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a b s t r a c t

This paper presents an adaptive two-level control strategy for a biped walking model and
demonstrates its performance in a wide range of walking modes with considerably diverse
model and control parameter settings. Proposed control strategy inherits a push off that
resembles considerably to forceful extension of the trailing leg during push off in human
locomotion and represents a very important source of forward propulsion. Extensive sim-
ulations have shown that adjustments in the push off related parameter on higher
between-step control level after each step enable evolution of various walking modes of
the biped walker at selected walking speeds and distinctive gait patterns. It also allows
us to investigate the changes in gait kinematics and kinetics of the biped walking model
due to changes in gait velocity, torso inclination and propulsion distribution profiles.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Even though biomechanics of human locomotion is well understood [28,29] and is instrumented gait analysis becoming
an indispensable tool in human locomotion analyses, successful therapeutical intervention in clinical gait assessment de-
pends predominantly on our ability to correctly interpret recorded gait kinematics and kinetics. In this sense the benefits
of instrumented gait analysis can only be partially exploited, as we can only to some extent assert the state of biomechanical
structure, but cannot use the data in subsequent predictions of the most appropriate therapeutical intervention as well. Only
recently a promising support to instrumented gait analysis has been noted in robotics, where the possibility to investigate
and to define characteristic walking pattern in a biped walking model for arbitrary variation of model and control parameter
is the most obvious benefit.

Structural complexity of kinematic linkage and walking algorithms employed in biped walking models [1,4–6,17,
19,21,24] or biped robots [3,10–13,18] considerably affect the degree of resemblance to human walking. The simplest biped
mechanisms with only a few degrees of freedom are passive dynamic [3,21,12,13,27] and ballistic [10,16] robots. While pas-
sive dynamic robots are free from actuation and utilize inertial and gravitational forces to develop stable downhill walking,
the ballistic walkers employ swing leg actuation only at the beginning and the end of the stance phase, with inertial and
gravitational forces being utilized elsewhere. Due to partial or complete absence of actuation this class of biped machines
exhibit considerable energy efficiency and minimal control efforts as well as naturally appearing movement, but simulta-
neously lacks the robustness and insensitivities to disturbances and considerably limits the maximal number of degrees
of freedom.

On the other hand, trajectory tracking enables considerable human-like locomotion of the robot, where the set of trajec-
tories being traced defines the configuration set of the walker. Reference trajectories are predetermined either through de-
tailed human gait analyses constructed templates [1,4] or calculated through optimization of certain cost criteria [19,20,23],
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whereas the stability is subject to zero-moment point (ZMP) control [15,22]. While producing realistic human-like move-
ments, the necessity for a priory determination of reference trajectories imposes a significant drawback, for being able to
generate and investigate versatile characteristic gait pattern subject to model parameter variations would be preferable.

We can overcome this drawback by applying feedback control [5,6,30,31] into biped walking model and robot. Encoding
elementary walking premises as a set of scalar-valued output functions that are fed back to the controller via feedback con-
trol was proposed by Grizzle [5,6]. In five degrees of freedom walking model he formally proved asymptotic stability of the
controller, if all scalar-valued output functions were expressed as functions of stance leg angle with respect to vertical. How-
ever even in simple models control efforts in feedback control of biped walker are immense and magnify considerably in
models with many degrees of freedom. For this reason the majority of feedback control based models in the literature
has simple structure with only a few degrees of freedom and assumes instantaneous transition from single support to swing
phase. The absence of double support is a significant simplification which prevents restitution of lost energy at the impact of
swing leg with the ground in a similar way as in human locomotion. Biomechanical studies have revealed that the majority
of power generation occurs during forceful extension of the trailing leg also termed as a push off at the end of single support,
followed by an eccentric flexion of the leading leg performing majority of power absorption within the double support phase
[9,25,26].

There have been attempts to replace the dissipated energy during contact with force impulses to the stance leg just before
heel strike [2,9]. However assuming infinitesimal impulse time duration is not practical for real mechanisms. Miossec and
Aoustin [14] presented a model that included finite time duration of double support in a gait cycle but without preceding
push off. The advantage of push off was shown in [18], where the adaptive implicit push off control as part of feedback con-
trol in biped model with telescopic legs significantly contributed to settling in stable state space orbit with desired gait
velocity.

This paper extends the two-level control strategy as applied in a model with telescopic legs [18] to allow adaptive control
of a human-like biped walking model with ankles, knees, pelvis and torso. The notion of virtual leg is introduced and cor-
responding control strategy developed to enable versatility in a set of gait patterns. Resulting gait patterns will be assessed
in relation to particular aspect of human locomotion.

