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Kalman Filter Covariance Matrix for Online
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Abstract—Inexpensive inertial/magnetic measurement units can
be found in numerous applications and are typically used to
determine orientation. Due to the presence of nonidealities in
measurement systems, the calibration of the sensor is thus needed
to determine sensor parameters such as bias, misalignment, and
gain/sensitivity. In this paper, an online automatic calibration
method for a three-axial accelerometer is presented. Parameters
are estimated using an unscented Kalman filter. The sensor is
placed in a number of different orientations using a robotic arm.
These orientations are calculated online from the parameter co-
variance matrix and represent estimated optimal sensor orienta-
tions for parameter estimation. Numerous simulations are run to
evaluate the proposed calibration method, and a comparison is
made with an offline least mean squares calibration method. The
simulation results show that calibration with the proposed method
results in higher accuracy of parameter estimation when using
less than 100 iterations. The proposed calibration method is also
applied to a real accelerometer using a low number of iterations.
The results show only slight (less than 0.4%) changes in parame-
ter values between different calibration runs. The proposed cali-
bration method provides an accurate parameter estimation using
a small number of iterations without the need for manually pre-
defining orientations of the sensor, and the method can be used in
combination with other offline calibration methods to achieve even
higher accuracy.

Index Terms—Accelerometer calibration, orientation determi-
nation, sensor parameter estimation, unscented Kalman filtering
(UKF).

I. INTRODUCTION

M ICROELECTROMECHANICAL inertial measurement
units (IMUs) are inexpensive lightweight sensors that

are used for orientation estimation in numerous applications.
They can be found in inertial navigation systems [1], [2],
robotics [3], the automotive industry, analysis of daily activities
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[4], and measurement of human body kinematics [5], where
IMUs can replace optical measurement systems, which mea-
sure body part orientations. [6]. Consisting of accelerometers,
gyroscopes, and (optionally) magnetometers, IMUs can achieve
good dynamic specifications with a relatively low investment.
Several IMUs are commercially available; however, custom
developed IMUs have some advantages such us small size,
which allows integration in various applications, custom wire-
less connectivity, and open architecture, which allows different
modifications and implementations of algorithms. However,
similar to any measurement systems, IMUs also suffer from
numerous disadvantages such as sensor misalignment, large
offset, nonlinearity, drift, and random noise.

These disadvantages are generally addressed using sensor
calibration. Several offline calibration methods exist. One sim-
ple method proposes the calibration of two main parameters
with manual sensor movement in six different orientations with
a relatively simple mathematical algorithm (the sum of output
signals is equal to the gravity vector) [7]. Similar approaches
that demand several different sensor orientations are described
in [8], where all three parameters are determined through the
Levenberg–Marquardt algorithm, similar to [9], where the pa-
rameters are determined using the Newton iterative arithmetic.
More sophisticated methods are described in [10], where sensor
parameters are estimated using optical alignment and a least
mean squares algorithm, and in [11], the reference orientation
of the sensor is also included in determining the sensor param-
eters. One method where the robot arm is used to position the
sensor to a known predefined orientation is presented in [12],
where the parameters of the sensor (including the alignment
angle of the robot in the gravitational field and the alignment
between the sensor and robot end effector) are again determined
using least mean squares methods.

However, because several of the factors that contribute to
sensor errors are time varying (e.g., temperature), initial offline
calibration cannot completely negate their effects. Thus, an
online calibration procedure could potentially achieve higher
accuracy. Compared with offline calibration, where parameters
are estimated using different mathematical algorithms after ob-
taining all measurements from the sensor, the online calibration
estimates parameters during each iteration, and after the last
iteration, the estimation of parameters is completed. Online
approaches have been demonstrated in [13] and [14] using
sophisticated hardware, but the different sensor orientations
needed for the calibration must be predefined in both cases.
An appropriate orientation must be chosen, or a large number
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of random orientations must be determined to accomplish an
accurate calibration.

In this paper, we present an automatic calibration method of
the accelerometer, where parameters and orientations are esti-
mated by an unscented Kalman filter (UKF), and a robotic arm
is used to place the sensor in the calculated orientation. Unlike
[12], where the sensor is placed in a large number of manually
predefined orientations using a robotic arm and the parameters
are calculated offline, our proposed method uses online param-
eter estimation without the need for predefined orientations,
because they are calculated and used during calibration. The
method described in [13] uses online parameter estimation;
however, the orientations of the sensor must be predefined.

The method is used to determine all three main parameters
(gain, misalignment, and bias) together with the alignment
angles of the robot in the gravitational field and alignment
angles between the sensor and robot end effector (because
the flange and sensor board are not perfectly aligned). The
proposed method repeatedly uses the covariance matrix decom-
position for estimation of maximal sensitivity axis (CEMS) to
estimate the next orientation in which the sensor should be
placed for optimal parameter estimation. This condition causes
fast method convergence. The sensor is thus placed in a small
number of automatically determined orientations, eliminating
the need for a large number of predefined orientations and, this
way, allowing faster calibration compared to methods where
sensor orientations must be predefined and the manipulation of
the sensor is manually done. Because the sensor is placed in
orientations that allow the most effective parameter estimation
and all the data can be recorded, offline methods can also be
applied later for parameter estimation.

