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a b s t r a c t

Rehabilitation of post stroke patients with upper extremity motor deficits is typically

focused on relearning of motor abilities and functionalities requiring interaction with

physiotherapists and/or rehabilitation robots. In a point-to-point movement training, the

trajectories are usually arbitrarily determined without considering the motor impairment of

the individual. In this paper, we used an optimal control model based on arm dynamics

enabling also incorporation of muscle functioning constraints (i.e. simulation of muscle

tightness) to find the optimal trajectories for planar arm reaching movements. First, we

tested ability of the minimum joint torque cost function to replicate the trajectories obtained

in previously published experimental trials done by neurologically intact subjects, and

second, we predicted the optimal trajectories when muscle constraints were modeled.

The resulting optimal trajectories show considerable similarity as compared to the experi-

mental data, while on the other hand, the muscle constraints play a major role in determi-

nation of the optimal trajectories for stroke rehabilitation.
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1. Introduction

Upper extremity motor deficits are prevalent post stroke
requiring efficient motor rehabilitation, which is typically
focused on relearning of motor abilities and functionalities,
often necessitating one-on-one manual interaction with phy-
siotherapists and/or rehabilitation robots. In recent years,
rehabilitation robots made their way to clinical practice as they
can apply high-intensity, repetitive, task-specific, interactive
treatment with objective and reliable means of monitoring of
patient progress. Robot-aided therapy can also evaluate
patient's movements and assist them in moving the upper
extremity through a predetermined trajectory during a given
motor task. In current rehabilitation robot assisted arm training
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predominantly straight line trajectories connecting the starting
and ending points of upper extremity movement are being used.
This might be to a large extent based on predictions of the
minimum jerk trajectory formation model, proposed by [1–3],
which is, however, valid only under assumptions that no
constraints either in the movement space, i.e. boundaries of
range of motion (ROM), or the musculo-skeletal system are
present. In contrast, some experimental [4–6] and theoretical
[5,7,8] results suggest curved paths when either of constraints
are invoked, especially when the target point is at the boundary
of arm's ROM or in the case if the path is long-distanced.

Furthermore, symmetrical velocity profiles predicted by the
minimum jerk models are not always consistent with the
experimental trajectories. For instance, it has been demon-
strated that in the case of slow movements, the maximum
c of Slovenia.
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velocity is shifted toward the beginning of the movements,
and toward the end in the case of ballistic movements [9].
Hence, different character of movement as well as the
functional (dis)ability of the arm would suggest different cost
function (rather than minimum jerk), which may be more
appropriate to determine the optimal trajectory. Furthermore,
one may expect entirely different arm trajectories when
muscle spasticity or any kind of arm weakness is considered.
More natural cost function in rehabilitation robotics supported
movement training, where muscle weakness and muscle
tightness pose considerable constraints, would be one related
to required joint torques, since the rehabilitation robot needs
to supply a ‘‘missing’’ joint torques.

The aim of this paper was first to develop an optimal control
model based on arm dynamics enabling also incorporation of
altered muscle functioning constraints, which can simulate arm
tightness. With our proposed model we compared the experi-
mental data of the arm reaching movements performed by
neurologically intact population and described in the previous
study [4] to test the ability of the selected cost function
minimizing a sum of squared torques in the shoulder and
elbow, to predict trajectories at boundaries of the ROM and long-
distanced trajectories. Since the experimental trials were done
by neurologically intact subjects, we first optimized the move-
ments based on two-link model dynamics, where muscle
constraints (i.e. passive muscle forces) were not included in the
model. To find the optimal trajectory, the first-order gradient
algorithm with the minimum jerk trajectory as an initial guess
was used. In the optimization process, we used exactly the same
Fig. 1 – Planar human arm model. (a) Kinematic model of huma
muscle model with four monoarticular muscles (1-pectoralis maj
brachii) and two biarticular muscles (5-biceps brachii, 6-long head
physical parameters of the planar two-link human arm model,
the start and end points, and the movement duration as
described and reported in the compared study. We then
incorporated stiffness-based muscle tightness emulations to
investigate its influence on the minimum torque based solution
implying different trajectories to be practiced in the neurologi-
cally impaired central nervous system.