2. Robot model and modeling assumption

The biped walking model is considered planar with eight degrees of freedom. Thigh, shank and foot segments are con-
nected at knee and ankle by ideal revolute joint to form each leg. Both legs are connected at hip joint by ideal revolute joint
and carry pelvis and torso segments, both linked by ideal revolute joint. There is a point mass at the center of each segment
and additional mass at the hip joint. Each joint is actuated via torque actuator with the rotational axis aligned with joint axis.
A representative model structure is shown in Fig. 1 and model parameters are gathered in Table 1.

Fig. 1. Schematic representation of the biped walking model.
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Complete gait cycle is divided into phases of single support (associated with the stance leg touching the ground and the
swing leg advancing towards the point of new contact) and double support (associated with the stance as well as swing leg
touching the ground and the legs are referred to according to their function in the preceding single support phase). Transition
from single support to double support phase is contact phase and is associated with the swing leg touching the ground. Sim-
ilarly, the transition from double support to single support phase is referred to as the take-off phase and is associated with
the rear leg lifting of the ground. Both transition phases are assumed to be instantaneous. Additionally, when either left or
right leg is in contact with the ground only toe contact will be assumed, whereas keeping the heel above the ground is as-
sured by corresponding control assumption provided in later section. The dynamic equations are composed of ordinary dif-
ferential equations for the support phases and algebraic equations for the transition phases.

2.1. Single support phase

Let q = (qL,1, qL,2, qL,3, qR,1, qR,2, qR,3, qP, qT, xH, zH)T be the set of coordinates describing the configuration of the robot with
respect to world reference frame and let u = (TL,1, TL,2, TL,3, TR,1, TR,2, TR,3, TT)T be the joint torques associated with correspond-
ing joint axes. To account for switching between the single and double support phases we further denote q1,st = qL,1, q2,st = qL,2,
q3,st = qL,3, q1,sw = qR,1, q2,sw = qR,2, q3,sw = qR,3 and T1,st = TL,1, T2,st = TL,2, T3,st = TL,3, T1,sw = TR,1, T2,sw = TR,2, T3,sw = TR,3 when left and
right legs are considered as stance and swing leg respectively in a current single support and succeeding double support
phase. Likewise we will denote q1,st = qR,1, q2,st = qR,2, q3,st = qR,3, q1,sw = qL,1, q2,sw = qL,2, q3,sw = qL,3 and T1,st = TR,1, T2,st = TR,2,
T3,st = TR,3, T1,sw = TL,1, T2,sw = TL,2, T3,sw = TL,3 when right and left legs are considered as swing and stance leg respectively in
current single support and succeeding double support phase.

Two constraint equations xst = const, zst = 0 account for the stance leg contacting the ground throughout the single support
phase. They reduce the feasible space of motion to a constraint surface and when organized in matrix form Wss(q) = 0 they
can be introduced into dynamic Euler-Lagrange equations of constrained system through Lagrange multipliers:

MðqÞ€qþ Cðq; _qÞ _qþ GðqÞ ¼ Buþ CT
sskss

Css _q ¼ @Wss
@q

_q ¼ 0
Tss;start < t < Tss;end ð1Þ

where M(q) is the inertia matrix, Cðq; _qÞ is the matrix of centripetal and Coriolis terms, G(q) is the gravity vector and kss is a
vector of Lagrange multipliers equal to negative ground reaction forces during single support. Tss,start and Tss,end denote the
times of the start and the end of single support phase respectively. The model is written in the state space form by:

_xss ¼
_q

M�1ðqÞ �Cðq; _qÞ _q� GðqÞ þ Buþ CT
sskss

� �
" #

¼: f ssðxssÞ þ gssðxssÞu ð2Þ

2.2. Contact phase

A standard rigid contact model is assumed [7]. The impact is considered instantaneous and without slipping. Further-
more, the external forces during the impact can be represented by impulses and cannot be generated by actuators, whereas
the impulse forces may result in velocity but not position discontinuities. This implies the conservation of angular
momentum:

Mð _qþ � _q�Þ ¼ Fc;ext ð3Þ

In (3) _qþ and _q� are velocity vectors just after and just before the impact respectively and Fc,ext the contact impulse forces.
Four constraint equations in the form xst = const1, zst = 0, xsw = const2 and zsw = 0 completely characterize the contacts of

both legs with the ground after the impact and are organized in matrix form Wc(q) = 0. The following relation determines
the admissible set of velocities after the impact:

Cc _qþ ¼ @Wc

@q
_qþ ¼ 0 ð4Þ

Table 1
Model parameters.