The CEMS calibration approach can be applied for the ac-
celerometer or the magnetometer. The only difference between
the two sensors is in the initial description of the gravita-
tional and magnetic fields. However, the magnetic field is very
sensitive to environmental noise, and a homogenous magnetic
field is needed for successful calibration. The CEMS calibra-
tion method is thus applied here only to the accelerometer,
because the magnetic field that surrounds the robot arm is not
homogenous.

This paper is organized as follows. The developed wireless
IMU system and the corresponding mathematical model of the
sensor system in conjunction with the robot arm are described
in the first part of Section II. Parameter estimation with UKF is
described together with the method for determining the sensor
orientation using singular value decomposition (SVD) in the
second part of Section II. The simulation and measurement pro-
cedures are described at the end of the section. Simulation and
measurement results are presented in Section III, and a detailed
discussion is given in Section IV. Section V summarizes the
proposed calibration method and the contributions of this paper.

II. METHODS

A. Hardware Design

1) IMU: The IMU consists of the following three digital
sensors: 1) an Invensense three-axis gyroscope; 2) an STmicro-

Fig. 1. IMU that consists of a three-axis gyroscope, a three-axis magnetome-
ter, and a three-axis accelerometer and a wireless module with a dual-chip
antenna. The size of the IMU is 30 × 20 × 5 mm without a battery.

electronics three-axis accelerometer; and 3) a Honeywell three-
axis magnetometer. The gyroscope has selectable full-scale
ranges of ±250◦/s, ±500◦/s, ±1000◦/s, and ±2000◦/s and
software-selectable low-pass filters. Each axis is represented
with 16 b. The gyroscope also measures temperature for ad-
ditional software compensation. The sampling rate of the gyro-
scope is 1000 Hz. Similar to the gyroscope, the accelerometer
also offers a selectable range of ±2, ±4, and ±8 g and has 16-b
output per axis. It offers software selection of high-pass filters
and sampling rates. The highest possible sampling rate of the
accelerometer is 1000 Hz. The magnetometer has a selectable
range of ±0.88–±8.1 G. It uses an internal 12-b analog-to-
digital converter and has a significantly lower sampling rate
compared with the other two sensors. The sampling rate of
the magnetometer can be selected from 0.75 Hz to 160 Hz.
Thus, the maximum sampling rate of the IMU system is 160 Hz
when data from all three sensors, including the magnetometer,
are simultaneously acquired. All sensors are connected to an
interintegrated circuit (I2C) bus with a maximum data transfer
rate of 222 kb/s. Each sensor provides 6 B of information
(2 B per axis), for a total of 18 B. The theoretically attainable
data transfer rate of the I2C communication protocol is 1.2 kHz,
but the maximum data transfer rate is set to 300 Hz due to
limitations of the wireless transceiver module that provides the
connection to the central unit. The IMU itself (without battery)
has a size of 30 × 20 × 5 mm and is shown in Fig. 1. The
battery is placed away from the IMU to avoid interference with
the magnetometer.

2) Data Transmission and Central Unit: The IMU is con-
nected to a central unit through a 2.4-GHz wireless transmission
system. On the IMU side, a ZigBit wireless transceiver is used.
On the receiving side, a powerful Atmel ZigBit receiver is used,
because there are no constraints on power consumption and
size. This receiver has an amplified port for an external antenna
and allows a working range of more than 15 m. The receiver is
connected through the serial peripheral interface bus (SPI) to a
central unit, which can simultaneously receive data from up to
10 IMUs at a frequency of 300 Hz and transfer it to a personal
computer through the User Datagram Protocol (UDP). Each
data package is equipped with the time stamp that is generated
on the IMU side together with the checksum. The data from the
sensor are written as 16-b unsigned integers and are added to
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the data package. The checksum is then verified by the central
unit, whereas the sensor data are transformed to real numbers
on a personal computer.

B. Kinematic Model of the Sensor and Robotic Arm

A basic mathematical model of a three-axis accelerometer
that includes scaling, misalignment, and bias parameters can be
described as

y = s · T · u + b + N (1)

where vector v represents the output of the sensor for the x-, y-,
and z-axes, vector s = [sx sy sz] denotes the sensitivity factor
for each axis, and matrix T is described as

T =

⎡
⎣

1 0 0
cos α 1 0
cos β cos γ 1

⎤
⎦ (2)

where α, β, and γ represent misalignment angles, vector b =
[bx by bz] denotes the bias, N represents the noise, and vector
u = [ux uy uz] denotes the gravitational-field projection on
sensor axes [15]. Because the accelerometer is stationary during
calibration, the only acceleration measured by the sensor is
due to the gravity. The sensor is therefore calibrated in the
range of ±1 g and not by its full-scale range; however, this
condition does not represent an issue, because the sensor is
used to determine the orientation of the IMU relative to the
gravitational field. This mathematical model is only a rough
estimate of a real accelerometer model, because nonlinearity,
temperature drift, and other nonidealities are not considered.

