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Domen Novak ⇑, Matjaž Mihelj, Marko Munih
Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia

a r t i c l e i n f o
Article history:
Received 11 May 2011
Received in revised form 15 February 2012
Accepted 30 April 2012
Available online 9 May 2012

Keywords:
Affective computing
Physiological computing
Psychophysiology
Data fusion
Autonomic nervous system
0953-5438/$ - see front matter � 2012 British Inform
http://dx.doi.org/10.1016/j.intcom.2012.04.003

q This paper has been recommended for acceptance
⇑ Corresponding author. Tel.: +386 14768373 (O),

+386 14768239.
E-mail addresses: domen.novak@robo.fe.uni-lj.si

robo.fe.uni-lj.si (M. Mihelj), marko@robo.fe.uni-lj.si (M
a b s t r a c t

Physiological computing represents a mode of human–computer interaction where the computer moni-
tors, analyzes and responds to the user’s psychophysiological activity in real-time. Within the field, auto-
nomic nervous system responses have been studied extensively since they can be measured quickly and
unobtrusively. However, despite a vast body of literature available on the subject, there is still no univer-
sally accepted set of rules that would translate physiological data to psychological states. This paper sur-
veys the work performed on data fusion and system adaptation using autonomic nervous system
responses in psychophysiology and physiological computing during the last ten years. First, five prereq-
uisites for data fusion are examined: psychological model selection, training set preparation, feature
extraction, normalization and dimension reduction. Then, different methods for either classification or
estimation of psychological states from the extracted features are presented and compared. Finally,
implementations of system adaptation are reviewed: changing the system that the user is interacting
with in response to cognitive or affective information inferred from autonomic nervous system
responses. The paper is aimed primarily at psychologists and computer scientists who have already
recorded autonomic nervous system responses and now need to create algorithms to determine the sub-
ject’s psychological state.

� 2012 British Informatics Society Limited. All rights reserved.
1. Introduction

Physiological computing represents a mode of human–com-
puter interaction where the computer monitors, analyzes and re-
sponds to the user’s psychophysiological activity in real-time
(Fairclough, 2009). It can be divided into cognitive physiological
computing, which aims to maximize user performance, and affec-
tive physiological computing, which aims to maximize user plea-
sure. Through analyzing psychophysiological measurements such
as heart rate and brain activity, a new, subconscious channel of
communication is established between the user and the machine
(Hettinger et al., 2003).

Physiological computing has many potential applications.
Cognitive psychophysiology can, for instance, be used to recognize
periods of very high or very low workload and adapt to them by
taking appropriate actions. Examples exist in simulated flight
(Wilson and Russell, 2007), learning (Shen et al., 2009), biomedical
applications (Novak et al., 2011) and other fields. Affective psycho-
physiology, on the other hand, can be used to recognize undesirable
emotional states such as anger and guide the user to a more positive
atics Society Limited. All rights re
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emotional state. This has been demonstrated in, for example, com-
puter games (Mandryk and Atkins, 2007; Liu et al., 2009) and hu-
man-robot interaction (Rani et al., 2004). Of course, cognitive and
affective physiological computing frequently overlap, with the
overall goal of providing a pleasant environment for the user that
will lead to improved performance and efficiency. In such settings,
physiological measurements have the advantage that they provide
an objective estimate of the user’s psychological state that can be
obtained unobtrusively without his or her active participation.

Physiological computing is heavily based on earlier experiments
in psychophysiology, which extensively used physiological mea-
surements to identify psychological states (e.g. Ekman et al., 1983;
Cacioppo and Tassinary, 1990). It also partially overlaps with affec-
tive computing, the study of systems that can recognize and mimic
human affect (Picard, 1997). Both psychophysiology and affective
computing have explored many avenues of research, including
speech, facial expressions, gestures, central nervous system re-
sponses and autonomic nervous system responses (Zeng et al.,
2009; Calvo and D’Mello, 2010). Among these, autonomic nervous
system (ANS) responses such as cardiorespiratory and electroder-
mal responses hold a great deal of promise in physiological
computing since they can be measured more cheaply, quickly and
unobtrusively than central nervous system responses.

Though measurement of ANS responses is not a difficult
task, their interpretation in a psychophysiological context is much
served.
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more difficult. Perhaps the most influential paper on this topic was
published by Rosalind Picard and covers psychophysiological data
fusion: the extraction of various features from different physiolog-
ical responses, the automated selection of the most appropriate
features, and the classification of these features into different pos-
sible emotion classes (Picard et al., 2001). Since then, many ma-
chine learning approaches have been used to infer cognitive and
affective information from ANS responses. However, despite a vast
body of literature available on the subject, there is still no univer-
sally accepted set of data fusion rules that would translate physio-
logical data to psychological states.

Nonetheless, though no universal set of rules currently exists, it
is possible to look at all the work that has been done and identify
some of the most promising strategies. We thus conducted a re-
view of psychophysiological studies performed in the last ten years
and examined all those dealing with the fusion of ANS responses,
whether in physiological computing or elsewhere. Our goal was
specifically to provide an overview of the different steps and meth-
ods necessary for data fusion. Thus, this review is aimed primarily
at psychologists and computer scientists who have already
measured ANS responses and now need to create algorithms to
fuse these measurements into the cognitive or affective state of
the subject. Such reviews have already been done for electroen-
cephalography (Lotte et al., 2007) and speech (El Ayadi et al.,
2011), but not for ANS responses, which come with their own chal-
lenges and applications. General reviews of ANS activity in psycho-
physiology (e.g. Kreibig, 2010) are not very useful for data fusion,
though they are extremely valuable otherwise. Similarly, reviews
focusing on issues such as experiment design, user modeling and
ethical issues in physiological computing (e.g. Fairclough, 2009)
are very useful in general, but do not provide enough information
about data fusion methods. However, general overviews of meth-
ods for affect detection such as those by Zeng et al. (2009), Calvo
and D’Mello (2010), or Gunes and Pantic (2010) could also be of
interest to readers of this paper even if they do not cover ANS
responses in detail.
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Fig. 1. The general process of measuring, interpreting and using autonomic nervous
system responses in psychophysiology and physiological computing. The blocks
contain the human (top) and different steps to be performed. The data used at each
stage is written on the left, while the numbers on the right show which section of
this paper covers the different steps. Classification and estimation are shown in
parallel since they are two possible but mutually exclusive data fusion methods.
Although the most complex challenge in physiological comput-
ing has been the interpretation of ANS measurements, the final
goal is still to adapt various systems in response to the detected
cognitive or affective changes. This has already been done in sev-
eral applications, from computer games to automatic pilots. We
thus also attempt to cover these existing applications in our re-
view. Unfortunately, due to space limitations, we have had to limit
ourselves only to studies which present actual implementations;
numerous papers provide interesting ideas and frameworks for
physiological computing, but without implementation, it is diffi-
cult to gauge whether these ideas are feasible.

Fig. 1 shows the general process of measuring, interpreting and
using ANS responses in physiological computing. This paper is like-
wise divided into three main sections corresponding to the three
main steps. Within the context of this paper, we define ‘data fu-
sion’ to correspond to strictly the classification or estimation of
psychological states from multiple psychophysiologically relevant
features obtained from different physiological signals.

Section 2 thus describes the prerequisites for data fusion (psy-
chological model selection, training data set preparation, feature
extraction, normalization and dimension reduction), Section 3 de-
scribes different data fusion methods (either classification or esti-
mation), and Section 4 covers system adaptation in response to the
inferred psychological state. Many of these steps are not specific to
physiological or affective computing, but have been common in
psychophysiological studies since the 1980s. For this reason, many
of the procedures will be referred to as psychophysiological meth-
ods rather than physiological computing methods.
2. Prerequisites for data fusion

This section describes the steps taken to obtain a set of features
relevant for physiological computing and suitable for use in data
fusion. The first, selection of an appropriate psychological model,
is crucial for all psychophysiological studies and affects all of the
following steps. The second, preparation of a training data set, is
required for supervised data fusion methods. Since the majority
of data fusion methods used in physiological computing are super-
vised (with the exception of expert-defined rules described in Sec-
tions 3.2.1 and 3.2.2), a training data set is necessary in most cases.
The third step, feature extraction, is also practically necessary since
psychological information is difficult to glean from raw signals. The
fourth, normalization, is not absolutely necessary but is commonly
taken in order to improve data fusion. The fifth, dimension reduc-
tion, is also not strictly necessary, but is useful in settings where a
large number of possibly irrelevant features are available.

Psychological model selection needs to be done before any mea-
surements can even begin. Training data set preparation must be
planned before the actual measurements and affects the measuring
process. The remaining three steps are performed after the mea-
surements have been collected.
2.1. Psychological model selection

One of the first steps of any psychophysiological study is to se-
lect an appropriate model that describes the user’s psychological
state. This is integral to data fusion, as it defines the states that
can be identified from physiological measurements. A number of
emotion models currently exist for emotion recognition in hu-
man–computer interaction (Cowie et al., 2001). Of those, the cate-
gorical model and the two-dimensional arousal-valence model are
two of the most frequently used in psychophysiology.

The first model tries to classify psychophysiological measure-
ments into one of several basic emotions (anger, sadness,
fear, surprise, happiness. . .) (Ekman, 1992). The second posits that
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a person’s psychological state is multidimensional and thus de-
scribed with multiple variables. The most popular multidimen-
sional model in psychophysiology is the arousal-valence model
(Russell, 1980). Valence (sometimes also called pleasure) is defined
as positive versus negative affective states (e.g. humiliation, disin-
terest, and anger at one end versus excitement, relaxation, and
tranquility at the other) while arousal is defined in terms of mental
alertness and physical activity (e.g. sleep, inactivity, boredom, and
relaxation at the lower end versus wakefulness, tension, exercise,
and concentration at the higher end) (Mehrabian, 1996). While va-
lence and arousal are generally continuous variables, it is also pos-
sible to separate the arousal-valence space into quadrants: low
arousal/positive valence, low arousal/negative valence, high arou-
sal/positive valence and high arousal/negative valence. This is
commonly done for classification problems (Section 3.1).

Both of the above models were originally developed for general
psychology, not necessarily involving physiological measurements.
However, they are not always appropriate in physiological com-
puting. It is not always necessary to identify a large number of pos-
sible basic emotions, and valence is relatively difficult to detect
using ANS responses alone (e.g. Peter and Herbon, 2006). Many
studies thus use simpler, ad hoc models that include only the psy-
chological variable of greatest interest to that particular applica-
tion such as: stress, frustration or mental workload. These are
especially preferable when system adaptation is desired. Since an
adaptation action needs to be defined for each possible psycholog-
ical state, a simpler model with fewer states requires fewer actions
to be defined.

Researchers should be aware that, since the psychological mod-
el affects every part of a study, from the experiment design to the
data analysis, it is practically impossible to change models once
measurements have begun. While it is possible to, for example,
convert basic emotions to arousal-valence quadrants or vice versa
(e.g. Christie and Friedman, 2004), it can be problematic since a
perfect conversion is difficult. For instance, fear and anger both oc-
cupy the same arousal-valence quadrant (high arousal, negative
valence) despite being two very different emotions.

2.2. Training data set

Generally, a training data set is a set of measurements taken in
known conditions. In physiological computing, it refers to a set of
physiological measurements (electrocardiogram, skin conductance
. . .) associated with induced psychological states (fear, anger, bore-
dom, low stress . . .). A supervised data fusion method uses this
data set to learn the associations between psychophysiological
measurements and psychological states since both the inputs and
outputs are known. The learned associations can then be applied
to new measurements where the psychological state is not yet
known.

The majority of data fusion methods in physiological computing
are supervised techniques that are trained in advance and thus re-
quire a prerecorded training data set. Linear sums and fuzzy logic,
described in Sections 3.2.1 and 3.2.2, do not require training data at
all. A few physiological computing techniques (e.g. Liu et al., 2008;
Novak et al., 2011) combine initial training with online supervised
learning, but they are not yet widespread. The training data set is
thus crucial to psychophysiological data fusion and must be prop-
erly constructed. While this is primarily a matter of study design, a
few words should nonetheless be dedicated to it since it is such an
important part of data fusion.

2.2.1. Psychological state induction
Since supervised learning depends on the training data set, the

same psychological states that we wish to identify should also be
represented in the training data set. These states are defined by
the psychological model (Section 2.1) and should be properly in-
duced (elicited) in the subjects so that we can be certain that the
training data set actually contains useful information. Common
induction techniques include actively performing tasks as well as
more passive methods such as remembering past emotional expe-
riences or viewing affective pictures and videos. A good review of
induction techniques was performed by Kreibig (2010).

In laboratory experiments involving induction of psychological
states using videos, pictures or memory recall, it is common to eli-
cit each possible psychological state in each subject (e.g. Christie
and Friedman, 2004; Rainville et al., 2006; Frantzidis et al.,
2010). This can also be done in applied studies by, for example,
exposing the subject to tasks that are obviously boring, stressful
or frustrating (e.g. Scheirer et al., 2002; Wilson and Russell,
2003a). Another possibility in applied studies, however, is to sim-
ply let the subject perform the task and record the subject’s expe-
rience, thus resulting in data sets where not every subject
experiences every psychological state and some subjects experi-
ence the same state multiple times (e.g. Katsis et al., 2008; Woolf
et al., 2009). The first approach is preferable from a theoretical
viewpoint, as it provides a well-structured database with all psy-
chological states equally represented (assuming they have been
successfully elicited), while the second is more easily achievable
in applied settings where some extreme states are rare and difficult
to elicit. The choice thus depends primarily on the goal of the
study.