Segment Mass (kg) Length (m) Inertia (kg m2)

Foot 1 0.15 0.2
Shank 5 0.5 0.6
Thigh 7 0.5 0.8
Hip 10 – –
Pelvis 7 0.15 0.8
Torso 35 0.4 3.0
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With additional equation relating the impulse during contact Fc,ext to the tangent and normal forces during contact Fc at the
tips of both legs

Fc;ext ¼ CT
c ðqcÞ FT1 FN1 FT2 FN2½ �T ¼ CT

c ðqcÞFc ð5Þ

the following set of equations is solved for joint velocities just after the impact _qþ

M �CT
c

Cc 0

" #
�

_qþ

Fc

� �
¼

M _q�

0

� �
t ¼ Tc ¼ Tss;end ¼ Tds;start ð6Þ

where Tc denotes the contact time and (6) illustrates instantaneous transition to double support. Geometrically the contact
model can also be considered as an M(q) – orthogonal projections of _q� onto the feasible space f _qþ 2 TqQ jCc _qþ ¼ 0g [21].

2.3. Double support phase

Four constraint equations xst = const1, zst = 0, xsw = const2, zsw = 0 account for both legs contacting the ground throughout
the single support phase. They reduce the feasible space of motion to a constraint surface and when organized in matrix form
Wss(q) = 0 they can be introduced into dynamic Euler-Lagrange equations of constrained system through Lagrange
multipliers:

MðqÞ€qþ Cðq; _qÞ _qþ GðqÞ ¼ Buþ CT
dskds

Cds _q ¼ @Wds
@q

_q ¼ 0
Tds;start < t < Tds;end ð7Þ

where kds is a vector of Lagrange multipliers equal to negative ground reaction forces during double support. Tds,start and
Tds,end denote the times of the start and end of double support phase respectively. The model is written in the state space
form:

_xds ¼
_q

M�1ðqÞ �Cðq; _qÞ _q� GðqÞ þ Buþ CT
dskds

� �
" #

¼: f dsðxdsÞ þ gdsðxdsÞu ð8Þ

2.4. Take-off phase

Take-off phase is transition phase between double support phase and succeeding single support phase. Considering that
only one leg remains in contact with the ground in succeeding single support phase, the take-off phase transition model has
to account for two constraint equations in the form xst = const, yst = 0 or organized in matrix form Wtop(q) = 0. Hence, by
adjusting the transition model of the contact phase in this sense the transition model of the contact phase can be rewritten
to obtain the transition model of the take-off phase, thus expressing the relation between velocities just before and just after
the take-off:

M �CT
top

Ctop 0

" #
�

_qþ

Ftop

� �
¼

M _q�

0

� �
t ¼ Ttop ¼ Tds;end ¼ Tss;start ð9Þ

where Ctop ¼ @Wtop

@ds ; _qþ and _q� are velocities just after and just before the take-off respectively, Ftop represents tangent and
normal forces at the tip of the leg, that remains in contact with the ground in succeeding single support phase, Ttop denotes
the contact time. Geometrically the transition model of the take-off phase can also be considered as an M(q) – orthogonal
projections of _q� onto the feasible space f _qþ 2 TqQ jCtop _qþ ¼ 0g [21].

3. Control strategy

The following section extends the two-level control strategy as described in [18] to apply for a model with knees and an-
kles as well as pelvis segment. The lower within-step control level adopts trajectory tracking via feedback control, where the
walking mechanisms are encoded in postural terms that are expressed as a set of holonomic constraints of the kinematic
variables and as outputs of the model imposed on the robot via feedback control. These constraints are adaptively modified
after each gait cycle on higher, between-step control level in such a manner to adjust forward propulsion to achieve desired
gait velocity and step length.

3.1. Within-step control

3.1.1. Within-step control in single support phase
Human walking is characterized with roughly symmetrical movement of the stance and swing leg, sufficient foot clear-

ance for the swing leg to advance towards the point of new contact, small sways in nearly vertical torso as well as pelvis
positions and minimal vertical hip movement. These general observations form the following set of control objectives:
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y1 ¼ qst;v þ qsw;v � r1

y2 ¼ zsw � r2

y3 ¼ qT � r3

y4 ¼ qP � r4

y5 ¼ Lst;v � r5

ð10Þ

where Lst,v is the virtual stance leg length

Lst;v ¼ jpH � pstj ð11Þ

and ri, i = 1, . . ., 5 are reference trajectories to be followed

r1 ¼ ðqst;v þ qsw;vÞjt¼Tss;start
�wss;1

r2 ¼
Lleg;nominal

k1
� ðqst;v;d �wss;2 þ qst;v jt¼Tss;start

�wss;3 � qst;vÞ
r3 ¼ qT jt¼Tss;start

�wss;4 þ qT;d �wss;5

r4 ¼ qP;dðqst;vÞ
r5 ¼ Lst;v;dðqst;vÞ

ð12Þ

Tracing the reference trajectory r1 implies symmetrical gait of the biped walking model, with exponential pattern assured
by an appropriately selected exponential function wss,1 with time constant sufficiently smaller than the time duration of sin-
gle support phase. Such definition sets qst,v to be a monotonically increasing function during single support phase
qst;v 2 qst;v jt¼Tss;start