A precise orientation of the sensor can be determined when
the accelerometer is attached to the robotic arm. A trans-
formation matrix R6 from the robot base frame, denoted as
coordinate system Ob in Fig. 2, to the end effector OR6 can
be calculated from the robot joint angles using the Denavit–
Hartenberg table. A detailed description of the procedure can
be found in [12]. Assuming that the robot is perfectly leveled
with the gravitational field, an ideal transformation between the
gravitational field and the projection of the gravitational field
on the sensor uideal can be calculated by

m = R6 · uideal (3)

where m = [1 0 0] represents the unit vector of gravity. How-
ever, perfect alignment of the robot base frame in the grav-
itational field is difficult to achieve. Thus, a transformation
matrix between the gravitational field, denoted as coordinate
system Oe, and the robot base, denoted as coordinate system
Ob, must be taken into account. A transformation matrix can be
described as

Re_b = RotZ(ϕz) · RotX(ϕx) (4)

where ϕx and ϕz denote rotation angles around the x- and
z-axes in coordinate system Oe. Functions RotZ and RotX

Fig. 2. Complete transformation of the gravity vector. Re_b presents the
transformation between the gravitational field and robot base, R6 presents the
transformation between the robot base and the robot end effector, and R6_i

presents the transformation between the robot end effector and the IMU.

are determined as follows:

RotX =

⎡
⎣

1 0 0
0 cos ϕx − sin ϕx

0 sin ϕx cos ϕx

⎤
⎦ (5)

RotZ =

⎡
⎣

cos ϕz − sin ϕz 0
sin ϕz cos ϕz 0

0 0 1

⎤
⎦ . (6)

Similar to the transformation between the gravitational field
and the robot base, a transformation between the robot end
effector and accelerometer must also be taken into account due
to possible installation errors, because the accelerometer sensor
is not perfectly aligned with the circuit board, and the circuit
board is not perfectly aligned with the end effector. Thus, the
transformation matrix R6_i, where φx and φz denote rotation
over the x- and z-axes, can be described as

R6_i = RotZ(φz) · RotX(φx). (7)

With both rotational matrices known, a transformation be-
tween the gravitational field and the real projection of the
gravitational field on the sensor u can be calculated by

m = Re_b · R6 · R6_i · u. (8)
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A complete transformation of the gravity vector is presented
in Fig. 2. With the transformation matrix specified, the output
of the accelerometer can be described as

y = s · T · R−1
6_i · R−1

6 R−1
e_b · m + b + N. (9)

C. Parameter Estimation

The UKF is an extension of the traditional Kalman filter
for the estimation of nonlinear systems that attempt to re-
move some of the shortcomings of the extended Kalman filter
(EKF) in the estimation of nonlinear systems. For parameter
estimation, the EKF can be used, because the computation
time of the UKF is greater than the computation time of the
EKF. However, because there are no limitations with regard
to computation time and it has been shown that the UKF
outperforms the EKF in numerous examples, the UKF was
chosen for parameter estimation. More detailed discussion of
the UKF can be found in [16]–[18]. The UKF uses deterministic
sampling to approximate the state distribution. The unscented
transformation uses a set of sample or sigma points that are
determined from the a priori mean and covariance of the state.
The sigma points are propagated through the nonlinear system.
The posterior mean and covariance are then calculated
from the propagated sigma points. Parameter estimation equa-
tions for the UKF are similar to the state estimation. This
section expounds on the differences.

The filter is initialized with the predicted mean and covari-
ance of the parameters, i.e.,

ŵ0 =E{w} (10)
Pŵ0 =E

{
w − ŵ0)(w − ŵ0)T

}
(11)

where E{ } is the expectation operator, (w − ŵ0) is the esti-
mation error of initial value, w is the unknown true parameter,
and ŵ0 is the estimated initial parameter value. The UKF time
update is described as

ŵk̄ = ŵk−1 (12)
P̂w̄k

= ηnPwk−1 + Rwk
(13)

where parameter vector ŵk̄ = [sx sy sz α β γ bx by

bz ϕx ϕz φx φz] is updated using previous values, and the
covariance matrix P̂w̄k

is calculated by scaling the previous
value with ηn ∈ (0, 1] and by adding fixed system process noise
Rwk

. The sigma points χk are calculated from the values of the
mean and covariance of the parameters, i.e.,

χk|k−1 =
[
ŵk̄ ŵk̄ + γŜw̄k

ŵk̄ − γŜw̄k

]
(14)

where Ŝw̄k
=

√
P̂w̄k

is a square root of the covariance matrix

of wk, P̂w̄k
such that P̂w̄k

= Ŝw̄k
Ŝw̄k

T
. Scaling parameters

are defined as γ =
√

L + λ and λ = α2
kf (L + κ) − L, where

L denotes the state dimension. The constant αkf determines
the spread of the sigma points around ŵk̄ and is usually set to
1e − 4 ≤ αkf ≤ 1. κ is a secondary scaling parameter and is
usually set to 0, and βkf is used to incorporate prior knowledge

of the distribution of ŵk̄ and is usually set to 2 for Gaussian
distributions. The weights w

(c)
i and w

(m)
i are calculated using

w
(m)
0 =

λ

L + λ

w
(c)
0 =

λ

L + λ
+ 1 − α2

kf + βkf

wi
(c) =wi

(m) =
1

2(L + λ)
. (15)

