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A diagnostic platform for the early functional assessment of post-stroke patients was

designed in order to perform isometric measurements during activities of daily living (ADL)

tasks. The outcome of these measurements can contribute to verify the integrity of a post-

stroke existing or altered “internal model” for a particular functional task. A complete and

reliable software application for the diagnostic platform was designed, developed and tested

in  three European hospitals.

The software application was divided into two main modules: a graphical user interface

(GUI) and the data pre-processing techniques for the interpretation of recorded biomedical

and clinical data.

This paper presents the software application associated to the platform, aimed at

analysing and interpreting the huge amount of data recorded and collected during the

experimental trials. Its main objective is related to validating the onset detection and data
reduction.

The software application presented in this paper has been working and validated with

success in three different clinical centres in Europe and it can be effectively used both as

habi

for specific tasks. As the emphasis in stroke rehabilitation
assessment tool in re

.  Introduction
he approach for assessing the recovery state of stroke
atients presented in this paper relies on repeated
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measurements of motor efforts during movement  initiations
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is on the improvement of functional performance, an ideal
measuring tool must use activities of daily living (ADL) tasks
[1–4] as a principle for its quantitative measurements. This

erved.
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Fig. 1 – The Alladin Diagnostic Device.

the perspective of the end user was developed.
The DB is divided into local and global application. The
work is inspired by the assumption that the initiation and the
execution of a task have the same functional properties as
performing the task [5–8].

An innovative diagnostic platform for the functional
assessment (ADD, Alladin Diagnostic Device) (Fig. 1) was
designed and developed by a team of European researchers.
It can record time trajectories of forces and torques in isomet-
ric conditions from eight force–torque sensors, placed on the
whole-body. Each sensor has six degrees of freedom (DOF): the
simultaneous recording of data from 48 channels represents
a novelty in the rehabilitation domain.

The ADD is capable of measuring isometric force/torque
(F/T) trajectories during the initiation of six different ADL tasks
(‘drinking a glass of water’, ‘turning a key’, ‘picking up a spoon’,
‘lifting a bag’, ‘reaching for a bottle’ and ‘lifting and carrying a
bottle’) from the trunk (at the patient’s back), the lower trunk
(below the patient’s posterior), the impaired lower arm, the
impaired foot and toe, the impaired middle finger, index finger
and thumb. Every subject executed each task 3 times.

F/T measurements recorded at the initiation of a voluntary
movement  are associated to the trajectories planning [9].

The main objective of the isometric F/T measurements is
to obtain quantitative evidence for recovery from stroke dur-
ing rehabilitation: every isometric measurement can be used
to determine the actual status of the patient and support the
clinical staff to early planning of individually tailored rehabil-
itation therapies.

The mechatronic platform was designed to guarantee a
same anatomical start position for all subjects and, conse-
quently, the intra and inter-reliability of the measurements.
The force measurement resolution was 0.1 N and signals were
sampled at 100 Hz.

The measurement protocol started with showing to the
subjects a video of a particular task performed by a healthy
subject. Immediately after and in response to both visual

(green light on a traffic light) and sound cue, the subjects
attempted to perform the task. During the attempts, force and
 b i o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 27–37

torque signals were recorded from the sensors both in X,  Y and
Z direction [10–12].

As  it is very important that the position of the subject is
fixed in an exactly duplicable way over different trials, an iso-
metric setting was selected: in fact, it allows to measure the
movement  initiation in a standardized way, during the first
stages of motor recovery, when the patient’s active range of
motion may be very limited.

It has been shown that the isometric force and torque pat-
terns of patients with hemiparesis are different from healthy
subjects [13,14].  Previous research concentrated on features
such as maximum force and/or torque values or on movement
smoothness. The following research uses traditional features
and constructs new features as well with the aim to better
quantify and predict functional recovery.

It has to be noticed that the recordings lead to a large
amount of data per experiment: (6 ADL tasks per experi-
ment) × (3 repetitions per ADL task) × (8 sensors) × (3 spatial
directions per sensor) × (2 types of measurements: force and
torque) = 864 measurements in total.

