR DISCRIMINANT ANALYSIS ON DIFFERENT TYPES OF INPUT DATA.
DISCRIMINANT FUNCTIONS WERE BUILT USING DATA FROM HEALTHY

SUBJECTS, THEN TESTED ON PATIENT DATA

Fig. 4. Accuracy rate as a function of time period for open-loop cross-vali-
dation of nonadaptive and supervised adaptive diagonal LDA. The inputs are
psychophysiological features from healthy subjects.

(compared to 68.2% in the supervised approach and 60.6% in
the nonadaptive approach).

As an illustration of how adaptive methods improve accuracy,
Fig. 4 shows a comparison of nonadaptive and supervised adap-
tive diagonal LDA as a function of time period when used on
psychophysiological data from healthy subjects. Although both
nonadaptive and adaptive diagonal LDA yield the same accu-
racy rate during the first task period, accuracy is higher for the
adaptive approach afterwards.

As an illustration of how the size of the training set improves
classification accuracy, Fig. 5 shows the accuracy rate of the best
nonadaptive method as a function of training set size for dif-
ferent types of data from healthy subjects. Furthermore, Fig. 6
shows the accuracy rate of all three nonadaptive methods as
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Fig. 5. Accuracy rate as a function of training set size for different types of
input data in open-loop cross-validation. Accuracy rate is taken for the best non-
adaptive method. All data are from healthy subjects.

Fig. 6. Accuracy rate as a function of training set size when all input data types
are entered in open-loop cross-validation. Results are shown only for nonadap-
tive methods. All data are from healthy subjects. Note that regular LDA fails for
small training sets with more input features than observations.

a function of training set size when all input data types from
healthy subjects are used.

In stepwise LDA of data from healthy subjects, the
first five sequentially entered features were the per-
centage of caught balls ,
mean SCR amplitude , pNN50

, total power in the low-frequency
heart rate band and mean derivative of
skin temperature .

In stepwise LDA of data from hemiparetic patients, the first
five sequentially entered features were the percentage of balls
placed into the basket , standard de-
viation of respiratory rate , total power
in the high-frequency heart rate band ,
RMSSD and final skin temperature

.

B. Closed-Loop Testing

As seen in the open-loop phase, the most accurate type of
discriminant function was stepwise (adaptive or nonadaptive)
LDA with all data types. Thus, stepwise LDA was chosen for
closed-loop testing in both healthy subjects and patients. For
healthy subjects, three features were included: the percentage
of caught balls, mean SCR amplitude and pNN50. For patients,
four features were included: percentage of balls placed into the
basket, standard deviation of respiratory rate, total power in
the high-frequency heart rate band and RMSSD. In closed-loop
testing, stepwise LDA yielded an accuracy rate of 88.3% for
healthy subjects and 88.9% for patients. The experimenter and
subject agreed on whether difficulty should be increased or de-
creased in 91.7% of all cases for healthy subjects and in 97.2%
of all cases for patients.

Fig. 7. One hemiparetic patient in the closed-loop phase: two input features
(one performance, one psychophysiological), the output ��������, and the sub-
ject’s preferences. High performance and a low standard deviation of respira-
tory rate (even, regular breathing) indicate an easy task. For the first, second,
fourth and fifth task periods, task performance would have been sufficient to
change the difficulty. During the third period, task performance is moderately
high, but breathing becomes very uneven, indicating stress. If only task perfor-
mance had been taken into account in this case, the incorrect decision would
have been made (the patient was successful at the task, but was stressed and
wanted difficulty to decrease). During the last period, both performance and psy-
chophysiology are unreliable, and the patient stated that he would most prefer
difficulty to stay the same.

In a follow-up offline analysis, the closed-loop data was
also passed through the most accurate discriminant function
based only on performance data (also trained using data from
the open-loop phase). Performance data yielded an accuracy
rate of 86.7% for healthy subjects and 83.3% for patients.
For an example of psychophysiology increasing accuracy, see
Fig. 7. Additionally, in a second follow-up offline analysis,
the closed-loop data was passed through supervised adaptive
stepwise LDA. However, the adaptive version yielded the
same accuracy rates as the nonadaptive stepwise LDA for both
healthy subjects and patients.

IV. DISCUSSION

A. Usefulness of Different Data Types

Task performance was clearly the most accurate type of data
in open-loop cross-validation, with an accuracy rate of over
80% for both healthy subjects and patients. Biomechanical data
similarly had an accuracy rate of over 75% for both healthy
subjects and patients. Psychophysiological measurements, on
the other hand, yielded noticeably worse results. Nonadaptive
methods yielded an accuracy rate of 60.4% for healthy subjects
and 60.6% for patients. Supervised adaptive methods were able
to improve the accuracy rate of psychophysiological measure-
ments to 76.4% for healthy subjects and 68.2% for patients, but
these results are still worse than results for task performance.
This suggests that psychophysiological measurements by them-
selves are not reliable in a biocooperative feedback loop.