The matrix χk|k−1 can be described as

χk|k−1 =

⎡
⎢⎢⎢⎢⎢⎣

s0 s1 · · · s2L

t0 t1 · · · t2L

b0 b1 · · · b2L

r(6_i)
0 r(6_i)

1 · · · r(6_i)
2L

r(e_i)
0 r(e_b)

1 · · · r(e_b)
2L

n0 n1 · · · n2L

⎤
⎥⎥⎥⎥⎥⎦

(16)

where vector s0 = ŵk̄,(1...3) consists of the first three ele-

ments of vector ŵk̄. Vectors si = s0 + γŜw̄k i
and sL+i =

s0 − γŜw̄k i
, where i = 1 . . . L are calculated by adding the

sigma-point value that was calculated from the ith column of
the covariance matrix. A similar approach is applied to vectors
ti,bi, r

(6_i)
i and r(6e_b)

i . Noise vectors are defined as n0 =
[0 0 0], ni = +γŜw̄k i

and nL+i = −γŜw̄k i
, where i = 1 . . . L.

The output of the sensor model is described as

yi = si · Ti · R−1
6_i i · R−1

6k · R−1
e_b i · m + bi + ni (17)

where values for the matrix Ti are derived from the vector
ti, values for the matrix R6_ii are derived from the vector
r(6_i)

i, and values for the matrix Re_bi
are derived from the

vector r(6e_b)
i. Values for the matrix R6k

are obtained from
the orientation of the robotic arm. The expected measurement
values are determined in the matrix Yk|k−1 as

Yk|k−1 = [ y0 · · ·y2L ]. (18)

The measurement mean d̂k̄ and the measurement covariance
Pd̃k

are calculated based on the statistics of the expected
measurements as

d̂k̄ =
2L∑
i=0

wi
(m)Yi,k|k−1 (19)

Pd̃k
=

2L∑
i=0

wi
(c)

(
Yi,k|k−1 − d̂k

)(
Yi,k|k−1 − d̂k̄

)T

+ Rek
.

(20)

The cross-correlation covariance Pwkdk
is calculated using

Pwkdk
=

2L∑
i=0

w
(c)
i

(
χi,k|k−1 − ŵk̄

) (
Yi,k|k−1 − d̂k̄

)T

+ Rek
.

(21)

The Kalman gain matrix is the product of the cross-correlation
and measurement covariances, i.e.,

Kk = Pwkdk
P−1

d̃k
. (22)
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The measurement update equations are given as follows:

w̃k = ŵk̄ + Kk(dk − d̂k̄) (23)
Pwk

=Pw̄k
− KkPd̃k

KT
k (24)

where dk is the measurement from the real sensor or a
simulated output of the sensor, where predefined parameters
are used.

D. Determination of Sensor Orientation

During the parameter estimation, the sensor must be placed
in different orientations to acquire an appropriate set of mea-
surements for successful parameter estimation. In the proposed
CEMS algorithm, the orientation is chosen to position the sen-
sor in orientation, in which the maximal sensitivity is achieved
for parameters with the largest variance. This orientation can
be determined from the covariance matrix Pwk

. The Kalman
filter returns the estimation of the posterior mean state ŵk

and error covariance Pwk
. The posteriori error covariance

Pwk
is segmented into two covariance submatrices that rep-

resent the posteriori error covariance matrices of bias and gain.
The posteriori error covariance matrices of bias and gain are
used as covariance matrices of the parameter estimation error,
defined as

Pwk
= E

{
(wk − ŵk)(wk − ŵk)T

}
(25)

where E{ } is the expectation operator, (wk − ŵk) is the
estimation error, wk is an unknown true parameter value, and
ŵk is an estimated parameter value.

The covariance matrix of the parameter estimation error is
positive semidefinite and a symmetric matrix and can therefore
be diagonalized using an orthonormal basis. The unit vectors
of the orthonormal basis used to rotate the covariance matrix
are the eigenvectors of the covariance matrix and form the
principle axes of an error ellipse. The values of the diagonalized
covariance matrix are the eigenvalues of the covariance matrix
and correspond to the variances of the decoupled noise con-
tributions in the direction of the corresponding principle axes
of the error ellipse. Fig. 3 shows the simplified two-degree-of-
freedom example of error ellipse with two principle axes s1 and
s2. Fig. 3(a) shows the initial error ellipse, where a large initial
value of variance is chosen, and both principle axes have same
variance values. Fig. 3(b) and (c) shows the intermediate steps.
Fig. 3(d) shows the final error ellipse, where the parameter
estimation error is minimized, and variances are approximately
equal for both ellipse principle axes s1 and s2.

SVD can be used to decompose the covariance matrix into an
orthonormal basis and a diagonal matrix. The SVD algorithm is
applied to each of the covariance matrices of parameter estima-
tion errors [19]. Because covariance matrix Pw is a positive-
semidefinite symmetric matrix, the following decomposition is
obtained for a selected parameter:

Svd(Pwpar
) = U · Σ · UT. (26)

U = [u1 u2 u3] is an orthonormal basis matrix of singular
vectors, and matrix Σ is a diagonal matrix of singular values

Fig. 3. Simplified two-degree-of-freedom example of the error ellipse of the
covariance matrix of parameter estimation error. (a) Initial error ellipse. (b) and
(c) Intermediate steps. (d) Final error ellipse. Axes s1 and s2 are the principle
axes of error ellipse, where principle axis s2 has a smaller variance.

