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ABSTRACT
This paper explores grasping in robot-aided upper extremity rehabilitation, with a special focus on reaching and

grasping exercises and the coordination between load force and grasp force. Six healthy subjects and two hemiparetic

subjects performed \pick and place"movements with a haptic robot and virtual environment. These movements were

segmented into three phases: grasping, transport and release phase, and the correlation between grasp and load force

was calculated over the entire movement and within each phase separately. Results show that the subjects employ

same basic mechanism of grasp and load force coordination during a virtual task as in real situations. However, the

grasp and load force are partially decoupled due to the nature of the grasping device and the complexity of the task.

Furthermore, the coordination is different in different phases and also depends on the level of impairment as well as

the level of active support by the rehabilitation robot. The first hemiparetic subject, who can perform reaching

movements but cannot open the hand, thus has a lower correlation between grasp force and load force than healthy

subjects only in the release phase while the second hemiparetic subject, who has little arm mobility, has a lower

correlation in all three phases. Thus, the current work provides basic empirical knowledge that can serve as a basis for

future research and for the design of robot-aided reaching and grasping tasks.
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INTRODUCTION

Rehabilitation robotics has become widely recognized

as a novel and promising motor rehabilitation

approach.1�3 Its aim is to improve the patient’s motor

performance, shorten rehabilitation time, and provide

objective parameters for patient evaluation.4�6 As early

as 2003, the Gentle/S project showed that subjects are

motivated to exercise for longer periods of time when

using a rehabilitation robot. However, no grasp training

was included in the Gentle/S prototype, and this was

identified as one of the major shortcomings of the pro-

ject.7 Today, there is an ever increasing number of arm

movement or grasp training devices. However, only a

limited number of devices allow simultaneous rehabili-

tation of both reaching and grasping motions.

One well-known combined reaching and grasping

device is the Gentle/G system,8 which combines the

Gentle/S system with a dedicated grasping assistance

unit, the Grasp Robot Exoskeleton. This exoskeleton

has three passive and three active degrees of freedom

(DOF). The hand and forearm are placed on a padded

wrist splint while the fingers are placed onto supports

which incorporate force sensors. The index, middle, ring

and small finger are then actuated simultaneously in 2
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DOF while the thumb is actuated separately in 1 DOF.

Another well-known reaching and grasping device is a

hand module for the MIT-MANUS arm rehabilitation

device.9 Dubbed alpha-prototype I, the module was

designed with eight active DOF but was found too

cumbersome for clinical use. A new simplified alpha-

prototype II was thus designed with one active DOF,

limiting it to grasp and release. Other examples of

reaching and grasping devices include the ARMEO

robot, which uses a passive pressure-sensitive handgrip

for measuring the grasp force applied with the hand,10

the L-EXOS exoskeleton, which uses an active hand-

exoskeleton that can apply forces on two fingertips

(thumb and index finger),11 and the IntelliArm whole-

arm exoskeleton, which uses a 2 DOF active mechanism

that allows hand opening and closing motions.12

Though some of these grasping devices are mechani-

cally quite complex, they are used only as on-off devices

that indicate the grasp or release of objects in virtual

environments. The object is grasped when the applied

grasp force is larger than a predefined grasp threshold

and released when the grasp force is lower than a release

threshold. No effort has been made to extract additional

information from the grasp force, and no effort has been

made to examine any connections between the grasp

force and other forces exerted by the user (particularly

the load force). However, this information could be

useful during rehabilitation and has been extensively

studied in real-world grasping tasks performed by heal-

thy subjects.

Forssberg et al.13 described basic mechanisms of

coordination between grasp force (the force exerted by

the human in the normal direction with regard to the

surface of the object) and load force (the force exerted

by the human in the tangential direction opposite of

gravitation with regard to the surface of the object) for

children and adult subjects in the grasping phase of a

pick-and-place movement. The same study showed

that, in the grasping phase, healthy adult subjects

employ parallel coordination of the grasp and load force

in a nearly linear relationship. Furthermore, when

transporting objects, the grasp force increases in par-

allel with the load force.14,15 However, Rost et al.16

showed that the relationship between grasp and

load force is weaker in subjects with impaired arm

function ��� precisely the same type of subjects that

would use a rehabilitation device. Thus, the goal of this

paper is to determine how the findings of Forssberg

et al.13 and Rost et al.16 regarding grasp and load force

extend to an actual rehabilitation task performed in a

virtual environment by both healthy subjects and

stroke victims.