; qst;v jt¼Tss;end

h i
. Likewise, the reference trajectory r2 ensures the swing leg to avoid colliding with the ground

while progressing. It is assumed that when qst;v jt¼Tss;end
¼ qst;v ;d, the tip of the swing leg touches the ground and the single sup-

port phase terminates. qst,v,d is a desired virtual stance leg angle at the end of single support phase and is related to desired
gait velocity vgait,d, desired cadence cadgait,d and desired step length Lstep,d by

Lstep;d ¼
2vgait;d

cadgait;d
¼ xst jt¼Tss;start

� xswjt¼Tss;start
þ 2Lleg;nominal sinðqst;v;dÞ ð13Þ

Reference trajectory r2 sets the foot clearance to be proportional to nominal length of the virtual stance leg Lst,nominal. wss,2 and
wss,3 are exponential functions with time constant sufficiently smaller than the time duration of single support phase that
assures smooth exponential pattern.

Zeroing the output function y3 via feedback control ensures the biped walking model is tracing the reference trajectory r3,
thus maintaining the torso segment at the desired angle with respect to the vertical. To assure smooth exponential transition
from initial torso angle at the start of the single support phase towards desired torso angle qT,d, wss,4 and wss,5 exponential
functions with time constant sufficiently smaller than the time duration of single support were chosen. Similarly, pelvis seg-
ment exhibits small sways in sagittal plane as determined by the reference trajectory r4. It is defined as a fifth-order poly-
nomial of virtual stance leg angle qst,v such that (see Fig. 2 for representation)

qPðqst;v jt¼Tss;start
Þ ¼ qP jt¼Tss;start

qP qst;v ¼
qst;v jt¼Tss;start

þqst;v ;d

2

� �
¼ k2 � qP;nominal

qPðqst;v;dÞ ¼ qP;nominal

_qP qst;v ¼
qst;v jt¼Tss;start

þqst;v ;d

2

� �
¼ 0

_qPðqst;v jt¼Tss;start
Þ ¼ _qP;djt¼Tss;start

_qPðqst;v;dÞ ¼ _qP;djt¼Tss;end

ð14Þ

where qP,nominal is a desired pelvic midpoint sway and k2 is a coefficient to determine the pelvic midsway magnitude.

Fig. 2. Fifth-order polynomial representing reference trajectory r4 = qP(qst,v).
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Lengthening and shortening of virtual stance leg as defined by reference trajectory r5 determines the movement of the
stance leg. It is defined as a forth-order polynomial of qst,v such that (Fig. 3):

Lst;vðqst;v jt¼Tss;start
Þ ¼ Lst;v jt¼Tss;start

Lst;v qst;v ¼
qst;v jt¼Tss;start

þqst;v;d

2

� �
¼ Lst;v;nominal

Lst;vðqst;v;dÞ ¼ Lst;nominal

_Lst;vðqst;v jt¼Tss;start
Þ ¼ _Lst;v jt¼Tss;start

_Lst;vðqst;v;dÞ ¼ _Lst;v ;djt¼Tss;end

ð15Þ

where _Lst;v ;djt¼Tss;end
is desired virtual stance leg lengthening velocity at the end of single support phase which is determined on

between-step control level to assure adaptive push off control and hence desired gait velocity control.
Although relations yi, i = 1, . . ., 5 sufficiently describe stable gait for a biped walking model, two additional relations are

needed to assure full rank of (2) and to calculate two remaining joint moments. They can be determined to emphasize certain
walking aspects that can be observed in human walking as well. Although in described biped walking model a virtual stance
leg lengthening control will assure sufficient propulsion for the model to settle in stable gait, the present control scheme
does not provide any insight about the source of propulsion. In human gait the majority of propulsion comes from rapid an-
kle joint extension at the end of single support phase. Similar process can be implemented in presented biped walking model
by enforcing the desired lengthening and/or shortening of virtual stance leg ankle component (Fig. 4) via feedback control.
Two additional output functions can be formed as follows:

y6 ¼ Lst;ankle;v � r6

y7 ¼ Lsw;ankle;v � r7
ð16Þ

Fig. 3. Forth-order polynomial representing reference trajectory r5 = Lst,v,d(qst,v).

Fig. 4. Ankle and knee components of virtual stance leg.
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where Lst,ankle,v is the length of the virtual stance leg ankle component

Lst;ankle;v ¼ ðpst;ankle � pstÞ �
ðpH � pstÞ

T

jpH � pstj
ð17Þ

Lsw,ankle,v is the length of the virtual swing leg ankle component

Lsw;ankle;v ¼ ðpsw;ankle � pswÞ �
ðpH � pswÞ

T

jpH � pswj
ð18Þ

and r6, r7 are reference trajectories to be followed

r6 ¼ Lst;ankle;v;dðqst;vÞ
r7 ¼ Lsw;ankle;v;dðqst;vÞ

ð19Þ

Additionally, in (17) and (18) pst,ankle and psw,ankle denote positions of the stance leg ankle joint and swing leg ankle joint
respectively.