This paper describes the solutions adopted for recording,
storing, sharing and interpreting the multi-dimensional clin-
ical data collected during the clinical trials. The following
issues have been faced in close collaboration with the clinical
experts, namely: (i) recording F/T measurements in isomet-
ric conditions and visualizing the related signals for clinical
interpretation, (ii) detecting the onset movement  time and
identifying the corresponding time window, since it has a par-
ticular interest to understand the recovery mechanisms after
a neurological damage, (iii) data pre-processing, which aims at
extracting useful information from the recorded force–torque
signals, (iv) data mining algorithms that, on the basis of
parameters obtained from the data pre-processing, extract
patterns containing information on the recovery process of
neurologically impaired patients.

In detail, the paper addresses the validation of the first
three issues presented above, whereas a paper focused on the
fourth aspect was already presented [15].

2.  Methods

2.1.  GUI  functional  and  technical  specifications

A top-down approach was used during the design of the
GUI (Fig. 2): through a collaboration with seven medical
experts, the following software specifications were identified:
(1) performing force/torque measurements, (2) storing data, (3)
managing patient profiles and different users profiles, (4) syn-
chronizing the local and global database (DB), (5) interfacing
to a PDA using an automatic speech recognition module.

To fulfil these specifications, the software was composed by
different modules, namely data acquisition (DAQ), data visu-
alization, database and automatic speech recognition module.
Moreover, a cover application that incorporates the above
mentioned modules and presents a unified application from
former consists of relational database and a set of consistently
organized data files, the latter being based on a MySQL DB

dx.doi.org/10.1016/j.cmpb.2012.10.017
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Fig. 2 – The software functional architecture.
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16]. The local DB was implemented using Microsoft ACCESS
000 and it is accessed using the Open Database Connectiv-
ty (ODBC) interface [17]. Data files are physically located on
he same workstation where the measurements are acquired.
his guarantees that the local DB is accessible at any time and

ts access time is short. Communication to/from the global DB
s encrypted through a secure shell (SSH) protocol [18].

The medical staff may upload data files from the local DB to
he global DB on a periodical basis. The data files can thus be
ownloaded from the global DB for an appropriate data anal-
sis. Data type and interfaces specifications of both the cover
pplication and the DB were given using the Unified Modeling
anguage (UML) notation [19].

The GUI was implemented using Visual Basic (VB) release
.0 (Fig. 4). The VB environment provides a safe and robust way
o connect the GUI with the DB and other software modules,
uch as the libraries (DLLs) implementing the functionalities
ffered both by DAQ and data visualization modules.
The GUI offers the following functionalities: (1) open a
atient record, (2) start a new session of measurements, (3)
reate a new patient’s record, (4) edit a patient’s profile, (5) Fig. 4 – The graphical user interface main window.
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Table 1 – Access rights policy for the different users.

GPI Diagnosis ICD ICF F/T NLD FM MAS  Adverse
event

System
settings

ADD-PT C/M R R – C – – – C/M R
NL-PT C/M R R C/M – C/M C/M C/M C/M R
PI C/M C/M C/M R R R R R C/M R
ADM C/M C/M C/M C/M C/M C/M C/M C/M C/M M

GPI, general patient information; ICD, International Classifications of Diseases codes; ICF, International Classification of Functioning, Disability
and Health codes; F/T, force/torque measurements; NLD, natural language descriptions, FM, Fugl–Meyer scores; MAS, Motor Assessment Score;
C, create an entry (no modification), M, modify an entry (no creation), R, read an entry (no modification). Shaded fields indicate a restricted

t reco
area, where the ADD-PT and NL-PT have access only to those patien

create a new user’s profile, (6) edit a user’s profile, (7) synchro-
nize with the global database, (8) synchronize with the PDA,
(9) manage the application as administrator, (10) edit system
settings and (11) manage a remote assistance.

The synchronization with the PDA allows to automatically
import the natural language audio recordings, perform speech
recognition analysis and translate speech into text, let user
manually validate the results and store the verified results into
the local DB.

The main types of data collected, uploaded to a local DB
(Fig. 3) and managed by the GUI are (i) patient data and related
metadata, (ii) standard outcome measures (SOM) scores, (iii)
natural language descriptions of the patient’s status, (iv) voice
records of the descriptions and (v) F/T measurements recorded
during ADL exercises.