MATERIALS AND METHODS

Subjects

Two hemiparetic post-stroke subjects with chronic upper

extremity impairments were recruited: a 40-year-old

woman (subject A) and a 45-year-old man (subject B),

5 and 7 years after stroke. On the upper limb motor per-

formance section of the Fugl-Meyer assessment scale.17

Subject A scored 48 out of 66 while subject B scored 19

out of 66. For both subjects, the right arm was impaired

and had been the dominant arm before the stroke.

Six healthy subjects (all male, age 26�29 years) with

no known neuromuscular disorders also participated in

the experiments. All had normal or corrected-to-normal

vision and were right-handed.

Hardware

The system consists of the following components:

. The HapticMaster haptic interface developed by

MOOG FCS. The HapticMaster is a commercially

available haptic robot with three active DOF. A

3-axis force sensor with measuring range of 100 N,

which is originally built into HapticMaster at the

end-effector, was used to measure the interaction

force applied by the user.

. The grasping device (mounted on the force sensor at

the end-point of the haptic interface) measures the

grasp force applied by the user.

. The arm weight compensation system. This system

was designed and built at the Laboratory of Robotics

and is an active system equipped with two rotary

motors (one for the lower and one for the upper arm).

Each motor is equipped with a winch and an encoder

with a resolution of 512 counts per revolution.

Encoder outputs are used within the controller to

implement the arm gravity compensation. A wire is

attached with one end to the winch and the other end

to the cuff, thus supporting the lower or upper arm.

. A 3D projection system for visualization of graphical

virtual environments. This system consists of two

InFocus projectors, a back projection screen and a

multimedia computer. The system enables generation

of visual 3D virtual environments. The backprojection

screen is 2 meters high and 1.5 meters wide and is

positioned 1.7 meters from the user. Circular polariz-

ing filters are placed in front of the projectors and the

user wears glasses with circular polarizing filters.

The grasping device is a passive mechanism mounted on

the force sensor at the end-point of the haptic interface.
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It enables grasping of virtual objects in virtual en-

vironments. Figure 1 shows the passive mechanism of

the device, consisting of two one-degree-of-freedom

parallelogram mechanisms mounted on the frame of the

grasping device (Fig. 1, one of the mechanisms is indi-

cated with a bold line). Each of the two mechanisms is

equipped with a force cell, which are commonly used in

devices for measuring the grasp force.18 Each force cell

measures the force applied to the pads. The mechanisms

allow the finger pads to remain in parallel regardless of

the distance between them. The user applies force to the

first cell with the thumb and to the second cell with the

other four fingers. A cylindrical cuff holds the thumb

while a plate cuff holds the other four fingers. The entire

mechanism can be used for either the left or right hand.

Though different finger cuffs have to be used for each

hand, the process of replacing the cuffs requires only a

few minutes.

Each of the parallelogram mechanisms is connected

to the back of the frame via springs as shown in Fig. 1.

Therefore, the device can be described as a passive

elastic haptic device. Lindeman et al.19 described a

passive haptic device as a physical object that provides

haptic feedback to the user through its forms, surface

texture and other properties. Haptic feedback conveyed

by the device is not rendered by a controller but is

instead determined by the inherent properties of the

device. The device therefore allows indirect interaction

with simulated objects and the execution of grasping

movements. Eng et al.20 have shown that a noticeable

connection between generated motor action and

observed effects in virtual reality leads to better per-

formance improves the usability of the device and leads

to a higher engagement of motor neurons.

The coefficients of the springs were 4.5N/cm.

Maximal distance between finger cuffs was adjustable

and was adjusted for each individual subject. The

typical maximal distance between the pads was 10 cm.