It is also recommended to use a second method to validate that
the psychological states were successfully induced, as the training
data may otherwise be unreliable. By far the most common meth-
ods for this are self-report techniques (e.g. Christie and Friedman,
2004; Lisetti and Nasoz, 2004; Haarmann et al., 2009). Their great-
est advantage is that they can be administered easily and cheaply.
If a self-report questionnaire has been validated in advance, its
specific strengths and weaknesses are also known. Two examples
of commonly used and well-validated self-report methods in psy-
chophysiology are the Self-Assessment Manikin (Bradley and Lang,
1994) and the NASA-TLX (Hart and Staveland, 1988). However, it is
often not possible to use a standardized questionnaire, so ad hoc
self-report measures are used instead. Researchers should then
be aware that several studies have found that subjects are some-
times unaware of their own emotions, are unable to report them,
or are simply unwilling to report them (e.g. Schwerdtfeger, 2004;
Liu et al., 2008; Koenig et al., 2011). In such cases, alternative mea-
sures should be used to determine what psychological state was
induced. These include other physiological measurements (e.g. fa-
cial electromyography in Kreibig et al., 2007) or, more commonly,
observation of the subject by others (e.g. Schwerdtfeger, 2004;
Healey and Picard, 2005; Katsis et al., 2008; Liu et al., 2008; Koenig
et al., 2011).

2.2.2. Crossvalidation
Since the training data set is recorded in advance, it is common

to test different data fusion methods on it in order to compare their
effectiveness. For psychophysiological studies that do not involve
system adaptation, this is in fact the primary result of the study.
In order to ensure that data fusion is not trained and tested on
the very same data set (which could lead to unreliable results), it
is common to use the technique of crossvalidation. The prere-
corded data set is first divided into multiple parts. One part is des-
ignated as the validation data set and all the others are designated
as the training data set. The rules for data fusion are constructed
using data from the training set and tested on the validation set.
This process is repeated as many times as there are parts, with each
part serving as the validation set exactly once. The most common
approaches to this are tenfold crossvalidation, where the data is di-
vided into ten roughly equally sized parts, and leave-one-out
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crossvalidation, where the training set contains all but one sample
and the validation set contains that remaining sample.

During crossvalidation, however, it is necessary to decide
whether data fusion should be subject-dependent or subject-inde-
pendent. Completely subject-independent data fusion means that
the training data set and the validation data set contain entirely
different subjects. Subject-dependent data fusion means that the
training data and the validation data partially share subjects. An
extreme version of subject-dependent data fusion is within-subject
data fusion, where both the training and validation sets contain
data from only a single subject. Within-subject fusion is obviously
done in studies that involve long-term recordings of a single sub-
ject (e.g. Picard et al., 2001; Leon et al., 2004). It is also often seen
in studies with long-term recordings of a small number of subjects:
the data fusion is handled for each subject independently of the
others (e.g. Wilson and Russell, 2003a; Liu et al., 2008). This is
primarily done to avoid intersubject differences in physiology.
Within-subject data fusion thus often yields higher accuracies than
subject-independent fusion (as shown by, for example, Kim, 2007;
Bailenson et al., 2008; Kim and Andre, 2008), but requires prepara-
tion of an extensive training data set for each subject. Subject-inde-
pendent data fusion, on the other hand, requires a smaller amount
of data from each subject. In practice, within-subject data fusion
would be preferred for applications where few regular users are
expected (e.g. pilot monitoring during flight) while subject-inde-
pendent data fusion would be preferred for applications with a
large amount of casual users (e.g. entertainment technologies).

Direct comparison of subject-dependent and subject-indepen-
dent data fusion is difficult. Any study involving data fusion should
thus report whether the data fusion procedure is completely sub-
ject-independent, partially subject-dependent, or completely with-
in-subject. Though the vast majority of psychophysiological
studies use crossvalidation, they often do not report whether, for
instance, leave-one-out crossvalidation refers to leaving out one
subject or one specific recording from that subject. While this is
not problematic for studies with a large number of subjects (since
the amount of data from that subject in the training data set is
relatively small and thus unlikely to affect accuracy), it can be con-
fusing in studies with less than ten subjects where including data
from the validation subject in the training group can have a notice-
able effect on accuracy.

2.2.3. Sample size
The choice of subject-dependent or subject-independent valida-

tion also affects the number of subjects that need to be included in
the study. In within-subject studies, the number of subjects is
unimportant since data fusion is done for each subject separately;
it is only necessary to ensure that enough data is recorded for each
subject. For this reason, within-subject studies often include a sin-
gle subject (e.g. Picard et al., 2001; Leon et al., 2004) or a small
number of subjects. They are especially preferable when focusing
on a specific, small group of the population with a limited amount
of available subjects (e.g. six autistic children in Liu et al. (2008),
seven air traffic controllers in Wilson and Russell (2003a)).

The majority of subject-independent studies include 20 or more
subjects (e.g. 20 in Setz et al. (2009), 20 in Chanel et al. (2011), 24
in Kapoor et al. (2007), 33 in Setz et al. (2010), 34 in Nasoz et al.
(2010), 41 in Bailenson et al. (2008), 59 in Arroyo-Palacios and
Romano (2010), 75 in Tognetti et al. (2010)). Smaller numbers
are again possible in applied studies where the amount of available
subjects is low (e.g. 11 patients undergoing motor rehabilitation in
Novak et al. (2011)). However, in such cases, multiple recordings
from each subject are generally required. Dimension reduction is
also useful with small sample sizes, as the performance of a super-
vised data fusion method is strongly dependent on both sample
size and the number of input features (Hua et al., 2005).
2.3. Feature extraction

In psychophysiology, feature extraction refers to extracting a
number of psychophysiologically relevant features from raw phys-
iological signals. The electrocardiogram, for example, is a raw
physiological signal from which a number of features such as mean
heart rate or various measures of heart rate variability can be ex-
tracted. The complexity of feature extraction depends on the raw
signals involved. Extraction of features from skin temperature,
for example, is a relatively simple process that generally only in-
volves the mean, standard deviation and mean absolute derivative
over a certain time period, while extraction of heart rate variability
from the electrocardiogram involves careful filtering, peak detec-
tion, interpolation and power spectral density calculation (Task
Force of the European Society of Cardiology and the North Ameri-
can Society of Pacing and Electrophysiology, 1996).

The final result of feature extraction is a vector of multiple psy-
chophysiological features calculated from different raw signals
over a certain time period. In subsequent sections, this vector will
be simply referred to as a ‘feature vector’. A matrix consisting of
multiple feature vectors from different subjects or different time
periods will be referred to as a ‘data set’. By far the majority of data
fusion and system adaptation schemes in physiological computing
are static: they are trained in advance and then use a single feature
vector as input without online learning. Dynamic data fusion
methods, which learn online or take the history of signals and fea-
tures into account, exist in physiological computing, but are rare
(e.g. Hidden Markov Models, mentioned in Section 3.1.7, and rein-
forcement learning, mentioned in Section 4.2).

Though there is no total agreement as to which features should
be extracted from each physiological signal, some features have
become fairly common. The mean and standard values of a signal
over a certain time period, for instance, are commonly accepted
psychophysiological features. Minimum and maximum values as
well as mean absolute derivatives over a time period are also fre-
quently seen. Additionally, certain signals have signal-specific fea-
tures. For instance, heart rate is generally characterized by a
number of time- and frequency-domain features of heart rate var-
iability that have been defined by the Task Force of the European
Society of Cardiology and the North American Society of Pacing
and Electrophysiology (1996). Skin conductance, on the other
hand, is often characterized by the amplitude and frequency of skin
conductance responses (also called electrodermal reactions), tran-
sient increases in skin conductance that can occur in response to
discrete psychological stimuli, but also occur spontaneously with
no external trigger. A few examples of studies involving skin con-
ductance responses in data fusion are works by Katsis et al. (2008),
Kim and Andre (2008), and Frantzidis et al. (2010). It is also possi-
ble for features to be calculated using multiple raw signals. Pulse
transit time, for instance, is defined as the time needed for the
pulse pressure waveform to propagate through a length of the arte-
rial tree, and is usually calculated using the electrocardiogram and
the plethysmogram as the time between peaks in the two signals
(as done by, for example, Liu et al. (2009)).

Due to the many different ANS responses that can be recorded,
not all possible psychophysiological features are listed here. How-
ever, excellent lists of these features are available in Kreibig et al.
(2007) and Kreibig (2010). Similarly, computational methods for
the calculation of signal features are not described here, but are
available in works such as Kim et al. (2004) (electrocardiography,
skin conductance and skin temperature), Rani et al. (2004) (elec-
trocardiography, skin conductance and electromyography) and
Cacioppo et al. (2000) (general). All features can be calculated on-
line over a sliding window, though some require larger windows.
For instance, due to theoretical limitations, some features of heart
rate variability cannot be calculated over a window shorter than
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two minutes (Task Force of the European Society of Cardiology and
the North American Society of Pacing and Electrophysiology,
1996).

A note: in other pattern recognition contexts, feature extraction
often also includes dimension reduction methods such as principal
component analysis. In this paper, dimension reduction methods
are covered in Section 2.5.

2.4. Normalization

Psychophysiological features exhibit high intra- and intersub-
ject variability as a result of age, gender, time of day and other fac-
tors. Normalization is primarily an attempt to reduce the effect of
this variability prior to data fusion. For instance, if a training data
set contains measurements from several subjects, some subjects
may exhibit much larger responses than others or have different
resting values for psychophysiological features (resting heart rate,
for instance, can easily be anywhere between 60 and 80 beats per
minute). This needs to be taken into account prior to data fusion.
Furthermore, since different features are measured in different
units, some features have much larger numerical ranges than oth-
ers, which can be problematic for some data fusion methods (such
as nearest-neighbor classification, described in Section 3.1.1). Nor-
malization also attempts to reduce this effect. Three normalization
approaches are commonly used, though it should be noted that not
all psychophysiological studies use normalization and that not all
studies report whether or not it was used.

The first approach is to record psychophysiological responses in
a neutral or ‘baseline’ conditions where the subject is not exposed
to stimuli or is only exposed to basic, relaxing stimuli. Psychophys-
iological features from other conditions (where the subject is per-
forming a task or exposed to affective stimuli) are then normalized
by either subtracting the baseline value (e.g. Christie and Fried-
man, 2004; Kim et al., 2004; Stephens et al., 2010), dividing by
the baseline value (e.g. Zhai and Barreto, 2006; Arroyo-Palacios
and Romano, 2010), subtracting the baseline value and dividing
the result by the baseline value (e.g. Nasoz et al., 2004; Lisetti
and Nasoz, 2004; Mohammad and Nishida, 2010), or a combination
of these, with different options used for different features (e.g. No-
vak et al., 2010; Setz et al., 2010). Subtraction of the baseline value
is aimed at reducing intersubject variability due to different base-
line values while division is also partially aimed at reducing vari-
ability due to different response sizes. This approach can easily
be used online, though it does require a baseline condition to be re-
corded first.

The second approach also begins by recording psychophysiolog-
ical responses in a baseline condition. However, instead of sub-
tracting or dividing the data from the ‘task’ or ‘affective’
conditions with the baseline data, the baseline features are added
to the feature space as independent features: thus doubling the
dimension of the feature space. This approach (called the ‘baseline
matrix’) was used by, for example, Picard et al. (2001) and van den
Broek et al. (2010). Like the previous approach, it can be easily
done online, though it requires a baseline condition to be recorded
first.

The third approach includes no baseline recordings, but simply
involves normalizing the data from each subject separately or
across all subjects to a certain range (e.g. from 0 to 1 or from
�1 to 1). This is done for each feature separately by, for instance,
subtracting the mean value of all feature vectors and dividing the
result by the standard deviation of all feature vectors. If done for
each subject separately, the goal is generally to reduce intersubject
variability by scaling each person’s features to a difference be-
tween their maximum and minimum value. If done across all sub-
jects, the goal is simply to ensure that each psychophysiological
feature has the same numerical range. This approach was used
by, for example, Haag et al. (2004), Mandryk and Atkins (2007), Ku-
lić and Croft (2007), Yannakakis et al. (2008) and Sakr et al. (2010).
In online data fusion, normalizing features without a baseline
recording can be done by calculating the maximum and minimum
value of each feature across the entire training data set, then scal-
ing features online between that maximum and minimum value.

The degree to which normalization improves data fusion is cur-
rently uncertain. Though improved correlations with self-report
questionnaires and better discrimination between emotions as a
result of normalization were established decades ago (e.g. Lykken
et al., 1966; Ben-Shakhar, 1985), the exact effects of normalization
are difficult to gauge. Some types of normalization (e.g. normaliz-
ing the data across all subjects to a certain range) are simple
numerical rescaling and should thus have no effect on data fusion
except in the case of algorithms such as k-nearest neighbors, which
require normalization. However, normalization where the baseline
values are subtracted from the values of the ‘task’ conditions is
more than simple rescaling. Since each subject has a different base-
line value, data from different subjects are scaled differently, thus
‘warping’ the dataset in a way.

While numerous studies have found improvements due to nor-
malization, some have found certain normalization methods to be
more effective and some have reported best results without any
normalization. For instance, van den Broek et al. (2010) reported
only a minimal improvement when using the baseline matrix ap-
proach, though the same study did find substantial improvement
when normalizing by subtracting and dividing the baseline. Setz
et al. (2010) compared data fusion with nonnormalized and nor-
malized features (dividing by the baseline) and found better per-
formance with nonnormalized features, though their application
is fairly nonstandard (discriminating stress and cognitive load)
and thus the results may not apply to the general case. Since nor-
malization is only one step of the whole interpretation process, it is
difficult to gauge its overall effect. A study that would analyze sev-
eral different data sets and explore the effects of normalization
when used with different other methods would be a useful way
to clear up this uncertainty.