Reference trajectory r6 is a forth-order polynomial (Fig. 5) determined by:

Lst;ankle;vðqst;v jt¼Tss;start
Þ ¼ Lst;ankle;v jt¼Tss;start

Lst;ankle;v qst;v ¼
qst;v jt¼Tss;start

þqst;v ;d

2

� �
¼ kM � Lst;ankle;v jt¼0

Lst;ankle;vðqst;v jt¼Tss;end
Þ ¼ kE � Lst;ankle;v jt¼0

_Lst;ankle;vðqst;v jt¼Tss;start
Þ ¼ _Lst;ankle;v jt¼Tss;start

_Lst;ankle;vðqst;v jt¼Tss;end
Þ ¼ _Lst;ankle;v ;d

ð20Þ

In (20) _Lst;ankle;v ;d denotes a desired lengthening velocity of ankle component at the end of single support phase and kM and kE

are constants that determine the length amplitudes of virtual stance leg ankle component at midstance phase and the end of
the stance phase respectively. kM and kE values were selected in a way to assure Lst,ankle,v is large enough so that the heel is
always above the toe and cannot touch the ground. Note that by arbitrarily setting _Lst;ankle;v ;d we can establish a desired pro-
pulsion distribution between ankle and knee joints, hence generating various gait patterns.

The length dynamics of the virtual swing leg ankle component has considerably less impact on overall gait dynamics of
the model. For these reason the motion of the swing leg ankle component is determined by a simple linear regression from
initial value at the start of swing phase to end value, which is the same as of the virtual stance leg ankle component at the
start of the simulation.

Complete output vector in single support phase reads as

yss ¼ hssðqÞ ¼

qst;v þ qsw;v � r1

zsw � r2

qT � r3

qP � r4

Lst;v � r5

Lst;ankle;v � r6

Lsw;ankle;v � r7

2
666666666664

3
777777777775

ð21Þ

3.1.2. Within-step control in double support phase
In double support phase a weight transfers onto the opposite leg. Since there are four constraints in double support phase

that describe the contacts of both legs with the ground, we can choose only six linearly independent output functions to

Fig. 5. Forth-order polynomial representing reference trajectory r6 = Lst,ankle,v,d(qst,v).
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describe the motion of the model. Compared to single support phase double support phase is a considerably shorter phase
with smaller range of joint motion and only small discrepancies in walking characteristics. Enforcing symmetry in double
support phase would prevent proper weight transfer onto the opposite leg, which is inconsistent with general forward pro-
gression of body center. Similarly, since both legs are in contact with the ground, foot clearance should be suspended from
the walking premises. This yields the following modified set of output functions in double support:

y1 ¼ qst;v þ qsw;v � r1

y2 ¼ qT � r2

y3 ¼ qP � r3

y4 ¼ Lst;v � r4

y5 ¼ Lst;ankle;v � r5

y6 ¼ Lsw;ankle;v � r6

ð22Þ

In (22) ri, i = 1, . . ., 6 represent the reference trajectories to be followed in double support. Since the range of motion is small
in double support, the choice of reference trajectories is considerably simplified. They were defined as slow functions with
convergence assured by exponential functions with small time constant wds,1, wds,2, wds,3, wds,4, wds,5, wds,6

r1 ¼ ðqst;v þ qsw;vÞjt¼Tds;start �wds;1

r2 ¼ qT jt¼Tds;start �wds;2

r3 ¼ qPjt¼Tds;start �wds;3

r4 ¼ Lst;v jt¼Tds;start �wds;4

r5 ¼ Lst;ankle;v jt¼Tds;start �wds;5

r6 ¼ Lsw;ankle;v jt¼Tds;start �wds;6

ð23Þ

The output vector in double support phase reads as

yds ¼ hdsðqÞ ¼

qst;v þ qsw;v � r1

qT � r2

qP � r3

Lst;v � r4

Lst;ankle;v � r5

Lsw;ankle;v � r6

2
666666664

3
777777775

ð24Þ

3.1.3. Controller design
Control objective is to drive the output vectors in single support phase yss = hss(q) as well as in double support phase

yds = hds(q) to zero. Since both depend only on configuration variables, the relative degree of output vectors is two. By fol-
lowing the standard Lie derivative notation [8], the second derivation yields