Minimal distance between cuffs was limited to 3.4 cm

with a pin. The pin was positioned in the frame of the

parallelogram mechanism so that the force cell con-

tinued to measure grasp force applied by the user, even

though the movement of the parallelogram mechanism

was limited.

The grasping device’s frame is mounted on the wrist

support mechanism as shown in Fig. 2. The user places

the wrist in a splint that limits wrist movement but does

not affect finger mobility. The wrist support mechanism

has two passive DOF and allows free mobility in the

elbow and shoulder.

Pick-and-Place Task

The pick-and-place task (Fig. 3) requires the subject to

perform \reach-and-grasp" movements. It incorporates

arm movement without grasp force (movement to the

virtual object), grasping the virtual object, arm move-

ment with applied grasp force (transporting the grasped

object to a new location), and releasing the virtual

object. The subject must first move the robot with the

arm to the virtual object (an apple which has fallen from

a tree). When he or she comes into contact with the

apple, he or she must grasp it. When a sufficient grasp

force is applied, the virtual fingers become blue, sig-

naling to the subject that he or she can proceed. Then,

the subject must transport the apple to a designated

location (a fruit stand) and release it there. If the sub-

ject does not apply a sufficiently large grasp force during

transport, the apple falls down and has to be picked up

Fig. 1 The basic mechanism of the grasp device. The grasping device

consists of a two-degrees of freedom mechanism for measuring the

grasp force. Springs attached to the mechanism on the back of the

grasping device are used for a passive haptic rendering.

Fig. 2 The grasping device and wrist support mechanism mounted

on the end-point of the HapticMaster robot.
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again. When the apple is placed on the designated place

(a platter), it can be released. Once the apple is

released, a new apple appears in a random position. The

subject must again reach for and transport it to the

designated location.

Robotic Assistance

Not all physically impaired subjects can be expected to

successfully perform a pick-and-place movement. Thus,

the pick-and-place task includes a robotic assistance

system that helps the subject move his or her arm when

needed. Specifically, the assistance helps the subject

move the apple from the ground to the platter. As this is

a vertical movement, it is more difficult than simply

reaching the apple (which is a movement in the hori-

zontal plane). The assistance consists of two com-

ponents:

. A constrained haptic path which prevents the subject

from deviating strongly from an ‘ideal’ trajectory

between the ground and the platter. Movement along

the haptic path is unconstrained while every devi-

ation from the path is constrained with a force pro-

portional to the deviation from the path. The ‘ideal’

trajectories were generated from unconstrained,

natural human arm movement paths of healthy sub-

jects using B-spline approximation. These move-

ments were the same pick-and-place movements in

the same task, but performed with the Haptic-

Master’s virtual impendence set to the lowest possible

value that still ensures stable haptic interaction.

Thus, the subjects could move freely in the workspace

of the robot. They were instructed to move the arm as

naturally as possible. A total of 100 pick-and-place

trajectories were recorded, and the average trajectory

was extracted by averaging all 100. B-spline

approximation was then used to parametrically define

the measured unconstrained human arm movement

trajectory. This haptic path is further described in

Ziherl et al.21 and can be considered as a way to

increase the efficiency of the subjects’ movements.

Lang et al.22 defined an efficient movement as one

that moves directly toward the target without ex-

traneous or abnormally circuitous movements. By

preventing the subject from deviating too much from

a normal, healthy trajectory, the haptic path ensures

efficient movement.

. A force field that actively moves the subject’s arm

along the haptic path. Since the haptic path only

constrains movement and does not encourage it, this

force field is required for subjects who are unable to

move the arm by themselves or can only move the

arm part of the way to the platter. The force field is

based on the minimum jerk index, which ensures

smooth movements, and is described further in

Mihelj et al.23

During the first, introductory session, both subjects A

and B initially performed several motions without the

minimum jerk force field. In these initial trials, subject

A successfully grasped all of the apples and placed them

on the stand. Thus, the minimum jerk force field was

not applied for this subject in subsequent sessions.

However, subject B was unable to complete a single

initial trial without the minimum jerk force field due to

the severity of impairment. Thus, the minimum jerk

force field was applied for this subject in all subsequent

sessions.