Combining multiple types of data using either LDA or diag-
onal LDA actually lowers the overall accuracy rate. This is most
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likely due to the small sample size problem: with a large number
of features (26 in total) and a limited training set, it is difficult to
find an accurate discriminant function. This is especially notice-
able in Figs. 5 and 6, where the accuracy rate rises steadily as the
size of the training set increases. Stepwise LDA appears to be
the most robust method with regard to sample size. In open-loop
cross-validation, combining multiple data types using stepwise
LDA increases the accuracy rate from 82.6% (performance data
only) to 84.7% for healthy subjects and from 81.8% to 89.4%
for patients. In closed-loop validation, combining multiple types
of data increases the accuracy rate from 86.7% (performance
data only) to 88.3% for healthy subjects and from 83.3% to
88.9% for patients. While the stepwise approach identifies task
performance as the most important source of data, several psy-
chophysiological features are also entered into the stepwise dis-
criminant function, suggesting that they can provide some sup-
plementary information.

The question here is whether the increase in accuracy rate
due to psychophysiology is sufficient to justify the increased
complexity of the system. If measures of task performance
are readily available and relevant, psychophysiological mea-
surements are most likely unnecessary. Designers could take
this into account by creating virtual environments in which
performance is easy to quantify, although this may be difficult
to achieve in non-game scenarios such as activities of daily
living. In such cases, psychophysiology could prove useful
since task performance measures are often not obtainable or
not connected to the subject’s psychological state. It could
also be used to change elements other than the difficulty of
the task—for instance, to change the visual appearance of a
scenario or to select the music played.

Of course, an accuracy rate of 100% is most likely unrealistic.
In a number of cases, subjects were uncertain how they wanted
the difficulty to change (if at all), and responded with comments
such as “I don’t know, either is fine.” In such a case, the best
choice may have been not to change the task difficulty at all.
During the closed-loop phase, it was observed (though only on
a subjective, qualitative level) that the output of the discriminant
function ( in (1) tended to be closer to zero in such cases
as well, suggesting that the output of the discriminant function
was also “uncertain” in a way.

The reliability of the subject’s opinion was also taken into ac-
count by comparing the subject’s opinion to the experimenter’s
opinion. These matched in over 90% of cases, with most dis-
agreements being due to either the subject wanting to try a diffi-
culty level that he/she had never encountered before or the sub-
ject being tired despite doing well. Thus, the relatively poor ac-
curacy of psychophysiological measurements cannot be (only)
due to subjects’ inaccurate opinions.

Finally, a word on biomechanical measurements: as reported
in Section III-A, the first five features in stepwise LDA include
only task performance and psychophysiology. This does not
mean that biomechanical measurements are useless. Before any
features are included, the -value (criterion for inclusion) of
biomechanical features is higher than that of psychophysiolog-
ical features. However, once the first feature (a task performance
feature for both healthy subjects and patients) has been taken
into account, biomechanical features offer less additional in-

formation than psychophysiological ones. This again suggests
that psychophysiological measurements offer information that
cannot be obtained from forces and movements.

B. Adaptive Linear Discriminant Analysis

In open-loop cross-validation, supervised adaptive LDA
offers practically no improvement over nonadaptive LDA in
the case of performance features (accuracy rate increases from
81.9% to 82.6% for healthy subjects, but not for patients) and
only slight improvement in the case of biomechanical features
(accuracy rate increases from 75.0% to 80.6% for healthy
subjects, but not for patients). In the case of psychophysiolog-
ical features, however, supervised adaptive LDA increases the
accuracy rate from 60.4% to 76.4% for healthy subjects and
from 60.6% to 68.8% for patients. Unsupervised adaptive LDA
also increases the accuracy rate, though to a lesser degree.

It is currently uncertain why the improvement is greater for
psychophysiological features than for other features, though we
believe that the reasons are the high intersubject variability of
psychophysiological features and the low initial accuracy. In
any case, our results show that the system can gradually adapt
itself to a given subject to some degree. Since rehabilitation is
usually a long-term process, it would be interesting to see what
kind of improvement adaptive methods could provide over mul-
tiple sessions.

In the supervised adaptive LDA, we provided the system with
the subject’s preference so that it could adapt the discriminant
function with accurate information. Since this information is
generally unavailable, we also demonstrated an unsupervised
version where the discriminant function is adapted online using
the system’s own estimate of the subject’s preference. Though
our modification is probably not the optimal unsupervised adap-
tive LDA, it is a possible practical implementation of adaptive
LDA. We also foresee two other possibilities.

In one alternative implementation of adaptive LDA, the pa-
tient’s first session with the system is a supervised session where
the patient regularly inputs his or her preference into the system,
enabling accurate adaptation. In later sessions, the adaptation is
turned off. Thus, the system uses the first session to adapt to the
patient to some degree, and this information is incorporated into
the system during later sessions.