2.5. Dimension reduction

When multiple physiological responses are measured, it is possi-
ble that a very large number (20+) of features will be extracted from
them. In data fusion, this can lead to the ‘curse of dimensionality’. As
the number of features (dimensionality) increases, the feature space
grows in volume so quickly that it becomes difficult to find patterns
and similarities in data. For machine learning techniques such as
classifiers and estimators, the size of the required training data set
can thus grow exponentially with the number of features. If the
training data set is too small, overfitting can occur – data fusion
rules trained on a small data set may not generalize well to new
data. It can thus be beneficial to reduce the number of features prior
to data fusion. Some data fusion methods already incorporate
dimension reduction (e.g. classification tree pruning, random for-
ests – Section 3.1.5), but several general dimension reduction tech-
niques also exist. Two excellent introductory texts on dimension
reduction are Guyon and Elisseeff (2003) as well as Liu and Motoda
(2007). They are recommended for readers who are unfamiliar with
the principles of dimension reduction and would like to learn about
them in a broader context.

Dimension reduction can also help decrease the cost and com-
plexity of a physiological computing application. If we know that
some physiological signals do not provide any useful information,
we can remove the sensors and feature extraction algorithms from
the system entirely. One way to do this is as follows. First, record a
training data set in different conditions with all potentially useful
signals, and extract all potentially relevant features. Then, use
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dimension reduction to identify the most relevant features. If one
of the measured physiological signals has no relevant features
associated with it, it can be omitted in the future.

The techniques specifically used in psychophysiology can be
roughly divided into three types: selection of individual features
that ignores correlations between different features (Section
2.5.1), projection of the feature space onto a lower-dimensional
space (Section 2.5.2) and selection of individual features that takes
correlations between different features into account (Section
2.5.3). While the first and third type are mutually exclusive (with
the third type having been found superior to the first as described
in Section 2.5.3), the second can be used together with either of the
other two (as described in Section 2.5.3). Other dimension reduc-
tion techniques that have seen only limited use in psychophysiol-
ogy are mentioned in Section 2.5.4. All dimension reduction
techniques depend on a training set and can be used both offline
and online. For online use, either the best features are selected in
advance or the projection of the feature space is calculated in ad-
vance. Online data fusion then either only uses the selected fea-
tures or transforms the features online using the precalculated
projection rule.

2.5.1. Feature ranking
A simple way to select the most appropriate features for data

fusion is to rank the features according to a criterion of how much
information each individual feature provides. Then, the best
features (either a preselected number of features or all those
who exceed a certain predefined threshold) are selected for data
fusion. In psychophysiology, the most common way to rank indi-
vidual features has been through analyses of variance, correlations
and chi-square tests: statistical methods that find differences
between different conditions (e.g. between ‘sad’ and ‘angry’ emo-
tions) or connections between different variables (e.g. between
arousal and heart rate). Only features that show statistically signif-
icant differences between conditions or significant connections
between different variables can then be used in data fusion.

Analysis of variance (ANOVA) was used for feature selection by
Wagner et al. (2005), where psychophysiological features were
ranked according to their p-value and a preselected number of
most significant features were selected. Analysis of variance was
also used by van den Broek et al. (2010), where features with a
p-value below 0.001 were selected, and by Chanel et al. (2011),
where features with a p-value below 0.1 were selected. The chi-
square test was used for feature selection by Pour et al. (2010),
where the ten most significant features were chosen. Correlations
with self-reported psychological variables were used for feature
selection by Rani et al. (2007) and Liu et al. (2009), where only
physiological features that had an absolute correlation coefficient
of at least 0.3 were chosen. Correlations were also used to identify
the most relevant physiological features by Bailenson et al. (2008),
though this information was not later used in data fusion.

The weakness of this approach is that it ignores correlations be-
tween different physiological features. For example, if two features
correlate highly with self-reported arousal, they may also correlate
highly with each other. In this case, it may make sense to only in-
clude one of the two features in data fusion since the other one
would not provide enough additional information to justify its
inclusion.

2.5.2. Principal component analysis and Fisher’s projection
Principal component analysis (PCA) is a method that transforms

a large number of features into a smaller number of uncorrelated
features (called principal components) that explain as much of
the variability in the data as possible. Since it ensures that the prin-
cipal components are uncorrelated with each other, PCA has an
advantage over methods from the previous section which ignore
correlations between different features. It has been used for
dimension reduction in several psychophysiological studies,
including Wagner et al. (2005), Rainville et al. (2006), Rigas et al.
(2007), and van den Broek et al. (2010). However, it does have
one important weakness: while the principal components explain
as much of the variability in the data as possible, there is no guar-
antee that they are better-correlated with psychological states
than the original features. If we have a training data set where each
feature vector is labeled with a specific class (e.g. anger, fear. . .), it
would be useful to take the labels into account during feature
selection in order to ensure that the selected features discriminate
between different classes. PCA, however, ignores any data labels.

The above weakness of PCA is addressed by Fisher’s projection,
which can be thought of as a supervised alternative to PCA. While
PCA projects the original features onto a lower-dimensional space
in such a way as to explain as much of the variability in the data as
possible, Fisher’s projection projects the original features onto a
lower-dimensional space where between-class scatter is maxi-
mized and within-class scatter is minimized. In other words, it pro-
jects the original data into a lower-dimensional space where
different classes (e.g. anger, fear. . .) are easier to linearly separate.
Fisher’s projection is essentially a version of linear discriminant
analysis (Section 3.1.3), except used for dimension reduction rather
than classification. It has been used by Picard et al. (2001), Healey
and Picard (2005), Bonarini et al. (2008), and Gu et al. (2010). One
weakness of Fisher’s projection should be noted, however: since it
transforms the original feature space into a space where different
classes are linearly separable, it is less suitable for use with nonlin-
ear data fusion techniques such as some variants of support vector
machines and neural networks.

2.5.3. Sequential feature selection
Unlike PCA and Fisher’s projection, which linearly transform the

feature space, sequential feature selection methods (also known as
stepwise methods) are methods that sequentially select individual
features from the feature space. Unlike the approaches presented
in Section 2.5.1, however, sequential feature selection methods
do not ignore connections between different features.

Perhaps the most common sequential feature selection method
is sequential forward selection, which works as follows. In the first
step of the sequence, no features are included in the selection. The
method evaluates all features to determine which one best discrim-
inates between classes in the training data set (using criteria such as
the F-value of each feature). That feature is included in the selection.
In the next steps, all remaining features are evaluated to determine
which one best discriminates between classes after the contribu-
tions of all previously selected features have already been taken into
account. This process continues until no remaining feature contrib-
utes enough additional information to warrant its inclusion (for
instance, the F-value of all remaining features is lower than a certain
value). Sequential forward selection has been used in several psy-
chophysiological studies, including Alpers et al. (2005), Wagner
et al. (2005), Yannakakis et al. (2008), Yannakakis and Hallam
(2008), Tognetti et al. (2010), Kolodyazhniy et al. (2011) and Wu
et al. (2011). It has been shown to outperform feature ranking
(Section 2.5.1) in Yannakakis and Hallam (2008), Yannakakis et al.
(2008), and Yannakakis et al. (2010).

A very similar method to sequential forward selection is
sequential backward selection. The difference is that, while for-
ward selection begins with no features in the selection and sequen-
tially adds features, backward selection begins with all features in
the selection and sequentially removes features according to which
one contributes the least to discrimination between classes. The
process continues until the contribution of all remaining features
exceeds a given threshold (for instance, the F-value of all remain-
ing features is higher than a certain value). Sequential backward
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selection has been used in Kim (2007), Kim and Andre (2008), Gia-
koumis et al. (2011) and Kolodyazhniy et al. (2011). Kim and Andre
(2008) reported that sequential backward selection outperformed
sequential forward selection, though quantitative results were
not reported for forward selection.

A combination of the above two methods is sequential floating
forward selection, sometimes called sequential forward–backward
selection. Starting with no features included in the selection, it
sequentially adds features like sequential forward selection, but
at each step it also evaluates whether any of currently included
features can be removed. The most common criteria for inclusion
or exclusion are F-value thresholds: a higher one for inclusion
and a lower one for exclusion. Sequential floating forward selection
has been used in several psychophysiological studies, including Pi-
card et al. (2001), Gu et al. (2010), Chanel et al. (2011) as well as
Wilson and Russell (2003a), where it is used in conjunction with
discriminant analysis (Section 3.1.3) and thus called stepwise dis-
criminant analysis.

It should finally be noted that Fisher’s projection and sequential
feature selection are not mutually exclusive. Instead of providing
Fisher’s projection with all possible features, it is possible to first
select a subset of features using sequential feature selection and
use Fisher’s projection on this subset. This was first done by Picard
et al. (2001), where the combination of the two approaches outper-
formed both of the two approaches used individually. Wagner et al.
(2005) also found improved performance when using both
approaches, though not for all classification methods. Finally, a
combination of the two approaches was used by Gu et al. (2010),
though it was not compared with using either approach individu-
ally. In principle, principal component analysis could also be used
with sequential feature selection, and both Fisher’s projection and
principal component analysis could be used with selection of
individually best features (Section 2.5.1). However, this has not
been done in psychophysiology and there is no strong rationale
for it since sequential feature selection has been shown to outper-
form feature ranking and since Fisher’s projection takes class labels
into account while principal component analysis does not.
2.5.4. Other
The aforementioned dimension reduction methods are of

course not the only ones; they are simply the most prevalent in
psychophysiology. Other methods include, for instance, Davies–
Bouldin clustering (Leon et al., 2004; Leon et al., 2007), the Simba
algorithm (Rigas et al., 2007) and genetic algorithms (Tognetti
et al., 2010). However, these methods have not yet seen much
use in psychophysiology, and additional studies will be required
before their suitability for use in physiological computing can be
properly assessed. Furthermore, a number of dimension reduction
methods have not yet been evaluated with ANS responses in psy-
chophysiology and should also be considered in future studies.
Most are well-summarized by Guyen and Elisseeff (2003).
3. Data fusion

This section describes several possible methods for psychophys-
iological data fusion: a process which takes a physiological feature
vector (consisting of several features extracted from multiple phys-
iological signals) as input and assigns a psychological label to it.
This psychological label can be categorical, in which case the fea-
ture vector is assigned to one of possible classes (e.g. ‘angry’,
‘sad’, ‘low stress’, ‘high stress’) and the process is called classifica-
tion. Alternatively, the label can be a continuous value (e.g. an
arousal of 9.2 on a scale between 0 and 10), in which case the pro-
cess is called estimation. Classification and estimation are thus
alternatives to each other, and externally differ mainly in whether
the output is categorical or continuous. Since different methods are
generally used for the two approaches, they are described in
different sections. They are not, however, equally popular; in phys-
iological computing, classification has been used far more than
estimation.

Section 3.1 describes different classification methods while
Section 3.2 describes different estimation methods. A comparison
is then made in Section 3.3. All of these methods can be used
both offline and online (real-time), though some are more com-
putationally intensive and thus perhaps less suitable for online
use (as discussed in Section 3.3.3). For each specific method, a
brief description is provided followed by examples of use with
ANS responses in psychophysiology and physiological computing.
The goal is not to teach details about machine learning to the
audience; rather, we provide a brief description so that readers
unfamiliar with the concept of a particular method can obtain
some initial information while readers already familiar with the
method can use the examples to gauge its performance in specific
psychophysiological applications. Those wishing more detailed
descriptions of each method should refer to one of many available
graduate-level pattern recognition textbooks such as the one by
Bishop (2006).
3.1. Classification

There are many examples of classification in psychophysiology
and physiological computing. However, their effectiveness is
almost always gauged by their accuracy. Thus, each of the major
methods described in this section has a corresponding table listing
examples of the method’s use. These tables have the following
fields: the reference in which the study was published, the classi-
fication goal, the number of classes, the number of subjects,
whether classification is subject-dependent or subject-indepen-
dent, the accuracy rate (the percentage of feature vectors assigned
to the correct class) and any measurements used in classification
other than those of the ANS (e.g. electroencephalography – EEG,
electromyography – EMG, electrooculography – EOG). However, a
few other things should be noted regarding the tables:

– Direct comparison of accuracy rates between studies is diffi-
cult since accuracy depends on many factors, including the
type of extracted features, normalization method and
dimension reduction method.

– If multiple classification problems are performed in a study
(e.g. different emotions classified separately), the results
are averaged to obtain the overall accuracy if possible. If
accurate averaging is not possible, an accuracy range is
given.

– ’Levels of basic emotions’ means that the emotion type is
already known and the classification problem is only to
determine the level of that emotion, even if multiple emo-
tions are involved in the study.

– If multiple normalization or dimension reduction methods
are used, the accuracy stated in the table is for the most
accurate normalization or dimension reduction method.

– If a study is listed as subject-dependent, this does not neces-
sarily mean that only data from a particular subject was used
to classify that subject. It only means that the training data
set included some measurements from the subject on which
validation was performed (in extreme cases, the training
data set can consist of 20 or more subjects in addition to
the subject on whom validation was performed).

– If measurements other than those of the ANS are also used,
the accuracy is specified for classification of all measure-
ments unless otherwise stated.
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3.1.1. Nearest neighbors

The k-nearest neighbor (kNN) algorithm is one of the simplest

classification algorithms. When a new feature vector needs to be
classified, the algorithm computes the (usually Euclidean or Maha-
lanobis) distance to each feature vector in the training data set. The
training vectors are then ranked according to their distance to the
new sample, and the k (where k P 1) nearest training vectors
(neighbors) are used to classify the new feature vector using a
majority vote: the sample is assigned to the class that is most com-
mon among the k nearest neighbors. The simplest version of this is
the 1-nearest neighbor rule, where a new sample is assigned to the
same class as the nearest vector in the training data set. Before cal-
culating distances, it is usually necessary to scale the different data
features (e.g. normalizing each feature to [0,1]) so that all features
contribute equally to the distance calculation. Dimension reduc-
tion is also usually necessary, since the algorithm otherwise
weighs all features equally even though some may not be relevant.