Procedures

Figure 4 shows the training setup with a hemiparetic

subject. The task with all required steps was first

explained to the subject. Then, he/she was seated in a

chair in front of the haptic interface. The arm weight

compensation cuffs were attached. The wrist was placed

in a splint and securely fixed to the wrist support

mechanism. The fingers were positioned in the finger

cuffs of the grasping device. Each healthy subject par-

ticipated in one training session while subject A

Fig. 3 The pick-and-place task. The subject has to pick apples which

fall from a tree and place them on the platter atop the fruit stand. A

reference coordinate system is shown on the figure and the forces

applied on the virtual object.
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participated in 9 training sessions and subject B par-

ticipated in 10 training sessions. Sessions were per-

formed twice a week (Monday and Thursday). Each

session consisted of 80 pick-and-place movements, with

a 2.5min pause after each 20 movements.

For healthy subjects, the grasp threshold was always

set to 10N while the release threshold was always set to

6N. In experiments performed by subjects A and B, the

grasp and release thresholds were set based on self-

evaluation. In the first session, both the grasp and

release thresholds were set to 6N for both subjects.

Based on the subjects’ self-evaluation, the grasp force

was increased and the release force decreased if the

subject was confident that the thresholds were set too

high (release threshold) or too low (grasp threshold).

The amount by which the threshold was increased or

decreased was determined based on the performance of

the subject in the previous session (observed maximal

grasp force after the grasp of virtual object and

observed minimal grasp force after the release of the

virtual object). This was done independently for

subjects A and B.

Data Analysis

The robot end-point position, the interaction force and

the grasp force applied by the user were sampled with a

frequency of 250 Hz and filtered in Matlab with a cutoff

frequency of 40 Hz. The load force is the z-component of

the interaction force applied by the user. For the two

stroke subjects, data from the first, introductory session

were not recorded. For subject A, 8� session� 4 task�

20 apples ¼ 640 pick-and-place movements were recor-

ded. For subject B, 9� session � 4 task� 20 apples ¼
720 pick-and-place movements were recorded.

Each pick-and-place movement was segmented into

three phases.

. Grasping phase. First, the subject must come into

contact with the virtual object. Then, the grasping

phase begins when the subject starts to increase the

grasp force. To grasp the object, the grasp force must

exceed the grasp threshold. The load force remains at

a baseline of around 0 N until the object is grasped,

then starts to increase, but does not yet reach its

maximum value. The grasp force, on the other hand,

reaches its maximum value in this phase.

. Transport phase. This phase begins when the subject

lifts the virtual object from the ground. The load

force becomes large enough to oppose the virtual

gravity, which acts on the object in the opposite

direction of the load force. The load force reaches

its maximum value early in the phase. When the

object is moved, inertial loads arise and result in

variations of the load force. The grasp force slowly

decreases, but does not fall below the release

threshold, which is the minimal force needed to hold

the object. All arm movement is performed in this

phase. The phase ends when the object reaches the

designated final position.

. Release phase is the last phase, in which the subject

releases the virtual object. The grasp force decreases

faster than during the transport phase. The object is

released when the grasp force drops below the grasp

force release threshold. The position is held constant

while the load force drops to 0 N once the object is

placed on the ground.

Segmentation was performed as follows: 60 random

pick-and-place movements from healthy subjects as well

as 20 movements from each of the two stroke subjects

were segmented manually by an expert. These were

then used as a training data set for a simple algorithm

based on linear discriminant analysis which then auto-

matically segmented all remaining signals. The results

of the algorithm were checked, and any visible errors in

segmentation were corrected manually.

The mean and standard deviation of the correlation

coefficients between load force and grasp force were

calculated during the three phases for all subjects.

Correlation is a sensitive parameter for precision of the

coupling between the grasp and load force.24 Further-

more, regression analysis of grasp force and load force

was performed, and the R2 coefficient of determination

Fig. 4 The training setup with a hemiparetic subject.
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was calculated in the same way as done by Forssberg

et al.13 Student’s T-test was used to assess differences

between subjects or different phases.