€yss ¼ L2
fss

hssðq; _qÞ þ Lgss
Lfss hssðqÞuss

€yds ¼ L2
fds

hdsðq; _qÞ þ Lgds
Lfds

hdsðqÞuds

ð25Þ

Therefore, in single support phase the applied feedback is given by

uss ¼ �ðLgss
Lfss hssÞ�1 L2

fss
hss þ KD;ssLfss hss þ KP;sshss

� �
ð26Þ

where LgLfh(q) is the decoupling matrix and is assumed invertible and KD and KP are positive definite gain matrices.
On the other hand, since in double support phase there are only six reference trajectories available to determine seven

unknown motor actuations, LgLfh(q) in double support is no longer invertible and the solution is not unique. For this reason,
to determine the unknown motor actuations in double support, we used standard Moore–Penrose pseudoinverse:

uds ¼ �ðLgds
Lfds

hdsÞþ L2
fds

hds þ KD;dsLfds
hds þ KP;dshds

� �
ð27Þ

where the superscript + denotes

Aþ ¼ ðAT AÞ�1AT ð28Þ

Internal dynamics of the system when the outputs yss(q) and yds(q) are identically zero is referred to as zero dynamics.
Thus,

Zss ¼ fðq0; _q0Þ 2 TQ jhssðqÞ ¼ 0; Lf hssðqÞ ¼ 0g
Zds ¼ fðq0; _q0Þ 2 TQ jhdsðqÞ ¼ 0; Lf hdsðqÞ ¼ 0g

ð29Þ

denote zero dynamics of single and double support respectively.
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3.2. Between-step control

Prior to next single support phase between-step control adaptively varies the desired stance leg lengthening velocity at
the end of single support phase _Lst;djt¼Tss;end

according to gait velocity deviation from the desired gait velocity. It acts in a sense
that greater _Lst;djt¼Tss;end

implies more pronounced push off, i.e. forward propulsion, which eventually results in faster gait
velocity and vice versa. Between-step control algorithm can be expressed as

_Lk
st;d

���
t¼Tss;end

¼ _Lk�1
st;d jt¼Tss;end

þ kp vk�1
gait � vgait;d

� �
þ kd vk�1

gait � vk�2
gait

� �
ð30Þ

where the superscript k indicates the gait cycle number, kd and kp are positive gains and

vk
gait ¼

xk
H

��
t¼Tds;end

� xk
H

��
t¼Tss;start

Tds;end � Tss;start
ð31Þ

Such definition of _Lst;djt¼Tss;end
control directly indicates an adaptive nature of single support output vector hss(q), which further

implies time-variability of single support zero dynamics

Zss ¼ ZssðkÞ ¼ fðq0; _q0Þ 2 TQ jhssðq; kÞ ¼ 0; Lf hssðq; kÞ ¼ 0g ð32Þ

Complete control strategy is illustrated in Fig. 6.

4. Simulation cases

Three sets of simulation cases (Table 2) were selected to test the performance of the proposed adaptive control strategy in
a wide range of walking modes and to relate the deviations between gait patterns due to parameter variation to human loco-
motion mechanisms in terms of power absorption and push off: (i) in first set of simulation cases (Case 1–3) we investigated
the effect of increasing gait velocity; extensive biomechanical studies show that in human locomotion greater gait velocity is
accompanied with more pronounced power absorption and push off. (ii) Second set of simulation cases (Case 2, Case 4–5)
addressed torso angle variations; in human locomotion one observes that anteriorly inclined torso shifts the center of mass
forward, which contributes significantly to downward fall, thus exhibiting more pronounced power absorption and less dis-

Fig. 6. Schematic representation of the complete control strategy.
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tinctive push off. (iii) Third set of simulation cases (Case 2, Case 6–7) focused on different propulsion distribution profiles
_Lst;ankle;v ;d between knee and ankle joints; such walking mode exhibits a typical pathological gait mechanism, where the
inability to perform satisfactory in one joint forces dominant engagement of the other joint.

KD,ss, KP,ss, KD,ds, KD,ds, kp and kd were determined on the basis of test simulations prior to simulation start and remained
unchanged in all simulation cases.

5. Results

Fig. 7 displays a set of state space orbits for each simulation case. Cyclic behavior of each state space orbit in all simulation
cases implies that the proposed adaptive control strategy induces a stable walking for a biped walking model in a wide range
of walking modes. A demonstrative performance of the proposed adaptive control strategy in simulation case Case 3 is

Fig. 7. State space orbits for all simulation cases. Each orbit is parameterized with respect to configuration variable (horizontal axis) and its derivative
(vertical axis).

Table 2
Simulation cases: desired kinematics parameters.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

vgait,d (m/s) 0.8 0.9 1 0.9 0.9 0.9 0.9
qT,d (rad) 0 0 0 0.1 0.2 0 0
cadgait,d (steps/min) 110 110 110 110 110 110 110
_Lst;ankle;v;d (m/s) 0.2 0.2 0.2 0.2 0.2 0.1 0.3
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shown in Fig. 8. We notice that considerable oscillations in _Lk
st;v ;d

���
t¼Tss;end

, vgait,d and Lstep,d in first few gait cycles gradually decay

until the actual gait velocity settles at expected desired gait velocity whereas the step length remains somewhat greater than
desired.