The k-nearest neighbor algorithm’s simplicity is most likely the
reason it has become popular in psychophysiology. Table 1 shows
the studies that have used it.

An algorithm extremely similar to the k-nearest neighbors algo-
rithm is the nearest class center. It differs in that, instead of dis-
tances being calculated for all feature vectors, each class is
represented by the center of the feature vectors for that class
(e.g. the mean and covariance of the data). A new feature vector
is then simply assigned to the class with the nearest center, which
is less computationally intensive than computing distances to
every training vector. This approach was used by Frantzidis et al.
(2010) and Setz et al. (2010).

3.1.2. Naïve Bayes classifier and Bayesian networks
A Bayesian network is, in essence, a probabilistic model of ran-

dom variables and their conditional dependencies. Its simplest
possible form is the naïve Bayes classifier, which assumes that all
variables are independent of each other. Given the training data,
it creates a probability model which estimates the probability that
a feature vector belongs to a certain class. It then uses a decision
rule to assign a class to the feature vector based on the probability
model. Perhaps the most common rule is the ‘maximum a posteri-
ori’ rule, which classifies the vector as coming from the class with
the highest posterior probability.

Like the k-nearest neighbor algorithm, the naïve Bayes classifier
has proven surprisingly effective despite its simplicity (e.g. Hand
and Yu, 2001). One important advantage is that, by assuming inde-
pendence between features, it requires a smaller training data set
than other, more complex methods. Since the sample size in phys-
iological computing is often limited, the naïve Bayes classifier
Table 1
Psychophysiological studies that use the k-nearest neighbors algorithm. N = number of su

Study Classification of C

Picard et al. (2001) Basic emotions 8
Lisetti et al. (2003) Basic emotions 5
Nasoz et al. (2004) and Lisetti and Nasoz (2004) Basic emotions 6
Wagner et al. (2005) Basic emotions 4
Rigas et al. (2007) Basic emotions 3
Nasoz et al. (2010) Basic emotions 4
Kolodyazhniy et al. (2011) Basic emotions 3
Rani et al. (2006) Levels of 5 basic emotions 3
Shen et al. (2009) Arousal-valence 4
Gu et al. (2010) Arousal-valence 4
van den Broek et al. (2010) Arousal-valence 4
Bonarini et al. (2008) Stress level 5
Liu et al. (2009) Anxiety level 3
Kapoor et al. (2007) Frustration level 2
Tognetti et al. (2010) Enjoyment level 3
Levillain et al. (2010) Amusement level 2
could be an attractive option. However, several psychophysiologi-
cal studies have also used more complex Bayesian networks, which
do not assume that features are independent of each other. Exam-
ples of both the naïve classifier and more complex networks are gi-
ven in Table 2.

3.1.3. Discriminant analysis
Discriminant analysis is a well-known classification method

which finds a linear (linear discriminant analysis – LDA, also
known as Fisher’s linear discriminant) or quadratic (quadratic dis-
criminant analysis – QDA) combination of input features which
best separate feature vectors into two or more classes. This combi-
nation of input features is essentially a hyperplane in n-dimen-
sional space (where n is the number of input features) that
separates feature vectors of different classes. For a two-class prob-
lem, a linear discriminant function thus takes the form

DðxÞ ¼ wxþ b ð1Þ

where D(x) is the discriminant function, x is the vector of input fea-
tures, w are the weights of the function and b is the intercept. x is
then assigned to one class if D(x) is positive and to the other class
if D(x) is negative. Both w and n are computed from training data.

Since each input feature has its own weight assigned to it, it is
easy to determine how important it is to discrimination between
classes. Though originally used for two-class problems, discrimi-
nant analysis can also be extended to multiclass situations. Its
greatest limitation is that it only allows linear or quadratic rela-
tions between input and output; if strongly nonlinear relations
are expected in the data, other methods may be preferable.

Because it is easy to use and transparently shows the contribu-
tion of each feature to discrimination between classes, discrimi-
nant analysis has been a popular data fusion method in
psychophysiology. Recently, advanced extended versions of LDA
have also been used, among them pseudoinverse LDA, which
avoids singularity problems that can appear in classical LDA (Kim
and Andre, 2008), and Kalman adaptive LDA, which can adjust
the weights w online and thus gradually adapt to a particular sub-
ject (Novak et al., 2011; Koenig et al., 2011). Examples of all these
are shown in Table 3.

3.1.4. Support vector machines
Similarly to discriminant analysis, support vector machines

(SVMs) are a method of generating hyperplanes in n-dimensional
space (where n is the number of input features) that separate fea-
ture vectors of different classes. The principal difference between
the two is the criterion used to calculate these hyperplanes. While
LDA maximizes a discriminative projection, SVMs are a maximum
bjects, I = subject-independent classification, D = subject-dependent classification.

lasses N Indep. Accuracy (%) Other meas.

1 D 65 EMG
10 ? 70–90 None
29 ? 72 None

1 D 90.9 EMG
9 ? 62.7 EMG

34 I 64.9 None
34 D, I 79.4 (D), 75.0 (I) EMG

Per emotion 15 ? 75.2 EMG
1 D 60.3 ANS, 75.2 ANS + EEG EEG

28 D, I 90.7 (D), 50.3 (I) EMG
21 ? 61.3 EMG

6 D 88.1 EMG
15 ? 80.4 EMG
24 I 66.7 Many
75 I 57.0 None
25 ? 76.9 None



Table 2
Psychophysiological studies that use the naïve Bayes classifier or a more complex Bayesian network.

Study Classification of Classes N Indep. Accuracy (%) Other meas.

Picard et al. (2001)a Basic emotions 8 1 D 81.3 EMG
Calvo et al. (2009)a Basic emotions 8 3 D 66.3 (1 session), 43.6 (all sessions) EMG
Müller (2006)a Arousal-valence 4 1 D 86 EMG
Zhai and Barreto (2006)a Stress level 2 32 ? 78.7 Eyes
Rigas et al. (2011)a Stress and fatigue levels 2 Stress, 3 fatigue 1 D 66 stress (ANS), 74 fatigue (ANS) Video
Calvo et al. (2009)b Basic emotions 8 3 D 81.3 (1 session), 64.3 (all sessions) EMG
Rani et al. (2006)b Levels of 5 basic emotions 3 Per emotion 15 ? 74.0 EMG
Conati (2002)b Arousal-valence Theoretical 0 N/A N/A N/A
Liu et al. (2009)b Anxiety level 3 15 ? 80.6 EMG
Kapoor et al. (2007)b Frustration level 2 24 I 79.2 Many

N = number of subjects, I = subject-independent classification, D = subject-dependent classification.
a Naïve Bayes classifier.
b Bayesian network.

Table 3
Psychophysiological studies that use discriminant analysis.

Study Classification of Classes N Indep. Accuracy (%) Other meas.

Lisetti et al. (2003)L Basic emotions 5 10 ? 70–90 None
Nasoz et al. (2004)
Lisetti and Nasoz (2004)L Basic emotions 6 29 ? 75 None
Christie and Friedman (2004)L Basic emotions 7 34 ? 37.4 None
Wagner et al. (2005) L Basic emotions 4 1 D 92.1 EMG
Rainville et al. (2006) L Basic emotions 4 43 ? 49.0 None
Kreibig et al. (2007) L Basic emotions 3 28 ? 69.0 None
Setz et al. (2009) L Basic emotions 4 or 5 20 I 58.8 for 4, 47 for 5 classes EMG, EOG
Kolodyazhniy et al. (2011) L Basic emotions 3 34 D, I 77.0 (D), 73.5 (I) EMG
Kim (2007) L Arousal-valence 4 3 D, I 71 (ANS, D), 51 (ANS, I), 79 (all, D), 54 (all, I) Speech
Chanel et al. (2009) L Arousal-valence 3 10 D 51 (ANS) EEG
Wilson and Russell (2003a) L Workload level 2 8 D 95 EEG, EOG
Healey and Picard (2005) L Stress level 3 9 D 97.4 EMG
Chanel et al. (2011) L Difficulty level 3 20 I 58 (ANS) EEG
Giakoumis et al. (2011) L Boredom level 2 19 D, I 94.7 (D), 89.4 (I) None
Setz et al. (2010) L Stress or cognitive load 2 33 I 82.8% None
Alpers et al. (2005) L Phobic and non-phobic subj. 2 38 ? 95% None
Blechert et al. (2006) L Anxious and non-anxious subj. 2 42 ? 83.3% Movement
Chanel et al. (2009)Q Arousal-valence 3 10 D 45 (ANS) EEG
Setz et al. (2009)Q Basic emotions 4 or 5 20 I 56 (4-class) 49 (5-class) EMG, EOG
Kolodyazhniy et al. (2011)Q Basic emotions 3 34 D, I 74.5 (D), 66.2 (I) EMG
Chanel et al. (2011)Q Difficulty level 3 20 I 59 (ANS) EEG
Kim and Andre (2008)P Arousal-valence 4 3 D, I 95 (D), 70 (I) EMG
Novak et al. (2011)K Difficulty level 2 24 I 76.4 (ANS), 84.7 (all) Many
Koenig et al. (2011)K Workload level 4 9 I 38 (ANS), 85 (all) Many

N = number of subjects, I = subject-independent classification, D = subject-dependent classification. L = LDA, Q = quadratic discriminant analysis, P = pseudoinverse LDA,
K = Kalman adaptive LDA.
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margin classifier: it creates the hyperplane so that the distance
(margin) between the hyperplane and the closest feature vectors
on each side is maximized.

Basic SVMs thus have similar advantages and disadvantages as
discriminant analysis. They are transparent and it is easy to deter-
mine the contribution of each input feature; but on the other hand,
they are a linear classifier. To avoid the limitation of linearity,
SVMs are commonly expanded using so-called kernels. A good
explanation of kernels is provided by Schölkopf and Smola
(2001), but in essence the training data is transformed into a high-
er-dimensional space and a hyperplane is generated in this space.
While the hyperplane is linear in the new transformed space, it
may be nonlinear in the original feature space, resulting in a non-
linear classifier.

The good performance and nonlinearity of SVMs has led to their
frequent use in psychophysiology and physiological computing.
Table 4 shows examples of their use.

3.1.5. Classification trees
Classification trees assign a class to a feature vector by pro-

gressing through several branching IF–THEN logical rules. This
branching structure is the reason why they are called trees. An
example of a psychophysiological classification tree would be ‘‘If
skin conductance response frequency is below five per minute,
the subject is bored. Otherwise, if skin temperature is below
33 �C, the subject is frustrated. Otherwise, the subject is enter-
tained.’’ While not an accurate set of rules, this serves as a simple
illustration of a classification tree. The rules are not defined manu-
ally; several different algorithms exist to learn the rules from train-
ing data. At each new node of the tree, these algorithms select the
feature that best discriminates between classes after all the previ-
ous decisions made in the tree have been taken into account. Fea-
tures are selected using criteria such as information gain.

Classification trees offer a very transparent way of classifying
physiological data. The decision process can be easily followed by
researchers and can be visualized graphically, making the trees a
very ‘white-box’ approach. The tree building process acts as a form
of dimension reduction, and many tree-building algorithms also
incorporate tree pruning, which prevents the tree from becoming
too complex and overfitting the data.

Table 5 shows examples of classification trees in psychophysiol-
ogy and physiological computing. It also includes advanced



Table 4
Psychophysiological studies that use support vector machines.

Study Classification of Classes N Indep. Accuracy (%) Other
meas.

Kim et al. (2004) Basic emotions 3 or 4 50 ? 78.4 (3-class), 61.8 (4-class) None
Katsis et al. (2006) Basic emotions 5 4 D 86 EMG
Katsis et al. (2008) Basic emotions 4 10 ? 79.3 EMG
Pastor-Sanz et al. (2008) Basic emotions 6 24 ? 63–83 EMG
Calvo et al. (2009) Basic emotions 8 3 D 95.8 (1 session), 85.7 (all sessions) EMG
Pour et al. (2010) Basic emotions 2 16 D, I 42–84 (D), 52.6 (I) EMG
Rani et al. (2006) Levels of 5 basic

emotions
3 Per emotion 15 ? 85.8 EMG

Bailenson et al. (2008) Levels of 2 basic
emotions

2 Per emotion 41 D, I 80–95 (ANS, D), 30–90 (ANS, I), 94–99 (all, D), 50–95 (all,
I)

Face

Liu et al. (2008) Levels of 3 basic
emotions

2 Per emotion 6 D 80–85 EMG

Müller (2006) Arousal-valence 4 1 D 82 EMG
Chanel et al. (2009) Arousal-valence 3 10 D 49 (ANS) EEG
Shen et al. (2009) Arousal-valence 4 1 D 68.1 ANS, 86.3 all EEG
van den Broek et al. (2010) Arousal-valence 4 21 ? 60.7 EMG
Zhai and Barreto (2006) Stress level 2 32 ? 90.1% Eyes
Kapoor et al. (2007) Frustration level 2 24 I 70.8 Many
Liu et al. (2009) Anxiety level 3 15 ? 88.9 EMG
Chanel et al. (2011) Difficulty level 3 20 I 56 (ANS) EEG
Plarre et al. (2011) Stress level 2 21 ? 89.2 None
Rigas et al. (2011) Stress and fatigue levels 2 Stress, 3

fatigue
1 D 78 stress (ANS), 85 fatigue (ANS) Video

Sakr et al. (2010) Agitation level 2 58 I 91.4 None
Wu et al. (2011) Arousal level 3 18 D, I 96.5 (D), 36.9 (I) EEG
Mohammad and Nishida

(2010)
Behavior naturalness 2 44 ? 81 None

Setz et al. (2010) Stress or cognitive load 2 33 I 81 None

N = number of subjects, I = subject-independent classification, D = subject-dependent classification.
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variants of classification trees. Fuzzy trees (Levillain et al., 2010)
combine the hierarchical structure of classification trees with fuzzy
logic (described in Section 3.2.2). Ensemble methods such as ran-
dom forests (Rigas et al., 2007) and boosted decision trees (Bailen-
son et al., 2008; Plarre et al., 2011) produce sets of many trees
whose outputs are combined to produce the final classification.