RESULTS

Phases of the Pick-and-Place Task

Figure 5 shows the grasp force, wrist position and load

force for 20 consecutive pick-and-place movements for

subject B, subject A and healthy subject. X-axes of

Fig. 5 are shown in normalized time.

For the first session of subject A, the grasp threshold

was set to 6N while the average maximal force after the

grasp of the virtual object was 13.5N. For the last

session of subject A, the grasp threshold was set to 16N

while the average maximal force after the grasp of the

virtual object was 17.5N. For the first session of subject

B, the grasp threshold in the first session was set to 6N

while the average maximal force after the grasp of the

virtual object was 7.9N. For the last session of subject

B, the grasp threshold was set to 16N while the average

maximal force after the grasp of the virtual object was

21.4N. The change in the observed maximal force from

the first to the last session was statistically significant

for both subjects (p < 0:01).

For the first session of subject A, the release

threshold was set to 6N while the average minimal force

after the release of the virtual object was 5.7N. For the

last session of subject A, the release threshold was set to

3.4N while the average minimal force after the release

of the virtual object was 2.7N. For the first session of

subject B, the release threshold was set to 6N while the

average minimal force after the release of the virtual

object was 4.9N. For the last session of subject B, the

release threshold was set to 3.8N while the average

maximal force after the grasp of the virtual object was

3.65N. The change in observed minimal force from the

first to the last session was statistically significant for

both subjects (p < 0:01).

Fig. 5 The grasp force, the position of the end-point of the HapticMaster and the load force applied by the subjects are shown on the figure. First

column shows results of subject B, second column of subject A and third column shows results of healthy subject. Signals are presented in

normalized time from 0% to 100% of the pick and place movement.
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Coordination between Grasp

and Load Force

Table 1 shows correlation and regression coefficients

between grasp and load force for healthy subjects and

for subjects A and B. The third column gives correlation

coefficients for individual phases, the fourth column

gives the R2 coefficient of determination for individual

phases, the fifth column gives correlation coefficients for

the entire pick-and-place movement, and the sixth

column gives the R2 coefficient for the entire pick-and-

place movement. Results for healthy subjects are

given for the pick-and-place task without and with the

haptic path. Correlation and regression coefficients

for the entire pick-and-place movement with haptic

path and without haptic path do not differ significantly

(p ¼ 0:09). In the individual phases, correlation and

regression coefficients with haptic path and without

haptic path do not differ significantly in the grasping

and transport phases. Correlation and regression coef-

ficients with haptic path and without haptic path

do however differ significantly in the release phase

(p < 0:01 for both coefficients).

DISCUSSION

Interpretation of Results

Forssberg et al.13 showed that healthy adult subjects

exhibit a nearly linear relationship between grasp and

load force in the grasping phase. In our experiments, we

can observe similar relationships between grasp and

load forces, showing that subjects lifting an object in a

virtual task also employ anticipatory control of the

force output during the grasping phase. The grasp and

load forces in hemiparetic subjects rise in parallel,

showing that lift synergies are employed, although

correlation and regression coefficients between grasp

and load force for subject B are low with a large stan-

dard deviation (see Table 1) due to large variations of

load and grasp forces. Comparison of the correlation

and regression coefficients with and without the haptic

path shows that the coordination between grasp and

load forces is not significantly affected by the haptic

path over the entire pick-and-place movement. Closer

inspection reveals that coordination is not affected by

the haptic path in the grasping and transport phases,

but is affected by the haptic path in the release phase. In

the release phase, load force is small since the virtual

object rests on the ground. Variations in load force are

therefore relatively larger than in the other two phases

where load force is larger. These variations affect the

correlation between grasp and load forces in the release

phase. In control subjects, this phase is short (9�12% of

the full movement) and does not affect the correlation

or regression coefficient for the whole movement.