The effect of _Lk
st;v ;d

���
t¼Tss;end

control reflects also in joint angles, torques and ground reaction forces (Fig. 9). While a correla-

tion between _Lk
st;v ;d

���
t¼Tss;end

control and gait kinematics is not self-evident, in joint torque trajectories however one can observe

a pronounced joint activity following a _Lk
st;v ;d

���
t¼Tss;end

increase and a decaying joint activity if _Lk
st;v ;d

���
t¼Tss;end

decreases which con-

sequently leads to more pronounced peak values of vertical as well as horizontal ground reaction forces at the end of single
support phase indicating more pronounced push off (for example, when comparing four successive ground reaction force
peaks at the end of support phases – marked with arrows).

Particular walking parameter variations can also be addressed in terms of corresponding kinematic and kinetic charac-
teristics. We will investigate them in terms of the following variables that correspond to generally adopted biomechanical
nomenclature:

LAnkle angle ¼ ðqL;2 � qL;1Þ 180�
pi � 90�

LKnee angle ¼ ðqL;2 � qL;3Þ 180�
pi

LHip angle ¼ ðqT � qL;3Þ 180�
pi

LAnkle moment ¼ �TL;1

LKnee moment ¼ TL;2

LHip moment ¼ TL;3

ð33Þ

We will focus on one gait cycle, i.e. time interval between two consecutive impacts of the left leg, after the gait has settled.
Note that due to non-infinitesimal integration step the exact time of contact nor time of take-off cannot be accurately deter-
mined. The first data sample of gait cycle is therefore the first data sample of double support which is at the most one inte-
gration step further in time with respect to the actual contact time. This reflects in somewhat different values as one would
expect at the actual time of contact which would designate the beginning of gait cycle (for example non-zero ground reac-
tion force at the beginning of gait cycle). However, if we consider gait as being a periodic process, the end of gait cycle may
considered as time instance just before the contact.

Fig. 10 shows gait kinematics and kinetics in three simulation cases with different gait velocity. We notice that the range
of ankle joint movement not only increased when gait was faster, but the joint angle trajectory gradually shifted towards
greater ankle extension as well. Particularly well-defined is a rapid movement towards ankle extension peak value during
push off and terminal stance in Case 2 and Case 3, whereas in Case 1 the joint dynamics was less explicit. In the knee joint
trajectories we notice that the knee flexion at the beginning of the gait cycle and immediately after right leg contact de-
creases if gait velocity increases, whereas in the hip joint we recorded increasing extension joint pattern in the middle of
the gait cycle. Similar patterns are present in joint moments. Ankle moment as well as knee moment trajectories displays
gradually increasing behavior during push off that coincides with increasing gait velocity. On the other hand, increasing gait
velocity has a minor effect on torso (less than 0.2�) and pelvis angle (less than 1�). Significant deviations between simulation

Fig. 8. A demonstrative performance of the proposed control strategy in Case 3.
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cases are evident also in ground reaction forces where increasing gait velocity reflects in more pronounced horizontal as well
as vertical ground reaction forces at push off.

Torso angle with respect to vertical is a very important aspect of human locomotion. The influence of torso angle on gait
kinematics and kinetics was investigated in three simulation cases with different torso inclinations and is demonstrated in
Fig. 11. We notice that the ankle flexion in midstance phase is most pronounced when the anterior inclination from vertical
deviates the most (Case 5) and is less expressive when the torso segments remains at vertical position (Case 2). At the same
time, increasing forward torso tilt reflects in increasing knee flexion pattern in midstance as well as in swing phase, whereas
the magnitude of hip flexion in midstance is considerably higher only when torso inclined the most and does not deviates
considerably in other simulation cases with less distinctive anterior tilt of the torso segment. Somewhat similar patterns are
present in joint moments and ground reaction forces. On one hand ankle as well as knee moments display gradually increas-
ing behavior of the extension moment during midstance that coincides with increasing torso angle, on the other hand a re-

Fig. 9. Joint angles, torques and ground reaction forces for the left leg in Case 3.
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versed pattern is present during push off where vertical torso position is accompanied with most pronounced extension mo-
ment. Less significant are changes in pelvis angle, where the deviations between simulation cases do not exceed 1�. Vertical
ground reaction forces exhibit similar behavior as ankle joint moment. In midstance vertical ground reaction force increases
if torso angle increases whereas during push off a reversed pattern is evident – vertical ground reaction force increases if
torso angle decreases.