[σ1 σ2 σ3]. Singular values are associated with the variance.
Singular value σ3 is associated with the lowest variance, and
thus, a unit vector u3 corresponds to the principle axis with the
lowest variance of the covariance of parameter estimation error.

An intuitive interpretation of the proposed SVD approach is
given by the principal component analysis (PCA). PCA uses
an orthonormal transformation to transform the original space
into a new one, where the first axis points in the direction
of the maximum variance and the subsequent axes are ranked
according to the variance with the final axis pointing in the
direction of the lowest variance [20].

This methodology is used with a stationary accelerometer.
The measurement thus corresponds only to the projection of
the gravitational field. The orientation vector of the sensor is
calculated from the singular vector u3. The singular vector
u3 corresponds to the principle axis with the lowest variance
expressed in the coordinate system of the IMU. Because the
axis is needed to control the robot, the principle axis must be
transformed into the coordinate system of the endpoint of the
robot with transformation, i.e.,

ue = R6_i · u3 (27)

where ue denotes the orientation vector on the robot end
effector.

After applying the orientation with robot motion, the sensor
is aligned in orientation, which will maximize the sensitivity for
the sensor axis with the largest variance, and the sensitivity will
be lowest for the axis with the lowest variance. The principal
axis with the lowest variance is positioned to be perpendicular
to the gravitational field so that the performing rotation around
this axis will align the other two principle axes with the
gravitational field. The initial orientation is set to the value for
which the principle axis with the largest variance is aligned with
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Fig. 4. Initial sensor orientation is noted with axes xe, ye, and ze. After one
iteration is completed, the sensor must reach the new orientation noted with
axes x′

e, y′
e, and z′e. Additional rotation is applied around the z′e-axis.

the gravitational field. In Fig. 3(b), the robot will position the
sensor in the orientation for which the principle axes s1 of the
error ellipse will be aligned with the gravitational field. After
several steps [see Fig. 3(c)], the variance will decrease, and
principle axes of error ellipse will move to different orienta-
tions, and therefore, the robot will reorient the sensor to align
the principle axes s1 with the gravitational field. The final result
is a sequence of movements of rotations around the principle
axis, which maximizes the sensitivity of the sensor axis with the
largest variances of the parameter estimation error. After each
new measurement, a new principle axis is computed, and the
movement of the robot is updated with the new axis of rotation
to reduce the variance along the axis with the largest uncertainty
(see Fig. 4).

Singular values σi are used to determine the validity of the
estimated parameters gathered from the UKF filter, because
they represent the dispersion around the associated axis. A
validation criterion for the selected parameter estimation is
presented by

Cpar =
3 · σ3

3∑
i=1

σi

. (28)

Three criterion functions Cpar are calculated, because three
parameters are determined through calibration. The closer Cpar

is to 1, the lower the largest variance is compared to the sum of
variances. A value of 1 also implies that the variance is lowest
as possible, because there is no axis that would further reduce
the variance. This case is shown in Fig. 3(d), where variances of
both principle axes of error ellipse are approximately equal. The
criterion functions are also used as a weight for determining the
rotation axis of the sensor by

u = (1 − Cb) · ue_b + (1 − Cs) · ue_s (29)

where u represents the axis of sensor rotation, Cb and Cs

represent the criterion functions of bias and gain/sensitivity,
and ue_b and ue_s represent the estimated axis of rotation for
both parameters. When all criterion functions are close to 1, the
calibration procedure can be completed, because the variance
is the lowest, and further measurement will not improve the
estimation of parameters.

Fig. 5. Flowchart of the simulation procedure of the calibration method.

E. Simulation and Measurements

Simulation is used to verify the kinematic model and pro-
posed procedure, because the true parameters of the sensor are
not known. All sensor parameters are manually predefined in
the kinematic model and later compared with the simulation
results, thus allowing us to validate the calibration method. The
simulation is built and run in MATLAB. Because the calibration
method is also based on the movement of the robot arm, a
simulation of the robot must also be included. The simulation
process can be segmented into the following three parts.

• The output of the sensor is calculated (simulated) using
manually predefined parameters and known rotational ma-
trices, i.e., R6, Re_b and R6_i.

• The calculated output of the sensor is fed into the UKF
algorithm. The orientation result given by the UKF kine-
matics is described as a unit vector. Estimated parameters
are temporarily stored and used for the next iteration.

• A fixed rotation is applied over a unit vector that results
in a 3 × 3 rotational matrix that represents the robot end
effector R6. With the orientation matrix known, the next
simulation step can be performed.

Because initial values are needed by the UKF, they are set
close to ideal values with a small offset. For example, the initial
parameter for bias is set as ba = [0.15 0.2 −0.12]. Although
the ideal parameter is ba = [0 0 0], a small offset allows the
parameters to more quickly converge to the true value. After
numerous runs of the simulation, the UKF parameters are
adjusted to ensure rapid convergence of the criterion function.
The flowchart of the calibration is shown in Fig. 5.