However, this phase is longer in hemiparetic subjects

with an impaired ability to release the object. Thus, it is

crucial to divide the full movement into phases so that

coordination between grasp and load forces can be

properly examined. In subject A, the correlation and

regression coefficients for the whole movement are sig-

nificantly lower than in control subjects, indicating that

coordination is impaired. However, a deeper look shows

that these coefficients are similar in both healthy

subjects and subject A during the grasping and trans-

port phases. The difference between healthy subjects

and subject A occurs only in the release phase. This is

not because of impaired coordination, but because of

an impaired ability to open the hand. As a result of

this impairment, the release phase is prolonged and

the correlation and regression coefficients for the

Table 1. Correlation Coefficients andR2 Coefficients Between Grasp and Load Forces During the Different Phases and During

the Full Pick-and-Place Movement.

Subjects Phase

Correlation Coefficients

for a Given Phase R2 for a Given Phase

Correlation Coefficients

Full Movement

R2 for a Full

Movement

Grasping phase 0.69 (0.24) 0.67 (0.26)

Controls Transport phase 0.62 (0.24) 0.58 (0.30) 0.75 (0.17) 0.50 (0.21)

Release phase 0.56 (0.41) 0.16 (0.28)

Controls Grasping phase 0.66 (0.43) 0.62 (0.28)

(with haptic Transport phase 0.66 (0.35) 0.57 (0.25) 0.71 (0.28) 0.48 (0.25)

path) Release phase 0.32 (0.47) 0.08 (0.34)

Grasping phase 0.65 (0.32) 0.39 (0.25)

Subject A Transport phase 0.76 (0.33) 0.66 (0.28) 0.56 (0.29) 0.32 (0.23)

Release phase 0.11 (0.63) 0.21 (0.25)

Grasping phase 0.23 (0.62) 0.30 (0.30)

Subject B Transport phase 0.17 (0.65) 0.18 (0.27) 0.25 (0.61) 0.36 (0.29)

Release phase 0.10 (0.77) 0.17 (0.26)
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whole movement decrease despite normal coordination

in the other phases. For subject B, coordination

between grasp and load forces is degraded in all phases

of the movement. The subject was unable to lift the arm

and required haptic assistance from the robot. There-

fore, he was unable to fully control the load force,

resulting in degraded coordination between grasp and

load forces.

Comparison with Previous Studies

The correlation and regression coefficients obtained in

our study are markedly lower than in the work of For-

ssberg et al.,13 who calculated R2 values of over 0.95.

Furthermore, they are lower than those in our own

previous work (Podobnik et al.24), where correlation

coefficients of upto 0.99 were obtained using the same

calculation method. In the present study, correlation

coefficients of 0.75 and R2 values of 0.5 are obtained for

full movements of healthy subjects. However, this is not

as surprising as it may first appear.

The quality of the relationship between grasp and

load force appears to depend on the complexity of the

action performed. Forssberg et al.13 required the sub-

jects to only lift the object vertically. In our previous

work (Podobnik et al.24), we also performed simple

trials where the subject had to linearly increase the

grasp force and obtained correlation coefficients of up to

0.99 (though R2 values were not calculated). However,

in more complex trials where the grasp force changed

dynamically, correlation coefficients decreased to as low

as 0.65 for some healthy subjects. Thus, in our reaching

and grasping movements, which are also complex, a

correlation coefficient of 0.75 and a relatively low R2

value compared to Forssberg et al.13 is not unrealistic.

However, it does raise the issue of how useful observing

the relationship between grasp force and load force

would be in rehabilitation robotics, as it appears overall

weaker than in real-world tasks.

In addition to the complexity of the task, we must

also point out another factor that likely affected corre-

lation and regression coefficients: unlike in real-world

tasks, the grasp and load forces were partially decou-

pled in our virtual task. When transporting actual

objects held with the fingers, the grasp force increases in

parallel with the load force.14,15 In experiments per-

formed by Flanagan et al.14 and Nowak et al.,15 both

grasp and load forces are applied by the fingers. In our

experiments, the grasp force is also applied by the fin-

gers. However, the load force is the force between the

wrist and the end-point of the haptic interface. Thus,

subjects do not feel the changes in the load force with

the fingers, but with the wrist. Therefore, the grasp

force and the load force are decoupled since they are felt

by different parts of the body. However, this arrange-

ment was necessary for successful use of the device for

upper extremity rehabilitation where wrist support is

required.