The GUI allows to define four different user account types:
Administrator (ADM), Alladin Diagnostic Device Physiother-
apist (ADD-PT), Natural Language Physiotherapist (NL-PT),
Principal Investigator (PI) and uses an access right policy in
order to assure data safety and to respect data privacy (Table 1).

2.2.  Data  pre-processing

Stroke patients demonstrate an abnormal time activation of
muscular patterns due to limitations in forward model genera-
tion, motion planning, supervision and sensory-motor control
[20,21]. Therefore, the sequence of activation of the different
sensors (i.e. movement  onset timing) and the relative time
delays during the execution of the same task represent an esti-
mate of the patients’ distance to normality. On this basis, the
main assumptions underlying data pre-processing are:

1. stroke patients typically demonstrate reduced ability in
controlling generated forces and torques, both in inten-
sity and in spatial direction; therefore vector direction and
amplitude of such variables reflects the presence of impair-
ments which can be assessed by comparing deviations
between current mean vector and previous signals;

2. parameters characterizing the F/T signals are calculated for
both force and torque measurements on the three repeti-
tions of the specific task, for all the sensors and all the tasks

in each session;

3. amount of recorded multidimensional data is huge, which
means that it should be processed by data mining algo-
rithms.
rds they compiled.

Firstly, our interest was focused on the identification of
parameters conveying an estimation of patients’ distance
to normality. Moreover, as the measurements are recorded
during the movement  initiation task, different strategies for
the automatic movement  onset detection were analysed and
tested.

2.3.  Time  window  of  interest

The basic hypothesis underlying the development of the
ADD is that features extracted from the movement  prepa-
ration and initiation in isometric conditions are determi-
nants for the functional assessment of the recovery after
stroke.

The human ability to interpret the large amount of raw
data recorded through the ADD platform is limited by non-
systematic search patterns and by the presence of noise in
the signals. Moreover, the visual inspection is a burdensome
task which may also cause oversight errors or loss of useful
information. To overcome these limitations, dedicated soft-
ware  tools were developed. However, as the length of the
recorded F/T signals increases, also the computational bur-
den increases. In order to keep it as low as possible, a novel
approach for the development of pre-processing techniques
was proposed: the basic idea is that only the portion of signal
containing a significant content, in terms of relevant informa-
tion on the subject’s motor behaviour, can be used for further
processing, rather than using the whole raw signal. Indeed,
the choice of an appropriate time window may have a key
role for the understanding of recovery mechanisms after a
neurological damage.

The selection of a suitable time window must handle the
trade-off between keeping any useful information and reduc-
ing the computational burden. The measurement recording
time during different ADL tasks ranges from a minimum of
2.4 s to a maximum of 6.0 s, depending on the specific ADL
task (Table 2). From a clinical point of view, the data of interest
to be extracted from the ADD measurements are conveyed by
the very initial part of each recording. Therefore, in order to
extract meaningful parameters, the complete F/T signals at a
given sensor were considered only within a finite-length anal-
ysis frame. Time window starts from the estimate of the onset

time and lasts a few hundreds of milliseconds, corresponding
to a finite number N of samples.

For each task, after a time window was identified
and applied to the original signals, a set of candidate

dx.doi.org/10.1016/j.cmpb.2012.10.017
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Table 2 – Measurement recording time during different ADL tasks.

ADL task Recording #1
(baseline) (s)

Recording #2
(video) (s)

Recording #3 (1st
attempt) (s)

Recording #4 (2nd
attempt) (s)

Recording #5 (3rd
attempt) (s)

Glass 3.0 5.4 5.4 5.4 5.4
Key 3.0 3.7 3.7 3.7 3.7
Spoon 3.0 3.4 3.4 3.4 3.4
Bag 3.0 2.4 2.4 2.4 2.4
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Moving 3.0 6.0 

arameters was identified, extracted and then refined in
rder to identify those that allow estimating the “distance
rom normality” of patients during the rehabilitation pro-
ess.

.4.  Parameters  definitions

 recording is here defined as the set of force and torque mea-
urements at a given measurement site, for a given patient,
uring a given session and for a given task. The recordings for
ll these combinations represent a large amount of raw data to
e processed in order to capture relevant features character-

zing the motor recovery of post-stroke patients. The iterative
dentification process of suitable parameters was done in col-
aboration with the seven clinical experts participating in the
xperimental trials.