In a second alternative implementation of adaptive LDA, the
discriminant function would not be adapted on its own, but the
subject could manually input his or her own preference at any
time. The system would then not only change the difficulty of
the task, but also update its discriminant function with the sub-
ject’s input. Another possibility would be for the system to ex-
plicitly ask the subject for input if certain potentially erroneous
trends are detected (e.g., if the system repeatedly estimates that
the task is too easy even though the subject has reached a very
high difficulty level).

C. Differences Between Healthy Subjects and Patients

Based on previous studies that have shown weakened psy-
chophysiological responses as a result of stroke and other patho-
logical conditions [16], [31], we expected that fusion of psy-
chophysiological measurements would be less accurate in pa-
tients than in healthy subjects. However, this does not appear to
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be the case; the accuracy rate for nonadaptive methods is similar
in healthy subjects and patients. Interestingly, accuracy rates are
similar for both groups even though the patient group is much
smaller.

As Table III shows, discriminant functions based on biome-
chanical or psychophysiological measurements cannot be trans-
ferred from healthy subjects to patients without a noticeable de-
crease in accuracy rate. Stepwise LDA also selects different fea-
tures in healthy subjects and patients.

It is easy to understand why results of biomechanical mea-
surements are different between groups: hemiparetic patients,
by definition, cannot move their affected limb as well as healthy
subjects can. This was evident, for instance, in their response to
high difficulty levels. While all healthy subjects reacted to very
fast balls by rapidly moving around the virtual table trying to
catch the ball, many patients preferred to simply stay in one area
of the table and catch only the balls passing through that area.
Psychophysiological measurements are, to some degree, obvi-
ously different due to the aforementioned effects of stroke and
other pathological conditions. Additionally, it is possible that,
for patients, higher task difficulty levels are also physically de-
manding and thus evoke stronger physiological responses. It has
been previously shown that, during haptic interaction, heart rate
and skin conductance are affected by both cognitive and phys-
ical workload [14]. Thus, it is probable that the physiological
responses in our study convey not only psychological informa-
tion, but also information about physical activity.

D. Study Limitations

In the course of our study, a few limitations became apparent.
First of all, we used only four psychophysiological signals (heart
rate, skin conductance, respiration, and skin temperature). Data
gleaned from these signals may not paint a complete picture of
the patient’s psychophysiological state. Additional signals such
as facial electromyography or eye movements may make a bio-
cooperative feedback loop more accurate since they have been
successfully used together with autonomic nervous system re-
sponses in psychophysiology (e.g., [23], [32]). Furthermore, by
using LDA, we assumed that connections between the measured
features and subjects’ preferences were linear. As previously
mentioned, LDA was chosen over other methods for its good
accuracy rate on the open-loop cross-validation data. However,
if additional physiological signals and/or a larger sample were
available, nonlinear methods may result in greater accuracy. Ar-
tificial neural networks, for instance, could be a useful alterna-
tive that has been tested with psychophysiological data in other
settings [28]. In our case, however, neural networks tested on
the open-loop data yielded a slightly lower accuracy than LDA,
possibly due to the small sample size.

Another limitation of the study is that subjects were only
given two choices: to “prefer easier” or to “prefer harder”
task difficulty. Obviously, it is possible that a subject finds
the difficulty to be ’just right’ and does not wish to change
it. A follow-up study would be useful to see how accurate a
system would be if it also had the option not to change the task
difficulty. For this, it may be necessary to define a third class in
discriminant analysis, but it may also be enough to expand (4)

with a simple rule: do not change the task difficulty if is
sufficiently close to zero (as seen in Fig. 7). Although we used
a threshold to define two possible outputs of the discriminant
function, the function by itself outputs a continuous value,
and certain ranges of the output could correspond to different
changes in task difficulty.

A final limitation is the choice of rehabilitation task. Since
few rehabilitation tasks have been studied from a psychophysi-
ological perspective, we chose to build on a task that has already
been used in previous psychophysiological work [16]. How-
ever, one component of the task (placing the ball in the basket)
does not depend on the difficulty level since the difficulty level
only affects the size and speed of the ball. Psychophysiological
differences between difficulty levels thus may not have been
as large as they would have been if all task components had
been affected by the difficulty level, and this may have con-
tributed to the limited usefulness of psychophysiological mea-
surements. Future psychophysiological studies may prefer to
focus on a task with only a single component (e.g., only hor-
izontal reaching).

V. CONCLUSION

The four psychophysiological responses evaluated in our
study are not very accurate when used on their own, although
adaptive methods that adapt to each individual subject can
improve their accuracy. Psychophysiological responses can
be used as a supplementary source of information in com-
bination with measurements such as task performance and
biomechanics, although it is uncertain whether they provide
enough additional information to justify the increased cost and
complexity of the system. They may also be a useful source of
information in tasks and environments where task performance
or biomechanical measurements are either not available or are
not at all connected to the subject’s mood.
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