Once the simulation parameters are determined, 300 simula-
tion runs are performed. Because the model of the sensor and
the UKF algorithm have a fixed noise parameter, different simu-
lation runs output different sensor and parameter estimates. The
dispersion of the parameter values around the true predefined
value can be used to evaluate the CEMS calibration method.

After the simulations are successfully completed, the pro-
posed calibration method is applied using the IMU described
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TABLE I
SIMULATION RESULTS OF ESTIMATING GAIN, MISALIGNMENT, AND BIAS

PARAMETERS WITH THE PROPOSED CALIBRATION METHOD USING 400
ITERATIONS. THE FIRST COLUMN PRESENTS THE PREDEFINED VALUES,

THE SECOND COLUMN PRESENTS THE CALCULATED MEAN VALUES, THE

THIRD AND FOURTH COLUMNS PRESENT THE MINIMUM AND MAXIMUM

VALUES, THE FIFTH COLUMN PRESENTS THE MEDIAN VALUES, AND

THE SIXTH COLUMN PRESENTS THE STANDARD DEVIATION

in Section II and a six-axis Epson PS3 robot. The IMU is
tightly attached to the aluminum flange that is bolted to the
robot end effector. Data from the sensor are wirelessly trans-
mitted to the receiver board, which is connected to a personal
computer through the UDP. Data from the IMU are acquired
and transferred to the UKF using MATLAB/Simulink. Once the
UKF calculation is done, the new orientation of the sensor must
be transmitted to the robot. Because the Epson robot accepts
orientation in values of angles over the x-, y-, and z-axes, the
orientation matrix must be transformed into these three angles.
Because position is not relevant for accelerometer calibration,
the position can be changed to achieve the desired orientation.
This approach cannot be done for magnetometer calibration,
because it is difficult to ensure a constant magnetic field in
the surroundings of the robot. The three orientation angles
are received by the Epson robot through the Transmission
Control Protocol/Internet Protocol (TCP/IP). Once all data are
received, the robot moves to the specified orientation with a
low speed. This case avoids any vibrations that could occur
during movement, because the robot arm is not perfectly rigid.
After the robot reaches the desired orientation, a signal flag that
indicates that the robot is stationary is sent to MATLAB, and
the new acquisition of the sensor data can commence.

Similar to the simulation, multiple measurements/
calibrations are performed with the same IMU to evaluate the
calibration method by comparing measured sensor parameters
of the sensor. A fixed number of iterations (400) are used
for each measurement. This number is determined from the
parameter criterion function during simulation.

III. RESULTS

A. Simulation

Evaluation of the method is done by running 100 simulations.
Predefined parameters of the sensors are listed in Table I, first
column, whereas the second column presents the mean values
of calculated parameters within all simulations, the third and
fourth columns present the minimum and maximum values of
parameters that occurred during evaluation, the fifth column
presents the median value, and the sixth column presents the
standard deviation. The results presented in Table I are mea-
sured with 400 iterations.

TABLE II
SIMULATION RESULTS OF ESTIMATING ANGLES IN COORDINATE

SYSTEMS Oe and OR6 WITH THE PROPOSED CALIBRATION METHOD

USING 400 ITERATIONS. THE FIRST COLUMN PRESENTS THE

PREDEFINED VALUES, THE SECOND COLUMN PRESENTS THE

CALCULATED MEAN VALUES, THE THIRD AND FOURTH COLUMNS

PRESENT THE MINIMUM AND MAXIMUM VALUES, THE FIFTH COLUMN

PRESENTS THE MEDIAN VALUES, AND THE SIXTH COLUMN

PRESENTS THE STANDARD DEVIATION

Fig. 6. Histogram of the difference of estimated gain from the known true
gain value for the x-axis.

TABLE III
STANDARD DEVIATIONS FOR GAIN, MISALIGNMENT, AND BIAS

PARAMETERS USING 500 SIMULATION RUNS. VALUES ARE CALCULATED

USING THE DIFFERENCE BETWEEN THE ESTIMATED AND KNOWN TRUE

VALUES, WHICH ARE RANDOMLY CHANGED BETWEEN

DIFFERENT SIMULATION RUNS

Similar to Table I, Table II presents the estimated values of
angles in coordinate systems Oe and system OR6. The first
column presents predefined values of angles, the second column
presents mean values, the third and fourth columns present
minimum and maximum values, the fifth column presents the
median, and the sixth column presents the standard deviation.

Standard deviations of parameter estimations are determined
by 500 simulation runs, and the values of predefined parameters
are randomly changed for each simulation. The gain parameters
are in the range from 0.9000 to 1.1000, the misalignment
parameters are in the range from 1.4708 to 1.6708, and the bias
parameters are in the range from −0.1500 to 0.1500. The data
obtained are used for the calculation of the standard deviation of
parameters for each axis. The differences between the estimated
gain from the known true gain value for the x-axis are presented
in the histogram in Fig. 6. Standard deviations of parameters
gain, misalignment, and bias are presented in Table III.
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Fig. 7. Mean and maximum errors of gain and misalignment parameter esti-
mations using the proposed calibration method. Dashed lines present maximum
errors that occurred during simulations, and solid lines present mean relative
errors.