It is assumed that effort direction is a relevant feature
f the volitional movement  [22]: based on this assumption,
atients were not asked to actually perform the movements
ut only initiate them, according to the protocol design. Given

 recording, for the sth sensor, we compute the mean force
irection features as the colatitude and azimuth angles of
he mean force vector with respect to its referential. The
olatitude �F,s is defined as the angle between the z-axis
f the mean force vector and the azimuth �F,s as the angle
etween the positive x-axis and the line from the origin to
he end of the mean force vector projected onto the xy-
lane. These angles are obtained by converting the cartesian
oordinates of the mean force to spherical coordinates (Eqs.
1)–(3)):

 =
√

F2
s,x + F2

s,z + F2
s,z (1)

F,s = arccos
(

Fs,z

�

)
(2)

F,s = arctan
(

Fs,y

Fs,x

)
+ � u0(Fs,x)sgn(Fs,y) (3)

where u0 stands for the Heavyside unit step function (Eq.
4))
0(x) =
{

0 if x ≤ 0

1 if x > 0
(4)
0 4.0 4.0
0 6.0 6.0

and sgn(·) function denotes the signum function (Eq. (5)):

sgn(x) =

⎧⎨
⎩

−1 if x < 0

0 if x = 0

1 if x > 0

(5)

Such angles can be computed similarly from the mean
torque vector to characterize the mean torque “direction”.

Finally, the following four main categories were identified:

- Angular deviations from the mean direction. The underlying
hypothesis relies on the consideration that trajectories in
pathological subjects could show larger deviations from the
mean direction than in normal controls.
Given a recording, for the sth sensor, the angular deviation
ıF,s[k] between the kth force sample (Fs,x[k], Fs,y[k], Fs,z[k]) and
the mean force (Fs,x, Fs,y, Fs,z) is computed as the inverse
cosine of the normalized scalar product, i.e. the dot product
of the corresponding unit-norm vectors (Eqs. (6)–(8)):

−→a = (Fs,x, Fs,y, Fs,z) (6)

−→
b = (Fs,x[k], Fs,y[k], Fs,z[k]) (7)

ıF,s[k] = arccos

(
−→a∥∥−→a
∥∥ ·

−→
b∥∥−→
b
∥∥
)

= arccos

⎛
⎝ (Fs,xFs,x[k] + Fs,yFs,y[k] + Fs,zFs,z[k])√

F
2
s,x + F

2
s,y + F

2
s,z

√
Fs,x[k]2 + Fs,y[k]2 + Fs,z[k]2

⎞
⎠
(8)

- Angular deviations between successive effort samples. The
smoothness of the effort can be evaluated by computing the
angle between successive force and torque samples.
Following the same conventions adopted above, the angular
deviation ϕF,s[k] can be computed as the inverse cosine of
the normalized scalar product, i.e. the dot product of the
corresponding unit-norm vectors (Eqs. (9)–(11)):
−→a = (Fs,x[k], Fs,y[k], Fs,z[k]) (9)

−→
b = (Fs,x[k − 1],  Fs,y[k − 1],  Fs,z[k − 1]) (10)

dx.doi.org/10.1016/j.cmpb.2012.10.017


32  c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 27–37

 the 

]Fs,z[

+ Fs,

k − a

−→
F s1

∥∥ ,
∥∥−→
Fig. 5 – The overall architecture of

ϕF,s [k] = arccos

(
−→a∥∥−→a
∥∥ ·

−→
b∥∥−→
b
∥∥
)

= arccos

(
(Fs,x[k]Fs,x[k − 1] + Fs,y[k]Fs,y[k − 1] + Fs,z[k√

Fs,x[k − 1]2 + Fs,y[k − 1]2 + Fs,z[k − 1]2
√

Fs,x[k]2

- Cumulative sum of effort series. The integrals of the effort
signals are expected to convey some information on the
velocity of the initiated movements. However, it needs to be
emphasized that, strictly speaking, there is no real move-
ment, while the objects were fixed in the isometric setting.
Therefore, though these velocity features have no physical
meaning, they could convey relevant information about the
movement’s execution.
Given a recording, for the sth sensor, the norm