The results for the two stroke subjects show even

worse correlation and regression coefficients than for

healthy subjects. However, segmentation of the move-

ments into different phases shows that these coefficients

are lower in phases where the subject’s ability is

impaired (the release phase for subject A, all phases in

subject B). Notably, subject A exhibits similar corre-

lation and regression coefficients as healthy subjects in

the grasping and transport phases. Furthermore, Fig. 5

shows similar dynamic behavior in grasp and load forces

for healthy subjects and subject A. As Rost et al.16

showed, the relationship between grasp and load forces

is weaker in subjects with impaired arm function, and it

makes sense that this decrease is most prominent in

phases where the impairment most strongly affects the

movement. Thus, it would appear that the correlation

and regression coefficients can be used to identify the

phases of the movement in which arm coordination is

impaired.

Finally, a note on the dynamics of grasp and load

forces. During normally developed grip-lift synergy,

grasp and load forces are initiated simultaneously. This

is followed by a smooth and parallel increase in both the

grasp and load force employing anticipatory control of

the neuro-muscular system of the upper extremity. In

contrast, abnormally developed or impaired coordi-

nation is characterized by a sequential order of grasp

and load force increase is observed.25 The peak of the

grasp force is more prominent in healthy subjects and

subject A and is about 25% higher than the baseline

grasp force during the transport phase. In subject B, a

number of peaks are present in the grasp force and can

occur in either the grasp phase or transport phase. The

averaged profile (see first column of Fig. 5) shows that,

once the peak of grasp force has been reached in the

grasp phase, the grasp force remains constant during

the transport phase.

Study Limitations

Some of the limitations of our study should be high-

lighted. First of all, the group of healthy subjects is

relatively homogenous and younger than the two stroke

subjects. If grasp force coordination changes with age,

such young subjects might not be appropriate. How-

ever, previous studies have shown that the majority of
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grasp force changes occur after 60 years of age, though

some are noticeable after 50 years of age. Mathiowetz

et al.,26 for instance, found no differences in grasp force

strength between an age group of 25�29 years and an

age group of 40�44 years. Many other studies also

group subjects under 50 years of age together (e.g.

Ref. 27). Cole et al.28 concluded that the changes in

grasp force after the age of 50 can be explained by the

reduced skin hydration and the resultant decrease in

friction between the fingers and object. Subjects com-

pensate for this by increasing the grasp force. This

should not be a factor in our study since the subject’s

hand is fixed to the robot in the wrist. Thus, we feel that

there should be no age-related differences between the

healthy and stroke subjects in our study, though we

acknowledge that our results may not generalize to an

even older (50þ) subject group.

The second limitation is in the segmentation of

movements into three discrete phases. Although the

phases themselves have been established by Forssberg

et al.,13 who based their definitions on previous work in

the field, there is no strict method or rule on how seg-

mentation should be performed. We chose to perform a

mixture of manual and automatic segmentation in order

to make use of expert knowledge while avoiding the

time-consuming task of manually segmenting over a

thousand pick-and-place movements. However, with no

standardized rule on movement segmentation, it is

difficult to ensure that our findings from the different

phases correspond perfectly to other studies that may

perform the segmentation differently.

CONCLUSIONS

This paper presents a study of pick-and-place move-

ments in a virtual environment for upper extremity

rehabilitation, with a focus on the coordination between

grasp and load forces. In healthy subjects grasping real

objects, these two forces have a nearly linear relation-

ship. However, our results show that, due to the nature

of the haptic interface for upper extremity rehabilita-

tion (wrist support) and the complexity of the task, the

relationship between grasp and load forces is weaker in

robot-aided training. Nonetheless, the subjects do

employ basic mechanisms of grasp and load force co-

ordination. Furthermore, the pick-and-place move-

ments can be segmented into three different phases with

different patterns of grasp and load force coordination.

These phases are effective in separating and quantifying

differences among users with different levels of physical

capability, and could provide means of identifying key

areas for interface improvement and provide a theor-

etical basis for developing methods of haptic assistance.
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