2. Methods

2.1. Human arm model

We modeled a human arm that consisted of two links, where
the first link is upper arm, while the second link is consisted of
forearm and hand. This 2 DOF human arm model has two
rotational joints representing the shoulder (i = 1) and elbow
(i = 2) joints. The model is simplified for planar arm reaching
and does not contain the gravitational vector. A schematic
model of the human arm is shown in Fig. 1(a), where all the
variables and most of the arm parameters are indicated. The
shoulder joint is located at the position (0, 0) of Cartesian
coordinate system as shown in Fig. 1. This model also contains
six muscles attaching to the arm links as shown in Fig. 1(b).
Two monoarticular muscles causing torque in the shoulder
joint (1-pectoralis major and 2-posterior deltoid), two monoarti-
cular muscles around elbow joint (3-brachialis and 4-lateral head
of triceps brachii), and two biarticular muscles (5-biceps brachii
and 6-long head of triceps) are shown.
n arm modeled as a planar two-link manipulator. (b) Six
or, 2-posterior deltoid, 3-brachialis, 4-lateral head of triceps
 of triceps).
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2.1.1. The kinematics of links
The hand position of the two-link arm, which is defined in
Cartesian coordinate system as the coordinates (x, y), can be
expressed by joint angles (u1, u2), yielding forward kinematics:

x
y

� �
¼ L1 cos u1 þ L2 cosðu1 þ u2Þ

L1 sin u1 þ L2 sinðu1 þ u2Þ
� �

: (1)

The inverse kinematics relations can be written as

u1

u2

� �
¼

arctan2ðy; xÞ � arccos
r2 þ L21 � L22

2L1r

� �

p � arccos
L21 þ L22 � r2

2L1L2

� �
2
6664

3
7775; (2)

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and

arctan2ðy; xÞ ¼ arctanðy=xÞ þ sgnðyÞ � ð1 � sgnðxÞÞp=2:

2.1.2. Arm dynamics
The manipulator dynamics were modeled with the Lagrangian
formulation without using potential energy. The manipulator
dynamics are specified by (3), where t = [t1 t2]

T are torques
around the shoulder and elbow joints, tmuscles = [t1,muscles

t2,muscles]
T are joint torques due to passive muscle forces,

u = [u1 u2]
T are joint angles, _u ¼ ½v1 v2�T are angle velocities, and

€u ¼ ½ _v1 _v2�T are angle accelerations.

MðuÞ€u þ Cðu; _uÞ _u þ B _u ¼ t þ tmuscles: (3)

The manipulator inertia matrix M, Coriolis and centrifugal
matrix C, and viscosity matrix B are given as follows

MðuÞ ¼ a þ 2b cos u2 d þ b cos u2
d þ b cos u2 d

� �
; (4)

Cðu; _uÞ ¼ �b _u2 sin u2 �bð _u1 þ _u2
:

Þsin u2
b _u1 sin u2 0

" #
; (5)

B ¼ b11 b12
b21 b22

� �
(6)

with the following constants

a ¼ I1 þ I2 þ m1L2g1 þ m2ðL21 þ L2g2Þ; (7)

b ¼ m2L1Lg2; (8)

d ¼ I2 þ m2L2g2: (9)

2.1.3. Muscle modeling
The muscle lengths l = [l1, l2, l3, l4, l5, l6]

T are expressed as follows:

l1
l2
l3
l4
l5
l6

2
666666664

3
777777775
¼

�a1u1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 � a21

q
þ a1 p � arccos

a1
b1

� �

a2u1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 � a22

q
þ a2

p

2
�arccos

a2
b2

� �

�a3u2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b23 � a23

q
þ a3 p � arccos

a3
b3

� �

a4u2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b24 � a24

q
þ a4

p

2
�arccos

a4
b4

� �

a51
p

2
�u1

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L21 þ ða51 � a52Þ2

q
þ a52

p

2
�u2

� �
a61u1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L21 þ ða61 � a62Þ2

q
þ a62u2

2
666666666666666666664

3
777777777777777777775

; (10)
where a1–4, b1–4, a51, a52, a61 and a62 represent the moment
levers of each muscle. The levers are assumed to be constant in
the arm's workspace, independent of the joint angles. The
moment lever matrix is then given by