∥∥−→� F,s[k]
∥∥

of the integral vector −→� F,s[k] of the force sample vector
sequence at the kth time instant, within the analysis frame
k = k0, · · ·,  k0 + N − 1, is computed as the norm of the cumu-
lative sum of the force sample vector from the k0th time
instant up to the kth time instant (Eqs. (12)–(14)):

−→� F,s,x[k] =
k∑

l=k0

Fs,x[l]

−→� F,s,y[k] =
k∑

l=k0

Fs,y[l]

−→� F,s,z[k] =
k∑

l=k0

Fs,z[l]

(12)

I
(∥∥−→

F s1(k)
∥∥ ,
∥∥−→

F s2(

=
∑
∥∥−→

F s1

∥∥
∑
∥∥−→

F s2

∥∥p
(∥∥

=
k max∑

k=k min

p
(∥∥−→

F s1(k)
−→� F,s[k] = (�F,s,x[k], �F,s,y[k], �F,s,z[k]) (13)

∥∥−→� F,s[k]
∥∥ =

√
�F,s,x[k]2 + �F,s,y[k]2 + �F,s,z[k]2. (14)
Alladin pre-processing tool (APT).

k − 1])

y[k]2 + Fs,z[k]2

) (11)

- Cross-sensor time delay estimation. For each of the proposed
ADL task, a correct synchronization among the different
parts of the body is needed for an optimal performance.
The synchronization among the forces and torques dur-
ing the recording of the isometric task can be computed
by means the theoretical statistical dependency, known as
mutual information [23]. It consists in calculating the delay
between different sensors under which the mutual informa-
tion between different sensors is maximized. Through the
calculation of the mutual information the optimal delay can
be found as (Eq. (15)):

aoptimal = max
a

I
(∥∥−→

F s1(k)
∥∥ ,
∥∥−→

F s2(k − a)
∥∥) (15)

The mutual information under the above optimal delay
aoptimal could represent a useful feature (Eq. (16)):

Iaoptimal
= I
(∥∥−→

F s1(k)
∥∥ ,
∥∥−→

F s2(k − aoptimal)
∥∥) (16)

The mutual information can be thus computed as accord-
ing to Eq. (17):

optimal)
∥∥)

∥∥ ,
∥∥−→

F s2

∥∥) ln

(
p
(∥∥−→

F s1

∥∥ ,
∥∥−→

F s2

∥∥)
p
(∥∥−→

F s1

∥∥) p
(∥∥−→

F s2

∥∥)
)

F s2(k − a)
∥∥) ln

(
p
(∥∥−→

F s1(k),
∥∥−→

F s2(k − a)
∥∥∥∥)

p
(∥∥−→

F s1(k)
∥∥) p

(∥∥−→
F s2(k − a)

∥∥)
) (17)
The data pre-processing software is composed of different
modules (Fig. 5), the functional description of which follows,
and which have been implemented using the Matlab environ-
ment v6.5 (The Mathworks, Inc. Natick, USA).
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Table 3 – Probability of correctness (POC) of both the
deterministic methods and the decision system (MDS).

Onset technique POC force POC torque

Threshold 2 0.76 0.72
Threshold 4 0.79 0.76
Threshold 6 0.76 0.75
Threshold 8 0.78 0.77
Threshold 10 0.78 0.76
2nd derivative (filtered 3 Hz) 0.88 0.89
2nd derivative (filtered 5 Hz) 0.88 0.89
2nd derivative (zero crossing) 0.85 0.82
MDP 0.77 0.78
MDP-1st 0.74 0.78
Specialist (mean value) 0.90 0.90
MDS kNN based 0.90 0.92
MDS MLP based 0.92 0.93
MDS SVM based 0.91 0.85
MDS BOO based 0.93 0.86

Abbreviations: MDP, minimum density point; MDS, multi dichotomy
c o m p u t e r m e t h o d s a n d p r o g r a m 

.5. Onset  time  detection

he latency between the start of the voluntary muscular
ontraction of different body segments and the start of
/T recording in hemiparetic subjects can be significantly
rolonged [24]. Hence, the determination of the movement
nset time in the recorded signals represents a fundamental

ssue of pre-processing analysis. It represents a challenging
opic, whose reliability is crucial for analysing the neuro-
hysiological recovery, as reported in the previous sections.