Fig. 8. Mean and maximum bias offsets using the proposed calibration
method. The dashed line presents the maximum error that occurred during
simulations, and the solid line presents the mean relative error.

To present an overview of how the number of measurements
or iterations influences the accuracy of the parameter estima-
tion, a new series of simulations is run with a variable number of
iterations within the range of 20–500 iterations. Fig. 7 presents
the mean and maximum relative error of gain and misalignment
parameters as solid and dashed lines. The error is calculated by
running 100 simulations for each selected number of iterations.
The bias, misalignment, and gain parameters are calculated
for each axis, and the success of the calibration is determined
by the worst parameter estimated. Thus, only the maximum
relative error that occurred on any of three axes during a single
simulation run is used for the calculation of a mean relative
error of 100 simulation runs. The maximum relative errors
that occurred during simulation runs at different numbers of
iterations are also presented in Fig. 7, dashed lines.

Because the preset bias parameters are near zero, Fig. 8,
solid line, presents the mean offsets between the calculated and
preset values during 100 simulations at different numbers of
iterations. Values are calculated using the maximum offset that
occurred on any of three axes during simulation runs. Similar to
the previous figure, the maximum values that occurred during
simulation runs are also presented as a dashed line.

Further evaluation of the CEMS calibration method is done
compared with the commonly used least mean squares method,
which is an offline method that requires a different approach.
Because this method cannot set the orientation of the sensor,
a random movement is generated. For better comparison, the
number of movements is equal to the number of iterations in our

Fig. 9. Mean and maximum gain and misalignment errors using the least
mean squares method. Dashed lines present maximum errors that occurred
during simulations, and solid lines present mean relative errors.

Fig. 10. Mean and maximum bias offsets using the least mean squares
method. The dashed line presents the maximum error that occurred during
simulations, and the solid line presents the mean relative error.

TABLE IV
ESTIMATED PARAMETERS OF THE REAL IMU USING FIVE DIFFERENT

MEASUREMENTS WITH 400 ITERATIONS

proposed calibration method. The maximum number of offline
(more than 5000) iterations is used to calculate the values
of parameters. For each number of movements, 100 offline
iterations are run. The same method for the calculation of the
mean parameter estimation error is used. The mean parameter
estimation errors and the maximum relative errors that occurred
during simulation runs at different numbers of iterations are
presented in Fig. 9, dashed and solid lines. The mean and
maximum bias offsets at different numbers of iterations are
presented in Fig. 10.

B. Real IMU

Measurements of a real IMU are performed using a robotic
arm. Because precise parameters of a real sensor are unknown,
Table IV presents the estimated values. Comparison between
five measurements is made, each with 400 iterations.
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Fig. 11. Criterion functions of gain, misalignment, and bias parameters during
400 iterations.

Fig. 12. Values of parameters during 400 iterations. The upper part presents
values of misalignment parameters, the middle part presents the values of gain
parameters, and the lower part presents the values of bias parameters.

Fig. 11 presents the criterion functions of bias, misalignment,
and gain parameter estimations during calibration. The values
shown in the figure are calculated from the measurement of a
real IMU during 400 iterations.

Similar to the Fig. 11, the estimation of the parameter values
is observed and presented in Fig. 12 during 400 iterations for
the real IMU calibration. In this figure, the upper part of the
plot presents values of misalignment parameters for each sensor
axis, the middle part presents the values for gain parameters,
and the lower part presents the values for the bias parameters
for each sensor axis. The x-, y-, and z-axes are marked with
solid, dashed, and dotted lines, respectively.

IV. DISCUSSION

According to the results presented in Table I, the CEMS cal-
ibration method can estimate parameters with a mean relative
error of 0.5% when 400 iterations are performed. However,
according to Table III, the maximum standard deviation for gain
parameter estimation is 0.0096. Because the gain is in a range
of value 1, the relative error of determining the gain parameter
is less than 1%. Focusing on the real accelerometer, the gain
parameter is within ±10% of the true value according to the
manufacturer’s specification. The accuracy of the estimated
gain parameter is therefore within the acceptable range, because
it is much higher than the gain accuracy of the uncalibrated
accelerometer. Deviation from the ideal value (zero) in the
bias parameter can be within the range of ±0.02 g according
to the manufacturer’s specification. The mean deviation of the

bias calculated with the proposed calibration method according
to Table I is in the range of 0.0015 g, whereas according to
Table III, the standard deviation can be up to 0.0039 g and is
in the acceptable range. A comparison between the estimated
and real misalignment values cannot be made, because the
manufacturer does not provide this information. However, the
misalignment mean relative error is also lower than 0.5%, and
the standard deviation is up to 0.0136 rad. The minimum and
maximum values noted in Table I, which occurred during 100
different simulation runs, are used to calculate the maximum
gain and misalignment relative error, which is 4.5%, and for the
calculation of the maximum bias offset, which is 0.02 g.