WT ¼ �a1 a2 0 0 �a51 a61
0 0 �a3 a4 �a52 a62

� �
: (11)

In our model, we used only passive muscle force of Hill-type
model for force generation [10] to simulate muscle tightness
conditions. Since the muscles can only exert positive forces,
the passive muscle force is given by (12), considering
inequality constraints. The shape of the exponential was
determined by the variable Ksh and the scaling factor F0 defined
the nominal passive muscle force.

FðlÞ ¼
0; l < l0

F0
eKsh � 1

ðeðKshðl�l0ÞÞ=ð0:5l0Þ � 1Þ; l � l0

(
(12)

The passive muscle force begins to work at the nominal
muscle length l0 onwards, while it remains zero up to l0. Fig. 2
shows the relation between the normalized passive muscle
force and the muscle length, where two different muscle
conditions are represented: normal (solid line) and muscle
tightness (dashed line). The difference between these two
conditions is in the nominal muscle length, where passive
muscle force under muscle tightness conditions begins to
work at a shorter muscle length (i.e. at l0,m.t.) than under
normal conditions (i.e. at l0,normal). This relation is given by
following inequality

l0;m:t: < l0;normal: (13)

The relation of the joint torque vector tmuscles and the
muscle force vector F = [F1, F2, F3, F4, F5, F6]

T is defined by

tmuscles ¼ WTFðlÞ: (14)

2.1.4. Muscle static field
To represent the characteristics of arm's muscle tightness in
the workspace, the joint torques (i.e. the static joint torques
tstatic) were calculated from (3), where all angle velocities and
angle accelerations contributions were excluded. The muscle
static field is then defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tTstatictstatic

q
, where the static joint

torques are expressed as follows

tstaticðuÞ ¼ �WTFðlðuÞÞ: (15)

2.1.5. Model parameters
Since our first goal was to compare the results of our study
with the experimental results made by Suzuki et al., we used
exactly the same physical parameters of human arm,
measured and determined in [4]. In the experimental
procedures of the comparative study, six male subjects (age
20–34 years) participated. All subjects were right-handed and
free of known musculoskeletal and neurological abnormalities
[4]. The representative subject from the experiment was 34
years old, 1.78 m high and 80 kg weighing male participant.
The estimated lengths and the inertial parameters of two
segments are given in Table 1. The length of upper arm
segment L1 was defined as a distance between the shoulder
joint center (S) and the elbow joint center (E), and the length of



Fig. 2 – The relation between normalized passive muscle force and muscle length. The exponential function of passive force
begins at the nominal muscle length l0 (left graph), but in the case of muscle tightness, the passive muscle force already
begins to work at a shorter muscle length: l0,m.t. < l0,normal (right graph).
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forearm segment including hand L2 as a distance between the
elbow joint center (E) and the distal end of the first phalanx of the
middle finger (H). The position of the center-of-mass (COM) of
upper arm and forearm is defined as a proportional distance
from the proximal joint center to the COM with the respect to
the total segment distance as shown in Fig. 1, labeled Lg1 and Lg2.
The mass and inertia parameters of human arm were used
on the basis of the studies [11–14] on the human body
characteristics. The numerical constants of the viscosity matrix
are given by (16). These constants, used for movements in the
horizontal plane, were experimentally determined by [5].