However, the isometric measurements typically involve the
egistration of F/T signals that are weak and often noisy, since
hey are collected from patients with physical impairments.
oreover, manual ticking of onset time cannot be a viable

olution due to the vast amount of generated data.
To overcome these limitations, starting from the review of

he state-of-the-art techniques and after an internal debate
etween engineers and clinical experts, candidate method-
logies for automatic onset time estimation were identified
y using:

. the point where the force–torque signal reaches 2%, 4%, 6%,
8% and 10% of its peak value;

. 2nd order derivative of the force–torque signal (with low-
pass filtering at 3 Hz or at 5 Hz);

. the spectral flatness measure (SFM) of the F/T signal, based
on a maximal information redundancy criterion;

. a probability density function (PDF) estimate of the
force–torque signal through a kernel smoothing based
method (ks-density).

 The 2% rule. Former neurorehabilitation research inspired
the proposed technique [25]. The input to the threshold-
based algorithm consists of the three components of the
force Fx, Fy and Fz (or torque) signals. It computes the 2% 4%,
6%, 8% and 10% of the peak value on the signal and finds the
minimum time corresponding to that value for each compo-
nent. This value is taken as the onset time. These methods
are referred to as Threshold 2, Threshold 4, Threshold 6,
Threshold 8 and Threshold 10;

 The second derivative method.  A previous study on the gait
analysis inspired the present technique [26]. Three ver-
sions of the present algorithm (a, b, c) have been developed.
The algorithm initially finds the threshold point on the 1st
derivative of the input signal at the 15% of its maximum: a.
it searches the nearest maximum peak of the second deriva-
tive of the 3 Hz filtered signal (2nd derivative-filtered 3 Hz). b.
it searches the nearest maximum peak of the second deriva-
tive of the 5 Hz filtered signal (2nd derivative-filtered 5 Hz). c.
it searches backward the zero crossing in the first derivative
line (2nd derivative-zero crossing). This is similar to the 2%
rule, except that it scans backward from a higher speed, so
initial small velocity peaks are neglected.

 The SFM method. The SFM method measures the amount of
correlation structure existing in a signal [27].

The kernel smoothing based method (ks-density). The ks-density
function computes a PDF estimate of the input vector. Typ-
ically stationary values (e.g. flat regions) of force–torque
signal correspond to maxima of the PDF while values where
system; kNN, k-nearest neighbour; MLP, multi-layer perceptron;
SVM, support vector machine; BOO, AdaBoosting.

the slope of the signal is high generally correspond to min-
ima  of the PDF. The algorithm locates the minimum of
the local minima (minimum density point, MDP) in the
ks-density function. A first version of the PDF estimation
algorithm outputs the MDP as the onset time; it is referred
to as MDP  in the following. In a second version, labelled as
MDP-1st, the intersection of the line passing through the
MDP with a slope equal to the mean value of the first deriva-
tives of an arbitrary interval around the MDP  is computed.

The outcome of such an analysis is the identification of
the best method for automatic onset detection, which can be
subsequently applied to determine the onset time for all the
input samples. However, one of the major drawbacks of deter-
ministic onset detection techniques is their dependency from
the input signal structure, which can affect their efficiency.
Therefore, the choice of a simple deterministic method cannot
cope with the variability among different signals. Moreover,
the results of each deterministic method, reported in Table 3
and discussed later, show that their performance, although
promising, cannot be evaluated as satisfactory as less reliable
than those manually ticked by clinical experts.

To tackle these issues, an approach that automatically
identifies the most appropriate onset detection technique for
each input signal has been proposed [28]. The proposed sys-
tem, also referred to as multi dichotomy system (MDS) in the
following, is composed of different binary classifiers, each one
specialized in separating one class from the others. Different
classifiers, such as k-nearest neighbour (kNN), multi-layer per-
ceptron (MLP), support vector machine (SVM) and AdaBoosting
(BOO) were tested as well.

2.6.  The  Alladin  pre-processing  tool  (APT)

The Alladin pre-processing tool (APT) is a software tool

that automatically derives specific parameters from the ADD
recordings and stores the output data into a structure using a
format for subsequent data mining analysis that has to lead
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ion 
Fig. 6 – The Alladin visualizat

to the extraction of clinical markers and milestones, relevant
for functional assessment of patients.

The functional description of the different modules which
form the data pre-processing software tool, namely (a) filter-
ing module, (b) visualization module and (c) feature extraction
module, are now presented.