3.1.6. Artificial neural networks
Inspired by biological systems, artificial neural networks

(ANNs) consist of a large number of simple, interconnected compo-
nents (‘neurons’) operating in parallel. Each neuron receives a
number of inputs and uses them to calculate the ‘activation’ of
the neuron. Perhaps the simplest way to calculate this activation
Table 5
Psychophysiological studies that use classification trees.

Study Classification of Classes N

Rigas et al. (2007) Basic emotions 3 9
Calvo et al. (2009) Basic emotions 8 3
Rani et al. (2006) Levels of 5 basic

emotions
3 Per emotion 15

Bailenson et al. (2008)b Levels of 2 basic
emotions

2 Per emotion 41

Müller (2006) Arousal-valence 4 1
Zhai and Barreto (2006) Stress level 2 32
Rani et al. (2007) Anxiety level 3 4
Liu et al. (2009) Anxiety level 3 15
Levillain et al. (2010)a Amusement level 2 25
Plarre et al. (2011)b Stress level 2 21
Rigas et al. (2011)b Stress and fatigue levels 2 Stress, 3

fatigue
1

Mohammad and Nishida
(2010)

Behavior naturalness 2 44

N = number of subjects, I = subject-independent classification, D = subject-dependent cla
a Fuzzy trees.
b Random forests or boosted trees.
is to calculate a weighted sum of the inputs, then set the output
as 1 if the weighted sum exceeds a certain threshold and 0 if the
weighted sum does not exceed the threshold. This output is then
fed to the next layer of neurons and so on until the final output
is determined. Such a layered network with weighted sums and
threshold is called a multilayer perceptron. Multilayer perceptrons
can model functions of very high complexity if enough layers and
neurons are used. However, other types of ANNs that incorporate
more complex elements also exist (e.g. radial basis function
networks). Complexity can be especially increased by allowing
outputs of one layer of neurons to be used as inputs to both
preceding and succeeding layers. This type of network is called a
feedback network.
Indep. Accuracy (%) Other
meas.

? 62.4 EMG
D 89.2 (1 session), 88.9 (all sessions) EMG
? 83.5 EMG

D, I 40–90 (ANS, I), 80–95 (ANS, D); 50–95 (all, I), 94–99 (all,
D)

Face

D 77 EMG
? 88.0 Eyes
D 83.8 EMG
? 88.5 EMG
? 75.9 None
? 90.2 None
D 76 stress (ANS), 81 fatigue (ANS) Video

? 79 None

ssification.



Table 6
Psychophysiological studies that use artificial neural networks.

Study Classification of Classes N Indep. Accuracy (%) Other meas.

Nasoz et al. (2004) and Lisetti and Nasoz (2004) Basic emotions 6 29 ? 84 None
Wagner et al. (2005) Basic emotions 4 1 D 88.6 EMG
Calvo et al. (2009) Basic emotions 8 3 D 97.1 (1 session), 97.8 (all sessions) EMG
Nasoz et al. (2010) Basic emotions 4 34 I 73.3 None
Kolodyazhniy et al. (2011) Basic emotions 3 34 D, I 77.9 (D), 76.5 (I) EMG
Yannakakis et al. (2010) Levels of 7 basic emotions 2 Per emotion 36 ? 79 None
Müller (2006) Arousal-valence 4 1 D 81–86 EMG
Arroyo-Palacios and Romano (2010) Arousal-valence 4 59 I 78.4 None
van den Broek et al. (2010) Arousal-valence 4 21 ? 56.2 EMG
Leon et al. (2007) Neutral/positive/negative 3 8 D 71.40 None
Wilson and Russell (2003a) Workload level 2 8 D 99 EEG, EOG
Wilson and Russell (2003b) Workload level 3 7 D 55.9 (ANS), 88.0 (all) EEG
Wilson and Russell (2007) Workload level 2 10 D 83.5 EEG, EOG
Yannakakis et al. (2008) Entertainment preferences 2 18 ? 76 None
Yannakakis and Hallam (2008) Entertainment preferences 2 72 ? 79.8 None
Leon et al. (2004) Neutral or non-neutral state 2 1 D Not given EMG

N = number of subjects, I = subject-independent classification, D = subject-dependent classification.
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ANNs are taught to perform a particular function using a train-
ing data set by adjusting the weights of the connections between
different neurons. They are either linear or nonlinear tools capable
of modeling very complex relationships between variables, which
can be very useful in physiological computing. Since many differ-
ent types of neural networks exist, readers unfamiliar with the fun-
damentals are encouraged to refer to the book by Bishop (1996),
which remains an excellent introduction to the topic.

To train an ANN as a classifier, it simply needs to be provided
with a training data set where the inputs are physiological features
and the outputs are numbers corresponding to different classes
(e.g. 1 – ‘angry’, 2 – ‘sad’). However, ANNs have one important dis-
advantage. Once trained, it is difficult to determine how different
input variables contribute to the output. ANNs thus provide users
with little information about the underlying system. Despite this
lack of transparency, they have been frequently used with psycho-
physiological data. Examples are given in Table 6.

3.1.7. Other
Though the previous subsections describe the classification

methods commonly used in physiological computing, there are
also several other, less-often used methods that bear mentioning.
Some of these are:

– Fuzzy logic: More properly an estimation technique, it has also
been used for psychophysiological classification in Rani et al.
(2007) and Katsis et al. (2008) by simply assigning classes to
different values of the output variable. Notable for not requiring
a training data set, it is described in more detail in Section 3.2.2.

– Hidden Markov models (HMMs): Actually a type of dynamic
Bayesian network (Section 3.1.2), HMMs are notable because
they allow the classification of temporal sequences. Though
popular in research fields such as speech recognition and activ-
ity recognition, HMMs have seen little use in psychophysiology
where the preferred approach is to calculate features from a
temporal sequence and then classify those features instead.
Three examples of HMMs in psychophysiological data fusion
are Scheirer et al. (2002), Kulić and Croft (2007), and Plarre
et al. (2011).

– Relevance vector machines: Functionally similar to support vec-
tor machines (Section 3.1.4), relevance vector machines (RVMs)
are embedded in a Bayesian framework. They have been shown
to provide results similar to SVMs, but with sparser solutions.
They were used for psychophysiological data fusion by Chanel
et al. (2009) and may represent an emerging alternative to the
commonly used classifiers in psychophysiology.
– Large margin algorithm (LMA): A simpler version of support
vector machines (Section 3.1.4), LMA makes certain assump-
tions about the data in order to reduce computational complex-
ity. It was used by Yannakakis and Hallam (2008), but is
unlikely to see wider use in physiological computing where
computational complexity is generally not a problem.

3.1.8. Ensemble classification
Ensemble classification (also referred to as multiple classifier

systems) refers to the practice of combining several classifiers (of
the same type or different types) to obtain a final result. This ap-
proach has several advantages over using a single classifier, and
has proven to be very effective at dealing with numerous types
of classification problems. It can, for instance, reduce the risk of
creating a classifier that does not generalize well to new data or al-
low different classifiers to deal with specific types of data. An
excellent review of ensemble classification in general machine
learning was published by Polikar (2006).

Though ensemble classification is not especially widespread in
psychophysiology, the structure of the input data or the psycho-
logical model used may lend themselves naturally to such an ap-
proach. For instance, if other data modalities are used in addition
to ANS responses, it is possible to obtain a classification result
using data from each modality separately and then combine
these unimodal results to obtain a final result. This is often called
decision-level fusion and was performed using speech and phys-
iology by Kim (2007) as well as with central and ANS responses
by Chanel et al. (2009, 2011). On the level of sensors rather than
modalities, Setz et al. (2009) used the same approach to obtain a
separate classification result from each physiological sensor (one
result for all features extracted from the electrocardiogram, one
result for all features extracted from skin conductance etc.) and
then fuse them together.

The above approach features several classifiers working in par-
allel. An alternate option is to have several classifiers in series.
First, a classifier performs a rough separation into two broader
classes. Then, separate classifiers are used on the broader classes
to determine the final, specific class. Three examples of this exist
in psychophysiology. In the first two examples, the first classifier
classifies a feature vector into one half of the arousal-valence space
while the second classifier classifies the feature vector into one of
the two remaining possible quadrants (Kim and Andre, 2008; Fran-
tzidis et al., 2010). In the third example by Sakr et al. the first clas-
sifier classifies the feature vector as either ‘easy to classify’ or
‘difficult to classify’, and different classifiers are used for these
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two possibilities in order to determine whether the subject is agi-
tated or not.

Finally, a third approach to ensemble classification has been
used in psychophysiology: so-called bagging or boosting. Though
there are large differences in the two approaches, both work by
randomly dividing the data into smaller subsets, training a classi-
fier on each subset, and combining the outputs of all classifiers
via majority voting. This approach thus splits the data randomly
rather than according to the data modalities or the psychological
model. Psychophysiological examples include random forests (Ri-
gas et al., 2007) and boosted decision trees (Bailenson et al.,
2008; Plarre et al., 2011). However, it is the opinion of the authors
that such methods are still underutilized in psychophysiology and
could result in improved classification.

3.2. Estimation

As previously stated, estimation is, like classification, a method
of taking a physiological feature vector (consisting of several fea-
tures extracted from multiple physiological signals) as input and
assigning a psychological label to it. It differs from classification
primarily in that the label is continuous (e.g. anywhere between
0 and 10) rather than categorical.

Estimation has been used far less frequently in psychophysiol-
ogy and physiological computing than classification. When com-
paring different studies, it also has an important weakness: there
is no commonly accepted way in psychophysiology to gauge the
effectiveness of estimation (unlike the accuracy rate of classifi-
ers). While it should be possible to determine the mean squared
error, variance, or bias of an estimator, this is rarely done in psy-
chophysiological studies. In fact, several of the examples listed in
this section describe the results of the implemented methods
only qualitatively. Thus, while classification examples were listed
in tables due to the large number of studies and the ability to
compare accuracy rates, estimation examples are described in
text.

3.2.1. Linear sums and linear regression
A simple way to estimate a psychological quantity from physi-

ological features is to define it as a weighted sum of (usually nor-
malized) physiological features:

yðxÞ ¼ wxþ b ð2Þ

where y is a psychological quantity (e.g. arousal), x are physiological
features (e.g. mean heart rate, skin conductance response fre-
quency), w are the weights assigned to the different features and
b is the intercept. w and b can be defined manually (e.g. Toups
et al., 2006; Grigore et al., 2008), but a more optimal approach is
to perform linear regression on the training data set. Given a data
set with known y and x, linear regression usually estimates w and
b using the least squares method, though other methods are also
possible. It has been used for estimation of distress, worry and task
engagement by Fairclough and Venables (2006), estimation of
amusement and sadness by Bailenson et al. (2008) and estimation
of arousal by Grundlehner et al. (2009).

3.2.2. Fuzzy logic
Fuzzy logic is an extension of classical binary logic. Fuzzy state-

ments do not have to be absolutely true or false, but have ‘‘de-
grees’’ of truth. There are thus also no hard boundaries between
categories or exclusive memberships. Perhaps the most famous
example of fuzzy logic involves temperature control, described
with the statements: ‘‘If the room is cold, the heating should be
set to maximum. If the room is hot, the heating should be off.’’ In
fuzzy logic, the room can be both cold and hot to some degree
(e.g. 0.8 cold, 0.2 hot), and the heating is thus also set to some
intermediate value. An example from physiological computing
would be ‘‘if heart rate is high and skin conductance is high,
arousal is high’’. Ranges for each variable are defined using mem-
bership functions and can overlap.

Fuzzy logic is appropriate for situations where a precise
mathematical model does not exist, but experts can identify gen-
eral rules underlying the system – as in physiological computing.
It is also appropriate for systems with a high level of noise,
which is also common in physiological computing due to the in-
tra- and intersubject variability. Expert-defined fuzzy rules have
been used to estimate stress and anxiety by Rani et al. (2002)
and Rani et al. (2004) as well as arousal and valence by Mandryk
and Atkins (2007) and Mihelj et al. (2009), with the latter also
estimating the level of physical activity. Expert-defined fuzzy
rules are especially noteworthy because, unlike most of the
methods described in this paper, they do not explicitly require
training data.

If the underlying behavior of the system cannot be described by
experts, machine learning approaches also exist to identify the
parameters of a fuzzy logic system using training data. Examples
of fuzzy system identification for the purpose of user state assess-
ment from ANS responses are presented in Kumar et al. (2007),
Katsis et al. (2008) and Ting et al. (2010).