B ¼ 0:74 0:10
0:10 0:82

� �
½N m s� (16)

The positions at which the muscles connect the bones were
set according to [15], except that we avoid the muscle
singularities by setting the muscle torque levers to be constant
(Table 2). The nominal length of each muscle, at which passive
muscle force begins to work, was defined in a way that the
entire workspace of the arm (i.e. �208 < u1 < 1208 and
08 < u2 < 1358) was systematically examined by setting out
the extent to which each muscle length changes. Then, the
average value of the recorded muscle lengths was defined as
its nominal length under the normal muscle condition. In our
optimization process, the nominal lengths under the muscle
tightness conditions were set to l0,m.t. = 0.9 � l0,normal. The
Table 1 – Physical parameters of two-segment human
arm model were used for the dynamic optimization.
Estimated lengths and inertial parameters of a represen-
tative subject (age 34 years, height 1.78 m, weight 80 kg)
were used on the basis of point-to-point movement
experiment.

Parameter Shoulder
joint (i = 1)

Elbow
joint (i = 2)

Length Li [m] 0.298 0.419
Mass mi [kg] 2.089 1.912
Center of mass Lgi [m] 0.152 0.181
Moment of inertia Ii [kg m2] 0.0159 0.0257
variable Ksh, which defines the shape of exponential passive
muscle force and the scaling factor F0 were defined arbitrary.
The values of nominal muscle forces and the nominal muscle
lengths under the normal and muscle tightness conditions are
shown in Table 3.

2.2. Initial and final postures

Nine points were selected in the horizontal plane of 2 DOF right
arm model [4]. Three starting (S1, S2, S3) and three ending
points (T1, T2, T3) of the hand position were defined as a
determination of the shoulder and elbow joint angles, u1 and u2.
The two joint angles are used to describe the initial and final
arm postures as shown in Fig. 3. The initial postures were
defined at different shoulder angles with a constant elbow
joint angle of 908, positioned in the middle of working area,
while the final postures were determined by the placement of
the three targets at the edge of arm workspace, also with
different shoulder angles and the constant elbow joint angle of
258. All six selected arm postures and the corresponding hand
positions in Cartesian coordinate system are represented in
Table 4 and Fig. 3. Thereby, the shoulder joint motion had
different directions and magnitudes, while the elbow joint had
constant extensions of 658 from all start to end point directions
(Table 5). All possible combinations were separated in three
parts. Part A represents combinations of initial and final
Table 2 – Muscle torque levers, connections points and
passive force shape parameter. The shape of exponential
muscle passive force was set by variable Ksh.

0.055 a1–2 [m]
0.045 a4–5 [m]
0.055 a51 [m]
0.045 a52 [m]
0.055 a61 [m]
0.045 a62 [m]
0.080 b1–2 [m]
0.120 b3–4 [m]
1 Ksh



Table 3 – Nominal muscle forces and nominal muscle
lengths. We set the relation between muscle tightness
and normal nominal muscle lengths to l0,m.t. = 0.9l0,normal.

Muscle F0 [N] l0,normal [m] l0,m.t. [m]

Pectoralis major 120 0.1382 0.1244
Posterior deltoid 120 0.1478 0.1330
Brachialis 120 0.1462 0.1316
Triceps brachii (lateral head) 120 0.1816 0.1634
Biceps brachii 100 0.3542 0.3188
Triceps (long head) 100 0.3992 0.3593

Fig. 3 – Schematic illustration of initial (solid lines) and final
arm postures (dotted lines) described in Table 4. Arm
postures illustrate boundary conditions of trajectories
described in Table 5.

Table 4 – Initial and final arm postures defined by
shoulder (u1) and elbow (u2) joint angles, with the
corresponding hand positions in Cartesian coordinate
system, which determine the three starting (S1, S2, S3)
and three ending points (T1, T2, T3), i.e. targets.