2.7.  The  Alladin  filtering  module  (AFM)

A two-channel parallel low-pass filtering, one featuring a cut-
off frequency at 40 Hz and another with a cut-off frequency
at 2 Hz was proposed and implemented in order to provide
two separate data sets for subsequent processing. The former
frequency was selected considering that human muscles can
generate mechanical signals up to a maximum frequency of
40 Hz (muscle sound) [29]. The latter frequency was chosen
since human voluntary movement  typically generates signals
within the frequency range 0–2 Hz [30].

On this basis, the 40 Hz-channel is the main channel used
for feature extraction, whereas the 2 Hz-channel is used for
visualization and onset time estimation operations.

2.8.  The  Alladin  visulization  module  (AVM)
The ALLADIN visualization module (AVM) allows visual
inspection of data during the pre-processing operations
(Fig. 6). Through the controls positioned on the main window,
the patient ID, session, task and measurement number can be
module (AVM) main window.

selected. Data filtering, computations and coordinate trans-
formations can be applied to the measurements, and plotted
for inspection.

A slightly different version of AVM was implemented with
the aim of simplifying the clinical experts’ task. The module
allows manual selection of the onset time directly on the plot,
by simply clicking on the window by using the PC mouse.

2.9.  The  Alladin  feature  extraction  module  (AFEM)

The Alladin feature extraction module (AFEM) extracts the sta-
tistical and temporal features presented in previous section
on all the ADD measurements of the input data set filtered at
40 Hz by AFM.

The extracted parameters for every recording were stored
in a hierarchical structure of strings, arrays and cell arrays
containing the identification information as well. Every stored
parameter presents a description and a value.

As mentioned in the previous paragraphs, a subset of six
features has been extracted from the original set of pro-
posed parameters as clinical markers for recovery assessment.
The reduction of the initial number of features was solved
by means of a hybrid filter-wrapper approach described in
[15]: the implementation of a statistically optimal filter led to

reduce the feature set from 59,472 features to 2637 features.
The wrapper search on this smaller set reduced the feature set
to a total of 6 features. A description of the 6 extracted features
follows:
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. Standard deviation value of the integral of the sample vec-
tor within the time region of interest, in the middle finger
sensor during the second attempt of the drinking task.

. Maximum value of the angular deviation between the
torque sample vector and the mean torque vector within
the time region of interest, in the thumb finger sensor dur-
ing the fourth attempt of the lifting bottle task.

. Mean value of the angular deviation between the torque
sample vector and the mean torque vector within the
time region of interest, in the seat sensor during the third
attempt of the drinking task.

. Standard deviation value of the integral of the sample vec-
tor within the time region of interest, in the thumb finger
sensor during the fourth attempt of the lifting bottle task.

. Normalized sum of the residual, in the thumb finger sensor
during the fourth attempt of the drinking task.

. Mean value of the angular deviation between the force sam-
ple vector and the previous force vector within the time
region of interest, in the index finger sensor during the
fourth attempt of the lifting bag task.

.  Results

he software tool has been used in three European hospitals
or clinical trials. The centres participating in the multi-centre
linical trials were:

 Algemeen Ziekenhuis Maria Middelares Sint-Jozef Hospital
(AZMMSJ), Gent, Belgium;

 Adelaide & Meath Hospital (AMNCH), Tallaght, Dublin,
Ireland;

 Szent János Hospital, Budapest, Hungary.

Altogether 270 subjects (120 healthy subjects, 150 hemi-
aretic subjects) were recruited during the clinical trials. The
hree clinical centres obtained the approval of the local ethics
ommittees. Informed consent was obtained by each subject.

From the global patient database, a force and torque
atasets consisting of 96 sample F/T measurements recorded
sing the ADD was selected and used for validation purposes.

As the automatic onset detection is concerned, Table 3
resents the results of the comparative analysis among the
erformance of the different techniques with respect to the
eference performance of seven clinical experts working in the
hree centres participating in the trials.

Indeed, the mean onset reference values assessed by the
xperts, named as Mean Reference Vector (MRV) in the follow-
ng, was computed taking into account the variability among
he different onset times. To lower this variability, which can
lso affects the reliability of the ground truth used to train the
ecision system, the outliers were deleted.