Deviations in propulsion distribution profiles between ankle and knee joints are present predominantly in pathological
gait where particular distribution profile reflects in unique kinematic and kinetic gait pattern. In our biped walking model
we examined the influence of different propulsion distribution profiles by varying _Lst;ankle;v ;d. Results are shown in Fig. 12.
In Case 7 the maximal _Lst;ankle;v ;d leads to increased range of motion in ankle joint during push off and terminal phase,
increased ankle extension at the beginning of the gait cycle as well as throughout the swing phase and somewhat greater
flexion in midstance as opposed to considerably smaller range of motion, increased flexion at the beginning of the gait
cycle and somewhat smaller flexion in midstance in Case 6 when _Lst;ankle;v ;d was the smallest. In the knee joint a reversed
pattern is present. Case 7 exhibits substantially increased knee flexion early in the stance phase, terminal stance phase
and throughout the swing phase and decreased knee flexion in midstance as compared to Case 2 or Case 6, where the
knee joint angle peaks as well as joint range of motion gradually decreases according to _Lst;ankle;v ;d. As opposed to ankle
and knee joints, the deviations between simulation cases in hip joint trajectory are less pronounced and follow similar
trends as in the knee joint. While there are no significant differences evident in the ankle joint moment, a distinctive
knee extension moment deviations are evident in the knee joint. In Case 7 when _Lst;ankle;v ;d is the largest, we notice some-
what higher knee extension moment in midstance as in Case 2 and significantly increased in Case 6 when _Lst;ankle;v ;d is the
smallest. During push off and terminal stance phase a reversed pattern is present; biped walking model exhibits the
highest knee extension moment in Case 6, whereas in Case 7 the knee extension moment is reduced significantly. As
in previous simulation sets, increasing _Lst;ankle;v ;d has only minor effect on torso and pelvis angle, i.e. less than 0.1� and
1� respectively. In ground reaction forces we notice somewhat decreased first peak in vertical component in Case 6,
whereas in terminal stance and during push off we find both components of ground reaction force in Case 6 to be
the largest.

Fig. 10. Relation between gait velocity vgait,d and gait kinematics and kinetics. The sequence of black and white rectangles above the three graphs in the
upper panel indicate consecutive phases of double support phase (0–5% of GC), left leg single support phase (5–50% of GC), double support phase (50–55% of
GC) and left leg swing phase (55–100% of GC). Two transitions from black to white (5% of GC and 55% of GC) indicate right leg and left leg take-off
respectively, whereas transition from white to black (50%) indicates the right leg contact phase. Additionally, the interval 0–10% of GC is referred to as early
stance phase, the interval 10–40% is referred to as midstance, the push off indicates the interval 40–50% of GC and the interval 50–55% denotes terminal
stance phase.
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Fig. 11. Relation between torso angle qT,d and gait kinematics and kinetics.

Fig. 12. Relation between lengthening velocity of the stance leg ankle component _Lst;ankle;v ;d and gait kinematics and kinetics.
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6. Conclusion

Inspired by human locomotion this paper presents the concept of virtual leg that is controlled by two actuators and devel-
ops two-level control strategy for push off control in a 8 DOF biped walking model with non-instantaneous double to attain
desired walking speed. The principle of push off is introduced by means of virtual stance leg lengthening velocity at the end
of single support phase, which increases if walking speed is lower than desired and decreases if walking speed is higher than
desired. Such push off mechanism and control imitates forceful extension of the trailing leg during push off in human loco-
motion and human gait velocity control strategy. The paper also demonstrates decomposition of virtual leg into ankle and
knee components. Besides varying walking speed and torso angle, being able to vary propulsion distribution between ankle
and knee joint present an important forward propulsion mechanism.

Simulation tests show that the proposed control strategy significantly improves the performance of the biped model and
allows development of various walking modes for the biped walker at selected walking speeds, torso inclinations and pro-
pulsion distribution patterns even if the initial state of the model differs significantly from the settled values. Compared to
similar models from the literature that develop stable walking in only certain walking condition and only when the gait
starts sufficiently near the stable region, this may be considered a progress not only in biped robots and robot models
but in the field of biomechanics as well. We believe that by extending the between-step control set of parameters from push
off control to torso inclination and propulsion distribution profile adaptive control as well, we may be able in a biped walking
model to some degree mimic a particular gait pattern. In this respect the present model lays a promising framework for fu-
ture developments and applications of such models in the field of biomechanics as well.
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[18] A. Olenšek, Z. Matjačić, Human-like control strategy of a biped walking model, Robotica 26 (2008) 295–306.
[19] F. Plestan, J.W. Grizzle, E. Westervelt, G. Abba, Stable walking of a 7-DOF biped robot, IEEE Trans. Robotic. Autom. 19 (2003) 653–668.
[20] L. Roussel, C. Canudas-de-Wit, A. Goswami, Generation of energy optimal complete gait cycles for biped robots, in: Proc. IEEE International Conference

on Robotics and Automation, Leuven, Belgium, 1998, pp. 2035–2041.
[21] M.W. Spong, F. Bullo, Controlled symmetries and passive walking, IEEE Trans. Autom. Contr. 50 (2005) 1025–1031.
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