3.2.3. Artificial neural networks
Previously described in Section 3.1.6, artificial neural networks

(ANNs) consist of a large number of simple, interconnected compo-
nents (‘neurons’) operating in parallel. They are taught to perform
a particular function (which can be simple or very complex) using a
training data set by adjusting the weights of the connections be-
tween different neurons. While mostly used in psychophysiology
for classification, they do not necessarily have to output a categor-
ical value (e.g. 1 – ‘angry’, 2 – ‘sad’); they can easily be trained to
output continuous values and thus estimate the level of a particu-
lar psychological variable. One classic example is by Haag et al.
(2004), who use neural networks to estimate the level of arousal
and valence. A more recent example is a study by Bailenson et al.
(2008), where ANNs are used to estimate the level of amusement
and sadness.

3.3. Comparisons of data fusion methods

Having reviewed several data fusion methods, it is only natural
to ask ourselves ‘‘which method is the best?’’ The answer, of
course, is not simple and depends critically on the properties of
the data, the goal of the overall system and the desires of the
researcher.

3.3.1. Classification or estimation?
Classification and estimation are two data fusion approaches

that assign a psychological label to a psychophysiological feature
vector. Both have their uses, and the choice between them de-
pends primarily on the problem researchers are trying to solve
and the corresponding study design. For instance, if an experi-
ment is built around basic emotions (anger, sadness, fear, sur-
prise, happiness . . .) (Ekman, 1992), the psychological state can
be described as one of several discrete classes, naturally creating
a classification problem. If the psychological state is described in
terms of arousal and valence, estimation is more useful since
arousal and valence are both continuous quantities (Russell,
1980).

If we wish to act on the inferred psychological state, the choice
of classification also depends on the properties of the physiological
computing system we wish to use. If the ultimate goal of the sys-
tem is to select one of several possible discrete actions (e.g. assist
user or do not assist user), classification is the obvious choice. If
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the goal of the system is, however, to adapt a continuous value (for
instance, to change the speed of an enemy in a computer game,
with the speed being any value between a preset minimum and
maximum), estimation is the better choice.

In many cases, though, the general problem or hypothesis does
not strictly specify the appropriate approach. For instance, if the
problem is to identify the subject’s arousal, this can be framed
either as a classification problem (with low/medium/high arousal
as the three classes) or as an estimation problem (an arousal value
between 0 and 10). This choice then guides the study design, par-
ticularly the selection of psychological state induction and valida-
tion method, and it is difficult to change to the other option once
the measurements have been completed. Thus, in such a case we
would recommend that researchers consider their options in ad-
vance. As previously mentioned, classification has been used in
psychophysiology and physiological computing far more often
than estimation. Even if the goal is to identify the level of a psycho-
logical variable, it can be difficult to induce a great number of arou-
sal, valence, stress or anxiety levels. Researchers thus often settle
for splitting psychological states into arousal-valence quadrants
(e.g. Chanel et al., 2009; Frantzidis et al., 2010) or discrete levels
of a psychological variable (e.g. Wilson and Russell, 2003b; Zhai
and Barreto, 2006; Kapoor et al., 2007), creating a classification
problem again. We would recommend that researchers who are
unfamiliar with psychophysiology and/or data fusion choose clas-
sification over estimation if the problem they are trying to solve
does not specifically require estimation. At this point, the literature
on classification is much more extensive, preparation of training
data is easier, and the success of a system can be easily gauged
via classification accuracy.
3.3.2. Estimation methods
If the goal of data fusion is estimation, choosing the appropriate

method is not difficult since only a few are used in physiological
computing. If the training data set is small and a simple, transpar-
ent model is desired, linear regression is appropriate. If the training
data set is larger and a more complex, nonlinear but less transpar-
ent method is desired, artificial neural networks are preferable.
Table 7
Psychophysiological studies that compare different classifiers.

Reference Classes N Indep. C

Wilson and Russell (2003a) 2 8 D LD
Wagner et al. (2005) 4 1 D kN
Müller (2006) 4 1 D N
Rani et al. (2006) 3 Per emotion 15 ? kN
Zhai and Barreto (2006) 2 32 ? N
Kapoor et al. (2007) 2 24 I kN
Rani et al. (2007) 3 4 D Tr
Rigas et al. (2007) 3 9 ? kN
Katsis et al. (2008) 4 10 ? SV
Pastor-Sanz et al. (2008) 6 24 ? SV
Yannakakis and Hallam (2008) 2 72 ? A
Calvo et al. (2009) session-dependent 8 3 D N
Calvo et al. (2009) session-independent 8 3 D N
Chanel et al. (2009) 3 10 D LD
Shen et al. (2009) – ANS only 4 1 D kN
Shen et al. (2009) – ANS + EEG 4 1 D kN
Mohammad and Nishida (2010) 2 44 ? SV
Nasoz et al. (2010) 4 34 I kN
Setz et al. (2010) 2 33 I N
van den Broek et al. (2010) 4 21 ? kN
Chanel et al. (2011) 3 20 I LD
Kolodyazhniy et al. (2011) 3 34 D, I kN
Plarre et al. (2011) 2 21 ? SV
Rigas et al. (2011) – ANS only 2 Stress, 3 fatigue 1 D N
Rigas et al. (2011) – all measurements 2 Stress, 3 fatigue 1 D N

N = number of subjects, I = subject-independent classification, D = subject-dependent cla
Finally, fuzzy logic should be used if the training data set is limited
but the researcher is sufficiently familiar with both general psy-
chophysiology and the specific application to accurately define
the necessary rules. Automated fuzzy system identification is not
yet well-established in psychophysiology and is not recommended
for researchers without good prior knowledge of both fuzzy logic
and psychophysiology.
3.3.3. Classification methods
If the goal of data fusion is classification, choosing the appropri-

ate method is harder since so many classification algorithms are
available and widely used in psychophysiology. Perhaps the most
important quality of a classifier is its accuracy – how well it can
classify feature vectors. To evaluate accuracy, we can first turn to
large-scale classifier comparisons from other fields. One compre-
hensive nonpsychophysiological comparison of classifiers on dif-
ferent real-world data sets was made in the 1990s by King et al.
(1995). Other classifier comparisons with nonpsychophysiological
data include Harper (2005) (medical data), Hua et al. (2005) (with
a special focus on classifier accuracy as a result of sample size),
Caruana and Niculescu-Mizil (2006) and Caruana et al. (2008).
Some general conclusions can be drawn from these comparisons
that should also apply to psychophysiological data. However, the
most relevant information can be obtained directly from psycho-
physiological data.

Table 7 lists a number of psychophysiological and physiological
computing studies that have compared different classifiers on their
data. Unfortunately, those looking for a quick response to the
‘‘which classifier is the best’’ question are likely to be disappointed
again. Different studies report results that may at first glance be
contradictory. For instance, Nasoz et al. (2004) and Nasoz et al.
(2010) find ANNs to perform much better than kNN, but van den
Broek et al. (2010) report higher classification accuracy with kNN
than with ANNs. Similarly, Zhai and Barreto (2006) find SVMs to
be much more accurate than the naïve Bayes classifier, but Müller
(2006) reports similar accuracy for both methods.

It is important to once again realize that the best method criti-
cally depends on many different factors such as the input features
lassifiers compared (accuracy in %)

A (95), ANN (99)
N (90.9), LDA (92.1), ANN (88.6)

aïve Bayes (86), SVM (82), ANN (81–86), trees (77)
N (75.2), Bayesian network (74.0), SVM (85.8), trees (83.5)

aïve Bayes (78.7), SVM (90.1), trees (88.0)
N (66.7), Bayesian network (79.2), SVM (70.8)

ees (83.8), fuzzy logic (75.4)
N (62.7), trees (62.4)
M (79.3), fuzzy logic (76.7)
M (63–83), kNN, naïve Bayes, trees (worse, no exact results given)

NN (79.8), large margin algorithm (70.2)
aive Bayes (66.3), Bayesian network (81.3), SVM (95.8), ANN (97.1)
aive Bayes (43.6), Bayesian network (64.3), SVM (85.7), ANN (97.8)
A (51), QDA (45), SVM (49), RVM (49)
N (60.3), SVM (68.1)
N (75.2), SVM (86.3)
M (81), trees (79)
N (64.9), ANN (73.3)

earest class center (78), LDA (83), SVM (81)
N (61.3), SVM (60.7), ANN (56.2)
A (58), QDA (59), SVM (56)
N (79.4 D, 75 I), LDA (77.0 D, 73.5 I), QDA (74.5 D, 66.2 I), ANN (77.9 D, 76.5 I)
M (89.2), trees (90.2)

aive Bayes (66–74), general Bayes (67–77), SVM (78–85), trees (76–81)
aive Bayes (76–79) general Bayes (79–81), SVM (86–88), trees (80–81)

ssification.
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and the possible classes used. For instance, Nasoz et al. (2004),
Wagner et al. (2005) and Rani et al. (2006) report that certain clas-
sifiers are better at recognizing certain emotions, though it is
uncertain whether or not this is a sampling fluke. Rani et al.
(2007) compare classification trees and fuzzy logic on data sets
of different qualities and find that while trees generally result in
higher accuracy, fuzzy logic is more accurate if the data quality is
low. Direct comparison of classification accuracies between studies
is thus difficult due to all the factors that need to be taken into ac-
count. In any case, while some studies have found clearly better re-
sults with particular classifiers (e.g. Nasoz et al., 2004; Nasoz et al.,
2010, where ANNs clearly outperform LDA and kNN, or Kol-
odyazhniy et al., 2011, where nonlinear classifiers outperform lin-
ear ones), several have reported similar results for different
classifiers (e.g. Wagner et al., 2005; Müller, 2006; Rigas et al.,
2007; Katsis et al., 2008; Chanel et al., 2009). It is our admittedly
subjective opinion that the greatest limitation to high classification
accuracy is in fact the nature of the data itself. Physiological re-
sponses are affected not only by psychological and affective stim-
uli, but by many confounding factors such as physical activity,
environmental temperature and intersubject differences in physi-
ology. Even the best classifier can obtain only a limited amount
of information from physiological data, limiting the possible accu-
racy. Thus, while accuracy is certainly an important factor, it is not
the only one that should be considered.

Another factor is the robustness of a classifier with regard to
sample size and number of features, which strongly affect classifi-
cation accuracy as shown for example by Hua et al. (2005) for non-
psychophysiological data. This has unfortunately seen little study
with affective ANS responses, but conclusions can also be drawn
from other pattern analysis fields. In general, mathematically less
complex methods usually require a smaller data set since fewer
parameters need to be defined. There is also less danger of overfit-
ting the data, making simple methods such as naïve Bayes classifi-
ers and LDA suitable for smaller training data sets (as noted by e.g.
Hand and Yu, 2001 for naïve Bayes classification). Complex nonlin-
ear classifiers such as Bayesian networks and ANNs generally re-
quire a larger training data set to avoid overfitting (as noted by
e.g. Kolodyazhniy et al. for QDA and ANNs). kNN algorithms are
unsuitable for large numbers of features not only due to computa-
tional complexity, but also because they cannot easily handle irrel-
evant features.

The speed and computational cost of a classifier can also be
important. While all classifiers can be used both offline and online,
some are less suited for online use. Calvo et al. (2009), for example,
found ANNs to be more accurate than SVMs, but also much slower
than SVMs and thus less suitable for online use. However, it is
important to differentiate between the time needed to train the
classifier (which can be done in advance) and the time needed to
apply the classifier to a new feature vector (which often needs to
be done online). LDA, for instance, is simple to both train and ap-
ply. SVMs and ANNs can be time-consuming to train, but can be
applied to new data much faster. On the other hand, kNN requires
no advance training, but can be computationally intensive to apply
to a new feature vector online since the distance to each feature
vector in the training data set must be calculated in many dimen-
sions. Although classification in physiological computing is gener-
ally not performed with a high frequency (most features are
calculated over a range of 30 s to five minutes), it can nonetheless
be preferable to employ a classifier which requires little time to
classify a new feature vector.

The compatibility of a classifier with normalization and dimen-
sion reduction methods should also be considered. While all the
described classifiers can in principle be used with all normalization
and dimension reduction methods, some combinations are more or
less suitable. kNN, for instance, practically requires all features to
be normalized to the same range. If this is not done, not all features
will contribute equally to the distance between feature vectors.
kNN also generally requires dimension reduction since the algo-
rithm otherwise weighs all features equally even though some
may not be relevant. Fisher’s projection is less suitable for use with
nonlinear classifiers since it transforms the original feature space
into a space where different classes are linearly separable. In such
a space, nonlinear classifiers obviously lose a great deal of useful-
ness, though they may nonetheless be more accurate than linear
ones since the transformation can never be perfect. Many classifi-
cation tree generation algorithms already incorporate a form of
dimension reduction similar to sequential feature selection, ren-
dering additional dimension reduction less important.

A generally less crucial factor is the transparency of the classi-
fier. Rather than the most accurate classifier, we might choose a
slightly less accurate classifier whose classification procedure can
be easily understood by humans. In this case, classification trees
provide a very transparent method since their if–then reasoning
can be easily followed. LDA is also fairly simple to understand
while nonlinear methods such as neural networks are often looked
down on despite attempts to do away with their reputation as a
‘black box’ (e.g. Benitez et al., 1997). Here, a consideration must
be made whether the potential decrease in accuracy from using a
transparent classifier is an acceptable sacrifice for increased trans-
parency. Such a decision is fairly subjective and thus generally left
to the researcher’s preference.

Another problem that mainly depends on the individual re-
searcher is the ease of implementation of the classifier. Not every-
one involved in physiological computing has the time and
knowledge needed to implement all of the aforementioned classi-
fiers. The easiest two to implement are kNN and LDA. LDA requires
only the mean value and covariance of each class to be calculated,
and then a simple equation is used to classify the data. kNN only
requires simple arithmetic operations, making it even simpler than
LDA since it does not require covariance calculation. Bayesian net-
works and ANNs, on the other hand, can be very complex to prop-
erly understand and implement. Although most data analysis
packages already provide classification options, programs such as
SPSS (IBM Corporation) do not allow online classification. For use
in a real-time application, it is thus necessary to use engineering
software such as MATLAB (MathWorks) that includes classification
or program the classifiers manually.