The reference time is then computed as the mean onset
ime among the experts that fall between the 5th-percentile
nd the 95th-percentile of the mean value itself. Hence, for
ach iteration, the onsets that do not fall in this interval are

isregarded, and the mean is again computed considering only
he ticks that satisfy such a condition.

Then, the performance figure of the automatic onset detec-
ion method is expressed in term of probability of correctness
b i o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 27–37 35

(POC), which is calculated as the ratio Nc/N, where N is the total
number of samples and Nc is the number of samples which
fall between the 5th-percentile and the 95th-percentile of the
MRV.

The comparison between manual and automatic meth-
ods was performed on a reference force and torque datasets
composed by 96 ADD measurements, representative of the
patients recruited in the three centres and homogeneous in
terms of gender, age, initial severity of impairment and side
of hemiparesis.

The patients performed the six different ADL tasks. As each
measurement involves the eight sensors embedded into the
ADD, the final force and torque datasets consists of 768 signals
(96 measurements × 8 sensors), respectively [31].

Table 3 shows performance that is encouraging, but
not satisfactory yet. Indeed the results achieved by clinical
experts are better than those achieved by deterministic onset
approaches.

The last four rows of Table 3 report the POC achieved by the
pattern recognition system on both force and torque datasets
using the different classifier architectures reported in the pre-
vious section.

As for force data, in three of four tests the pattern
recognition system outperforms the specialists’ performance,
whereas in one case it achieves the same result of the human
experts. Furthermore, in all cases the proposed decision
approach performs better than each deterministic method.
It was an expected result, since such a system dynamically
chooses different deterministic methods on the basis of each
signal structure.

As for torque data, when either kNN or MLP architecture
are used as binary classifier, the recognition system outper-
forms the specialists’ results. In the other two  cases (SVM and
BOO architecture), the recognition system does not exhibit a
satisfactory performance. A possible reason is that the fea-
tures set may not work well in conjunction with this classifier
architecture, causing a performance drop of these classifi-
cation algorithms. The presented results allow concluding
that:

(i) the proposed techniques can be used to remove useless
parts of the signal;

(ii) the first phase of the data mining stage should be ded-
icated to the identification and recognition of typical
patterns, which then could lead to a narrower time win-
dowing.

A second and larger reference dataset from 96 subjects
recruited in the clinical trials was identified, prepared and
delivered to the group of clinical experts in order to per-
form a second onset estimation. Such dataset was composed
by 27,648 F/T measurements (i.e., 96 subjects × 8 sensors × 6
ADL tasks × 3 spatial directions per sensor × 2 types of mea-
surements: force and torque). The additional comparative

analysis between the automatic techniques and the extended
set of manually detected onset times demonstrated that the
results were not significantly different from those previously
obtained.
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4.  Discussion  and  conclusions

This paper describes the design methodology, the devel-
opment and application of both a GUI and a clinical data
pre-processing software tool. An application to a mechatronic
platform for whole-body isometric force–torque measure-
ments for functional assessment in neuro-rehabilitation was
presented.

Thanks to the close collaboration between rehabilitation
medical staff and biomedical engineers, after several clinical
tests, a multidisciplinary approach was proposed to simplify
the problem of recording multidimensional data and hand-
ling the great amount of acquired raw data. In the proposed
approach the relevant part of the raw signal (i.e., the part in
which the F/T exerted by the patient is clearly visible) was
selected through the use of a series of movement  onset detec-
tion algorithms. Then a first set of parameters were extracted
as possible feature candidates in a pre-processing stage.

These pre-elaborated data, if input to data mining, can be
expected to strongly decrease the computational work load.
The present paper presented a complete and reliable user
interface and data pre-processing techniques to be used in
conjunction with an innovative mechatronic platform which
can be used both for functional assessment of post-stroke
patients and for basic research in the neuroscience domain
as well.

Future works will be aimed at including plans to clini-
cally validate the automatically produced set of quantifiers
in comparison with other ADL outcomes in healthy and
neurologically impaired groups. Moreover, the ADD is being
integrated with systems for surface EMG  and brain imaging
(e.g., PET, fMRI, MEG,  NIRS, EEG) data recording to evaluate
changes in motor performances induced by the rehabilitative
treatments and reinforce the pattern recognition approach.
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