The estimation of angle parameters for coordinate system
OR6 have, according to Table II, a mean error of less than
0.02%, and the difference between the minimum and maximum
values does not exceed more than 0.0020 rad. The estimation of
angle parameters for coordinate system Ob have slightly higher
error when taking into account the difference between the
minimum and maximum values, which is up to 0.0140 rad (see
Table II). The rotational matrix R6 is, in simulation, determined
as absolutely accurate; however, when the calibration method
is used on a real robot, the accuracy of this matrix depends on
the robotic arm accuracy, which can be determined from robot
specifications.

Fig. 7 presents the influence of varying numbers of iterations
on parameter estimation accuracy. As expected, the highest
mean relative error (lower than 1.4%) is achieved with the low-
est number of iterations (20). However, the maximum relative
error that occurred during the calibration is up to 10.7%. The
mean offset of the estimated bias is 0.012 g at 20 iterations,
as shown in Fig. 8. Similar to Fig. 7, the maximum deviation
of the bias is much higher than the mean value, i.e., −0.1 g.
When the number of iterations is increased, the gain and
misalignment mean relative error and bias mean offset slightly
decrease, whereas the decreases of the maximum relative error
and maximum offset are much more notable. The misalignment
and gain maximum relative errors decrease to 5% and 7%,
respectively, whereas the maximum bias offset decreases to
0.04 g. Further increase of the iteration number does not
significantly decrease the mean and maximum relative error
or mean and maximum bias offset. There is a convergence of
0.57% for the mean relative error, 5% for the maximum relative
error, 0.0007 g for the mean bias offset, and 0.025 g for the
maximum bias offset.

The comparison of our method and the offline least mean
squares calibration method in Figs. 7 and 9, as well as in Figs. 8
and 10, clearly shows that our proposed calibration method
yields much lower errors at a low number of iterations. The
misalignment and gain maximum relative errors are higher than
30%, and the mean relative errors are higher than 7% when
using the offline least mean squares method. Similarly, the
maximum bias offset is 0.26 g, and the mean offset is lower
than 0.08 g, which is close to the maximum bias offset of our
calibration method. However, the inaccuracy of parameter esti-
mation is due to the low number of random sensor orientations.
These orientations cannot cover the most influential positions
where the sensitive axes are aligned with the gravitational field
in both directions. Increasing the number of random movements



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

up to 100 greatly reduces the mean and maximum relative
errors and offsets. Nonetheless, at 100 iterations, the errors
of the offline least mean squares calibration method are still
significantly higher than in our proposed calibration method
(except for the misalignment maximum relative error, which is
lower by 1%). Increasing the number of different orientations
makes the maximum relative errors converge to 2.4% and 1.1%,
whereas the maximum offset converges to 0.01 g. The gain and
misalignment mean relative error also decrease by 0.9% and
0.5%, respectively, whereas the mean bias offset is decreased
to 0.005 g.

Our proposed calibration method, thus, has an advantage in
parameter estimation when less than 100 iterations are used,
because the mean and maximum errors are significantly lower
than the errors calculated by the offline calibration method
with random orientations. Fig. 11 clearly shows that criterion
functions for all three parameters begin to converge to 1 after
50 iterations, which means that the errors are close to their
minimum. In Fig. 12, the parameter values similarly settle
after 50 iterations, and only slight adjustments are made in
further iterations. Because the optimal sensor orientations are
determined by the calibration method, there is no need to
manually find and move the sensor to appropriate orientations,
thus automating and shortening the time of calibration.

However, the disadvantage of this method is that it uses
relatively expensive equipment for sensor manipulation. Better
accuracy can be achieved with offline calibration methods when
a large number of sensor orientations or carefully predefined
sensor orientations are used. A combination of both methods
could therefore result in better accuracy of parameter estima-
tion. However, this approach would extend the total calibration
time, creating a disadvantage compared to our online cali-
bration method, where the parameter estimation is complete
immediately after the final iteration.

The CEMS calibration method, in the future, can also
be applied to three-axial magnetometer calibration. Because
the manipulation of the magnetic sensor is not ideal due to
magnetic-field disturbances around the robotic arm, a modified
method that involves a three-axial magnetic coil can be used.
In this case, the direction of the magnetic field would also be
determined by the calibration method. Because there would be
no need for physically moving the sensor and the change in
the magnetic field can instantly be done, this approach could
represent a very fast method of magnetometer calibration.

V. CONCLUSION

This paper has presented an online automatic calibration
method for a three-axial accelerometer. A robotic arm is used
to rapidly place the sensor in a number of different orientations,
and the UKF estimates the three main accelerometer parame-
ters (gain, misalignment, and bias) in each orientation. These
orientations are automatically calculated during calibration us-
ing the parameter covariance matrix to represent the optimal
orientations for parameter estimation.

Several simulations were performed to evaluate the CEMS
calibration method. Its success was measured by observing

parameter estimation accuracy as a function of the number of
iterations. High accuracy was achieved after a relatively low
number of iterations compared to an offline calibration method
with randomly generated sensor orientations. The proposed
calibration method was then applied to a real accelerometer,
where a parameter estimation relative error of less than 0.3%
was achieved. Although other offline methods could potentially
achieve higher accuracies, our approach represents a promising
method that can automatically determine appropriate sensor
orientations for calibration and thus rapidly produce accu-
rate sensor parameters online, without the need for operator
involvement.
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