To summarize, a few recommendations can be given depending
on what the researcher is interested in:

– Transparency: classification trees (best), linear discriminant
analysis (second-best).

– Small sample: linear discriminant analysis, naïve Bayes
classifier.

– Ease of implementation: linear discriminant analysis.
– Nonlinearity, large sample: support vector machines, artificial

neural networks, Bayesian networks.

With regard to accuracy, perhaps the best (subjective) recom-
mendation that can be given is this: Since most classifiers are
not difficult to implement and since they all require training data,
researchers should consider implementing several different
classifiers (as well as dimension reduction) and comparing them
using crossvalidation on the training data set in order to determine
which one is most appropriate for their situation. However, since
the overwhelming majority of existing studies use either only
one classifier or only one data set, a very useful addition to the
literature would be a study that would apply several different
classifiers to several different sets of ANS responses in order to
thoroughly analyze the benefits and drawbacks of each classifier
in different conditions. Such a study may also consider analyzing
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the effects of ensemble learning, which remains underutilized in
psychophysiology despite promising results in other fields.
4. System adaptation

While data fusion is primarily the process of interpreting phys-
iological responses in a cognitive or affective context, system adap-
tation is the act of using the interpreted measurements in order to
make changes to the system that the user is interacting with. These
changes then again affect physiological responses and cause new
adaptations. Such adaptation is not a new idea by any means; for
instance, a review by Byrne and Parasuraman (1996) discusses sev-
eral early attempts to use ANS responses to control the level of
automation in a task.

Adaptive applications can broadly be divided into three catego-
ries. The first (described in Section 4.1) is adaptive automation:
making a task easier for the user by providing automated assis-
tance when necessary. The second (described in Section 4.2) is
game difficulty adjustment: making a game easier or harder for
the user in order to provide an appropriate challenge. The third
(described in Section 4.3) is the adjustment of the audio or visual
properties of an application that the user is interacting with in or-
der to make it more pleasant and attractive for the user or to evoke
a certain other mood. Finally, section 4.4 gives a brief summary of
the different ways system adaptation has been achieved in physi-
ological computing and gives some recommendations for future
work.

4.1. Adaptive automation

Adaptive automation is the act of activating automated assis-
tance systems (e.g. automatic pilots) in response to a detected high
user workload. Though the majority of work on adaptive automa-
tion through physiology has focused on electroencephalography,
some studies have also incorporated ANS responses, either by
themselves or in combination with other measurements.

Prinzel et al. (2003), Liao et al. (2005) and Wilson and Russell
(2007) all take a similar approach to adaptive automation:
assistance is enabled when the user’s level of stress or workload
is high and disabled otherwise. A heart rate variability threshold
is used to enable and disable assistance in Prinzel et al. (2003). A
Bayesian network is used for fusion of ANS responses and video
in Zhai and Barreto (2006) while ANNs are used with electroen-
cephalography, electrooculography and ANS responses in Wilson
and Russell (2007). The study by Ting et al. (2010) differs slightly
from the previous three in that different automation levels are
available; i.e. the control for automation is not only an on/off
switch. The level of automation is determined by fusing features
derived from the electrocardiogram and electroencephalogram
using fuzzy logic.

Rani et al. (2004) suggest a system very similar to adaptive
automation, except that automatic assistance activation is replaced
by a simple query. A mobile robot performs tasks in the environ-
ment while monitoring a human’s level of anxiety. The level of
anxiety is calculated from heart rate, skin conductance and the
electromyogram using fuzzy logic. If anxiety exceeds a certain
threshold, the robot ceases its normal operations and queries the
human whether he or she requires assistance. Shye et al. (2008)
also suggest an interesting application (though of questionable
practical value) that is similar to the idea of adaptive automation.
A computer monitors the user’s engagement level through a com-
bination of skin conductance and nonphysiological signals. If the
user is not focused on working with the computer, the computer
decreases the microprocessor speed in order to save energy. This
can be thought of as the opposite of adaptive automation: while
adaptive automation has the computer take over some of the
workload when the user is overworked, the application of Shye
et al. decreases the computer’s capabilities when the user is unli-
kely to need them.
4.2. Game difficulty adjustment

Multiple studies have used ANS responses to adjust the param-
eters of a computer game or similar system in order to make it eas-
ier or harder for the subject. The level of data fusion in these games
differs strongly, from none at all to very complex.

Looking first at examples of game difficulty adjustment based
on only one physiological measurement, Bersak et al. (2001) cre-
ated a racing computer game where the speed of the car is inver-
sely proportional to the value of the user’s skin conductance: the
lower the skin conductance, the faster the car. Nenonen et al.
(2007) used heart rate to affect the difficulty of a biathlon com-
puter game, though it is questionable whether changes in heart
rate are caused by psychological factors. In their game, high heart
rate results in fast skiing, but inaccurate shooting, and vice versa.

Moving onto studies combining multiple physiological mea-
surements, Toups et al. (2006) used skin conductance and electro-
myography to increase or decrease the activity level of enemies in
a computer game, though data fusion was simply performed as a
linear sum of individual normalized features. Dekker and Cham-
pion (2007) changed the player’s movement speed, visibility to
enemies and the damage of his/her weapons in a first-person shoo-
ter game based on both heart rate and skin conductance. Similarly,
Kuikkaniemi et al. (2010) and Nacke et al. (2011) controlled the
player’s movement speed, weapon strength and weapon accuracy
in games using multiple physiological measurements, though no
data fusion was performed. Haarmann et al. (2009) combined heart
rate and skin conductance in a flight simulator. Manually set
thresholds were used on the features to determine how aroused
the subject was, and turbulence was turned on and off in the flight
simulator depending on the level of arousal. Liu et al. (2009) used a
classification tree on multiple physiological signals to estimate the
level of anxiety and then used both task performance and anxiety
to control the difficulty of a game of Pong. Novak et al. (2011) and
Koenig et al. (2011) both used Kalman adaptive LDA on multiple
physiological signals to control the difficulty of a game-like motor
rehabilitation exercise.

A final, very interesting game-like scenario is a study by Liu
et al. (2008) where children need to throw baskets through a bas-
ketball hoop controlled by a robotic arm. The hoop is constantly
moved in different directions, with the speed and direction of
movement changed to maximize the child’s enjoyment of the
game. The child’s level of enjoyment during the game is deter-
mined by using SVMs to fuse multiple psychophysiological fea-
tures. Furthermore, the robotic arm gradually adapts the system
adaptation rules to the current subject. Since there is no guarantee
that two users will respond to a particular action in the same way,
the arm learns the subject’s preferences through reinforcement
learning, which learns by trying certain actions and noting the sub-
ject’s response. Given enough time to try different actions, the sys-
tem learns what action is likely to lead to a certain response for
that subject.
4.3. Audiovisual adaptation

Unlike adaptive automation, which has been extensively ap-
plied to critical situations such as flight, audiovisual adaptation
has primarily been explored within the context of multimedia
applications, computer games and virtual reality. Here, the purpose
is to have the environment reflect the user’s current mood or to
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evoke a certain mood in the user using a feature of the
environment.

Perhaps the first example of environments that try to match the
subject’s mood is described by Wang et al. (2004): an online
chatting interface where the color and shape of the text changes
to match the user’s skin conductance. Similarly, Dekker and
Champion (2007) and Groenegress et al. (2010) directly map phys-
iological responses to audiovisual properties of a game or virtual
environment, without any data fusion. In Arroyo-Palacios and Ro-
mano (2010), ANNs are used to classify the subject’s mood, and
appropriate wallpaper is displayed on the computer background.

Environments that try to evoke a specific emotion using purely
audiovisual features usually make use of either music or lighting.
An affective music player was suggested as early as 1998 by Healey
et al. though the implementation is relatively basic since a single
input feature (the average difference in skin conductance) is used.
Oliver and Kreger-Stickles (2006) propose a music player that com-
bines both physiology and body movement to suggest songs from a
playlist, though this does not necessarily include psychological fac-
tors since ANS responses in their study are strongly affected by
physical activity. Janssen et al. (2009) also suggest a music player
that combines skin conductance and skin temperature using a
Bayesian network in order to suggest songs. Liu et al. (2010) at-
tempt to control heart rate around a certain threshold by playing
appropriate music, though their heart rate sensor is embedded in
a seat beneath the subject and is thus fairly nonstandard. A similar
approach to these music recommendation systems is a content
delivery system by Shen et al. (2009), which classifies the user’s
autonomic and central nervous system responses using k-nearest
neighbors and SVMs. It then suggests content (different docu-
ments) that would be appropriate in that mood.

Moving onto lighting, Grigore et al. (2008) try to help the sub-
ject relax by adjusting the level of ambient light in a room. A sim-
ple weighted sum of different heart rate and skin conductance
features is used to estimate the subject’s current state. A final,
unorthodox example is by Ritter (2011), who uses evolutionary
algorithms to analyze skin conductance and dynamically adjust
the shading of a user interface or the lighting of a room in order
to improve the users’ performance in a task. The evolutionary algo-
rithms used are very different from the normal data fusion meth-
ods currently used in psychophysiology, but they are also fairly
nontransparent, which may make it difficult for other authors to
reproduce and validate the work.
4.4. Discussion and recommendations for physiological computing

Though adaptation in response to psychological information in-
ferred from ANS responses has been used in many applications,
most existing implementations fall into one of two categories.
The first category includes systems without any explicit data fu-
sion at all. In this case, either a variable of the system is propor-
tional to a physiological feature (e.g. Bersak et al., 2001, where
the speed of a car is inversely proportional to skin conductance)
or different actions are taken depending on whether a feature is
above or below a predefined threshold (e.g. Haarmann et al.,
2009, where assistance is activated or deactivated depending on
thresholds). The interpretation of physiological features can be
considered as implicit in the adaptation rules. Though a very sim-
ple implementation, such adaptation can be useful when no train-
ing data is available, when only basic adaptation is required and
when the relationship between psychophysiological features and
psychological states is well-established. Skin conductance, for
example, has been extensively documented as proportional to
arousal. This approach, however, is not recommended in more
complex applications since it cannot easily merge multiple psycho-
physiological features and thus cannot give a good approximation
of the subject’s psychological state.

The second category includes a classifier followed by a simple
decision-making system that has a predefined action assigned to
each possible class. An example from this category is the adaptive
automation system by Wilson and Russell (2007), which uses an
ANN with two possible classes: high and low workload. The
decision-making system then enables task automation in the case
of high workload and disables it in the case of low workload. A
second example is the content delivery system by Shen et al.
(2009), which uses SVM to classify the user’s mood. It then
suggests different documents in each possible mood. These
systems can be thought of as the state of the art. We recommend
that researchers interested in physiological computing implement
such a system rather than one with no data fusion, despite the
added requirements of training data preparation and classifier
construction.

In these systems, an entirely practical question may then arise:
how accurate must a classifier be before the system can be consid-
ered ‘good enough’ to make decisions? We believe that the re-
quired accuracy would depend on the application. For instance,
in an adaptive automation or automated warning system (for in-
stance, in a car or airplane) where the computer would need to
either warn the user of potential danger or take over some of the
workload, the required accuracy would be very high – certainly
over 95%. With a lower accuracy, the computer would be annoying
at best (warning the user in inappropriate moments) and danger-
ous at worst (ignoring actual cases of user stress). In such cases,
within-subject classification would be necessary to achieve an
acceptable accuracy. Since it is expected that a single car or air-
plane would not be used by a large number of people, it would
be feasible to train a separate classifier for each subject separately,
thus increasing the accuracy. In more casual applications where an
incorrect decision cannot have serious consequences, the needed
accuracy is lower. For instance, in a computer game where the dif-
ficulty is regularly adjusted accuracies of around 70% for a two-
class problem (increase/decrease difficulty) may be acceptable
since the general trend would lead the player toward the optimal
difficulty given enough time. The classifier in such a case could
be subject-independent, since users of entertainment technologies
may not be willing to spend time building a training data set for a
casual application. In both cases, psychophysiological features
should also be combined with other, already available data (e.g.
the speed of the vehicle or the player’s score in the game) in order
to increase accuracy.

Finally, a third category of physiological computing systems is
emerging: systems that do not only use predefined classification
and decision-making rules, but which gradually adapt to the user
as they gain experience. One existing example is the work of Liu
et al. (2008), where SVMs are used to classify the level of enjoy-
ment in a ‘game’ and actions are then taken to increase enjoyment.
However, while the SVMs are predefined and static, the decision-
making system gradually learns what actions are likely to increase
enjoyment for that particular user and adapts accordingly. We per-
sonally feel that such an approach is very promising and represents
the next step in psychophysiological feedback. Just like the com-
plexity of data fusion has increased from simple predefined thresh-
olds to advanced classifiers such as neural networks, we hope that
the complexity of decision-making will increase from simple pre-
defined actions to dynamically adapting intelligent decision-mak-
ing systems.

5. Concluding remarks

Having examined the different algorithms and methods for data
fusion and system adaptation in physiological computing, some
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final remarks can be made for researchers interested in the topic.
The majority of existing data fusion methods in physiological com-
puting (with the exception of principal component analysis and
fuzzy logic) is supervised, perhaps because connections between
ANS responses and psychological states are still not yet precisely
known. This is unlikely to change in the near future, and thus we
recommend focusing on supervised data fusion methods. These
methods require properly prepared training data that should be
verified using nonphysiological measures such as self-report ques-
tionnaires or observers.

Data fusion should be preceded by feature extraction using fea-
tures already well-established in the literature. Though the bene-
fits of normalization are somewhat uncertain, some form of
normalization should nonetheless be implemented and tested.
Dimension reduction is also recommended, with the authors’ sub-
jective opinion being that sequential feature selection is perhaps
the best of the three widely used approaches. Even if data fusion
is planned with methods that are robust with regard to large num-
bers of features, dimension reduction can at least remove any irrel-
evant features.

The choice of optimal data fusion method depends on many fac-
tors. We recommend choosing classification over estimation, both
because it is more prevalent in the literature and because discrete
classes are easier to validate using questionnaires or independent
observers than continuous values. Choosing a specific classifier is
not easy since currently published studies do not identify any
one as superior to the others when applied to psychophysiological
data. Our subjective recommendations are as follows. With regard
to accuracy, we recommend implementing several different classi-
fiers and comparing them using crossvalidation on the training
data set in order to determine which one is most appropriate for
a given situation. Of course, only a few classifiers can be selected
for implementation based on factors other than accuracy. If high
transparency is desired, we recommend classification trees. If the
available data set is limited and a simple algorithm is needed to
avoid overfitting, we recommend either linear discriminant analy-
sis or the naïve Bayes algorithm. Conversely, if the available data
set is large and a complex nonlinear model is desired, we recom-
mend either support vector machines, Bayesian networks or artifi-
cial neural networks.

Though the number of studies that use physiological measure-
ments for system adaptation is increasing, many studies still use
measured responses without any data fusion (and in many cases
with only basic feature extraction). We expect that a major focus
of future physiological computing research will be to effectively
combine complex data fusion and decision-making methods. In
this way, physiological computing should have a future both in
serious applications such as adaptive automation and in light-
hearted applications such as computer games.
References

Alpers, G.W., Wilhelm, F.H., Roth, W.T., 2005. Psychophysiological assessment
during exposure in driving phobic patients. Journal of Abnormal Psychology
114, 126–139.

Arroyo-Palacios, J., Romano, D.M., 2010. Bio-affective computer interface for game
interaction. International Journal of Gaming and Computer-Mediated
Simulations 2 (4), 16–32.

Bailenson, J.N., Pontikakis, E.D., Mauss, I.B., Gross, J.J., Jabon, M.E., Hutcherson, C.A.,
et al., 2008. Real-time classification of evoked emotions using facial feature
tracking and physiological responses. International Journal of Human–
Computer Studies 66, 303–317.

Benitez, J.M., Castro, J.L., Requena, I., 1997. Are artificial neural networks black
boxes? IEEE Transactions on Neural Networks 8, 1156–1164.

Ben-Shakhar, G., 1985. Standardization within individuals: a simple method to
neutralize individual differences in skin conductance. Psychophysiology 22,
292–299.

Bersak, D., McDarby, G., Augenblick, N., McDarby, P., McDonnell, D., McDonald, B.
et al., 2001. Intelligent biofeedback using an immersive competitive
environment. In: Online Proceedings for the Designing Ubiquitous Computing
Games Workshop.

Bishop, C.M., 1996. Neural Networks for Pattern Recognition. Oxford University
Press.

Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer.
Blechert, J., Lajtman, M., Michael, T., Margraf, J., Wilhelm, F.H., 2006. Identifying

anxiety states using broad sampling and advanced processing of peripheral
physiological information. Biomedical Sciences Instrumentation 42, 136–141.

Bonarini, A., Mainardi, L., Matteucci, M., Tognetti, S., Colombo, R., 2008. Stress
recognition in a robotic rehabilitation task. In: Proceedings of ‘‘Robotic Helpers:
User Interaction, Interfaces and Companions in Assistive and Therapy Robotics’’,
A Workshop at ACM/IEEE HRI 2008, Amsterdam, Netherlands, pp. 41–48.

Bradley, M.M., Lang, P.J., 1994. Measuring emotion: the self-assessment manikin
and the semantic differential. Journal of Behavior Therapy and Experimental
Psychiatry 25, 49–59.

Byrne, E.A., Parasuraman, R., 1996. Psychophysiology and adaptive automation.
Biological Psychology 42, 249–268.

Cacioppo, J.T., Tassinary, L.G., 1990. Inferring psychological significance from
physiological signals. American Psychologist 45, 16–28.

Cacioppo, J.T., Tassinary, L.G., Berntson, G.G. (Eds.), 2000. Handbook of
Psychophysiology, second ed. Cambridge University Press, Cambridge.

Calvo, R.A., Brown, I., Scheding, S., 2009. Effect of experimental factors on the
recognition of affective mental states through physiological measures. In:
Proceedings of 22nd Australasian Joint Conference on, Artificial Intelligence, pp.
62–70.

Calvo, R.A., D’Mello, S., 2010. Affect detection: an interdisciplinary review of models,
methods and their applications. IEEE Transactions on Affective Computing 1,
18–37.

Caruana, R., Niculescu-Mizil, A., 2006. An empirical comparison of supervised
learning algorithms. In: Proceedings of the 23rd International Conference on
Machine Learning, Pittsburgh, PA, pp. 161–168.

Caruana, R., Karampatziakis, N., Yessenalina, A., 2008. An empirical evaluation of
supervised learning in high dimensions. In: Proceedings of the 25th
International Conference on Machine Learning, Helsinki, Finland, pp. 96–103.

Chanel, G., Kierkels, J.J., Soleymani, M., Pun, T., 2009. Short-term emotion
assessment in a recall paradigm. International Journal of Human–Computer
Studies 67, 607–627.

Chanel, G., Rebetez, C., Bétrancourt, M., Pun, T., 2011. Emotion assessment from
physiological signals for adaptation of game difficulty. IEEE Transactions on
Systems, Man and Cybernetics – Part A: Systems and Humans 41, 1052–1063.

Christie, I.C., Friedman, B.H., 2004. Autonomic specificity of discrete emotion and
dimensions of affective space. International Journal of Psychophysiology 51,
143–153.

Conati, C., 2002. Probabilistic assessment of user’s emotions in educational games.
Applied Artificial Intelligence 16, 555–575.

Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W.,
Taylor, J.G., 2001. Emotion recognition in human–computer interaction. IEEE
Signal Processing Magazine 18, 32–80.

Dekker, A., Champion, E., 2007. Please biofeed the zombies: enhancing the
gameplay and display of a horror game using biofeedback. In: Proceedings of
DiGRA 2007: Situated Play, Tokyo, Japan, pp. 550–558.

Ekman, P., 1992. An argument for basic emotions. Cognition and Emotion 6, 169–
200.

Ekman, P., Levenson, R.W., Friesen, W.V., 1983. Autonomic nervous system activity
distinguishes among emotions. Science 221, 1208–1210.

El Ayadi, M., Kamel, M.S., Karray, F., 2011. Survey on speech emotion recognition:
features, classification schemes and databases. Pattern Recognition 44, 572–587.

Fairclough, S.H., 2009. Fundamentals of physiological computing. Interacting with
Computers 21, 133–145.

Fairclough, S.H., Venables, L., 2006. Prediction of subjective states from
psychophysiology: a multivariate approach. Biological Psychology 71, 100–110.

Frantzidis, C.A., Bratsas, C., Klados, M.A., Konstantinidis, E., Lithari, C.D., Vivas, A.B.,
et al., 2010. On the classification of emotional biosignals evoked while viewing
affective pictures: an integrated data-mining-based approach for healthcare
applications. IEEE Transactions on Information Technology in Biomedicine 14,
309–318.

Giakoumis, D., Tzovaras, D., Moustakas, K., Hassapis, G., 2011. Automatic
recognition of boredom in video games using novel biosignal moment-based
features. IEEE Transactions on Affective Computing 2, 119–133.

Grigore, O., Gavat, I., Cotescu, M., Grigore, C., 2008. Stochastic algorithms for
adaptive lighting control using psycho-physiological features. International
Journal of Biology and Biomedical Engineering 2, 9–18.

Groenegress, C., Spanlang, B., Slater, M., 2010. The physiological mirror: a system for
unconscious control of a virtual environment through physiological activity.
The Visual Computer 26, 649–657.

Grundlehner, B., Brown, L., Penders, J., Gyselinckx, B., 2009. The design and analysis
of a real-time, continuous arousal monitor. In: 2009 Sixth International
Workshop on Wearable and Implantable Body Sensor, Networks, pp. 156–161.

Gu, Y., Tan, S., Wong, K., Ho, M. R., Qu, L., 2010. A biometric signature based system
for improved emotion recognition using physiological responses from multiple
subjects. In: 2010 8th IEEE International Conference on Industrial Informatics,
Osaka, Japan, pp. 61–66.

Gunes, H., Pantic, M., 2010. Automatic, dimensional and continuous emotion
recognition. International Journal of Synthetic Emotions 1, 68–99.

Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection.
Journal of Machine Learning Research 3, 1157–1182.



D. Novak et al. / Interacting with Computers 24 (2012) 154–172 171
Haag, A., Goronzy, S., Schaich, P., Williams, J., 2004. Emotion recognition using bio-
sensors: first steps towards an automatic system. In: Affective Dialogue
Systems 2004. Springer-Verlag, Berlin, Heidelberg, pp. 36–48.

Haarmann, A., Boucsein, W., Schaefer, F., 2009. Combining electrodermal responses
and cardiovascular measures for probing adaptive automation during simulated
flight. Applied Ergonomics 40, 1026–1040.

Hand, D.J., Yu, K., 2001. Idiot’s Bayes – not so stupid after all? International
Statistical Review 69, 385–398.

Harper, P.R., 2005. A review and comparison of classification algorithms for medical
decision making. Health Policy 71, 315–331.

Hart, S.G., Staveland, L.E., 1988. Development of NASA-TLX (Task Load Index):
results of empirical and theoretical research. In: Hancock, P.A., Hancock, P.A.,
Meshkati, N. (Eds.), Human Mental Workload. Amsterdam, Netherlands, pp.
139–183.

Healey, J.A., Picard, R.W., Dabek, F., 1998. A new affect-perceiving interface and its
application to personalized music selection. In: Proceedings of the 1998
Workshop on Perceptual User Interfaces, San Francisco, USA.

Healey, J.A., Picard, R.W., 2005. Detecting stress during real-world driving tasks
using physiological sensors. IEEE Transactions on Intelligent Transportation
Systems 6, 156–166.

Hettinger, L.J., Branco, P., Encarnaco, L.M., Bonato, P., 2003. Neuroadaptive
technologies: applying neuroergonomics to the design of advanced interfaces.
Theoretical Issues in Ergonomic Science 4, 220–237.

Hua, J., Xioing, Z., Lowey, J., Suh, E., Dougherty, E.R., 2005. Optimal number of
features as a function of sample size for various classification rules.
Bioinformatics 21, 1509–1515.

Janssen, J.H., van den Broek, E.L., Westerink, J.H., 2009. Personalized affective music
player. In: 3rd International Conference on Affective Computing and Intelligent
Interaction. Amsterdam, Netherlands, pp. 1–6.

Kapoor, A., Burleson, W., Picard, R.W., 2007. Automatic prediction of frustration.
International Journal of Human–Computer Studies 65, 724–736.

Katsis, C.D., Ganiatsas, G., Fotiadis, D.I., 2006. An integrated telemedicine platform
for the assessment of affective physiological states. Diagnostic Pathology 1, 16.

Katsis, C.D., Katertsidis, N., Ganiatsas, G., Fotiadis, D.I., 2008. Toward emotion
recognition in car-racing drivers: a biosignal processing approach. IEEE
Transactions on Systems, Man and Cybernetics – Part A: Systems and
Humans 38, 502–512.

Kim, J., 2007. Bimodal emotion recognition using speech and physiological changes.
In: Plutchik, R., Kellerman, H. (Eds.), Robust Speech Recognition and
Understanding. I-Tech Education and Publishing, Vienna.

Kim, J., Andre, E., 2008. Emotion recognition based on physiological changes in
music listening. IEEE Transactions on Pattern Analysis and Machine Intelligence
30, 2067–2083.

Kim, K.H., Bang, S.W., Kim, S.R., 2004. Emotion recognition system using short-term
monitoring of physiological signals. Medical and Biological Engineering and
Computing 42, 419–427.

King, R.D., Feng, C., Shutherland, A., 1995. StatLog: comparison of classification
algorithms on large real-world problems. Applied Artificial Intelligence 9, 259–
287.

Koenig, A., Novak, D., Omlin, X., Pulfer, M., Perreault, E., Zimmerli, L., et al., 2011.
Real-time closed-loop control of cognitive load in neurological patients during
robot-assisted gait training. IEEE Transactions on Neural Systems and
Rehabilitation Engineering 19, 453–464.

Kolodyazhniy, V., Kreibig, S.D., Gross, J.J., Roth, W.T., Wilhelm, F.H., 2011. An
affective computing approach to physiological emotion specificity: toward
subject-independent and stimulus-independent classification of film-induced
emotions. Psychophysiology 48, 908–922.

Kreibig, S.D., 2010. Autonomic nervous system activity in emotion: a review.
Biological Psychology 84, 394–421.

Kreibig, S.D., Wilhelm, F.H., Roth, W.T., Gross, J.J., 2007. Cardiovascular,
electrodermal, and respiratory response patterns to fear- and sadness-
inducing films. Psychophysiology 44, 787–806.

Kuikkaniemi, K., Laitinen, T., Turpeinen, M., Saari, T., Kosunen, I., Ravaja, N., 2010.
The influence of implicit and explicit biofeedback in first-person shooter games.
In: Proceedings of the 28th ACM International Conference on Human Factors in
Computing Systems (CHI 2010). ACM, New York.
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