Target Arm posture Hand position

u1 (8) u2 (8) (x, y) [m]

S1 110 90 (�0.50, 0.14)
S2 65 90 (�0.25, 0.45)
S3 20 90 (0.14, 0.50)
T1 95 25 (�0.24, 0.66)
T2 50 25 (0.30, 0.63)
T3 5 25 (0.66, 0.24)
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postures with shoulder extensions of 158, 608 and 1058 referred
as the S1–T1, S1–T2 and S1–T3, respectively. Similarly, part B
represents those with shoulder flexion to 308 and extension to
158 and 608 referred as the S2–T1, S2–T2 and S2–T3, respectively,
and those with flexion to 758 and 308 and extension to 158 as
the S3–T1, S3–T2 and S3–T3, respectively in the part C. We also
calculated the distances between selected points. Further-
more, the important parameter for dynamic optimization is
Table 5 – Kinematic profiles of all nine trajectory combinations
results of Suzuki et al. experiment trials and the direction (flexi
(el) joint motion was described.

Trajectory Distance Duratio

start ! end [m] [s] 

A S1 ! T1 0.58 0.72 

S1 ! T2 0.94 0.83 

S1 ! T3 1.16 0.90 

B S2 ! T1 0.21 0.60 

S2 ! T2 0.58 0.72 

S2 ! T3 0.93 0.83 

C S3 ! T1 0.41 0.66 

S3 ! T2 0.21 0.60 

S3 ! T3 0.58 0.72 
the movement duration of each trajectory, which was also
taken from the results of experiment trials [4].

2.3. Optimization method

The optimization problem was defined to find the optimal
point-to-point movement with the appropriate cost functional
(performance index) – see Appendix A. In the case of
comparison with the experimental data, the arm muscles
were excluded from the model, while in the case of simulating
the muscle tightness conditions, the flexor muscles ( pectoralis
major, brachialis and biceps brachii) were included for simulating
the muscle tightness. The principle of our optimization
method is based on the dynamics of the motion of arm in
intracorporal space. We used the concept from the field of
optimal control [16] that is dominant in attempts to explain
features of the arm movements. To formulate the optimiza-
tion problem for the dynamical system, given in the general
form

_x ¼ f ðx; t; tÞ; (17)

we first need to reduce the order of nonlinear dynamic equa-
tions, obtained from (3). The system of two second-order
differential equations (3) can be reformulated and inversed
as a system of four first-order equations:

_u ¼ v
_v ¼ M�1ðt þ tmuscles � Cv � BvÞ; (18)
, divided into A–C parts. The duration was taken from the
on or extension) with magnitude of shoulder (sh) and elbow

n Direction Magnitude

sh el sh el

ext ext 158 658
ext ext 608 658
ext ext 1058 658

flex ext 308 658
ext ext 158 658
ext ext 608 658

flex ext 758 658
flex ext 308 658
ext ext 158 658
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where u denotes joint angles, v angular velocities, t joint
torques and tmuscles joint torques due to passive muscle forces.
The state vector is then

x ¼ u1 u2 v1 v2½ �T; (19)

with the boundary conditions given by (20). The boundary
conditions of joint angles are specified at the initial (t = 0)
and final (t = tf) arm postures, shown in Table 4, while the
angular velocities are equal to zero in those postures.

xð0Þ ¼ u10 u20 v10 v20½ �T
xðt f Þ ¼ u1 f u2 f v1 f v2 f

	 
T : (20)

Before starting the process of solving the two-point
boundary value problem, the initialization is needed to set
the human arm parameters, the boundary conditions and the
torque estimation. To determine the estimated torques, we
first set the estimated hand path from start to end point, which
was initially defined as a straight line trajectory in the
Cartesian coordinates. The tangential velocity is bell-shaped
with a single peak. Given this information and the duration of
the movement tf, the trajectory of the hand is specified in its
entirety. Assuming the movement to start and end with zero
velocity and acceleration, the following expressions for hand
trajectory are obtained with the fifth-order polynomial in time:

xhðtÞ ¼ x0 þ ðx0 � x f Þð�6T5 þ 15T4 � 10T3Þ
yhðtÞ ¼ y0 þ ðy0 � y f Þð�6T5 þ 15T4 � 10T3Þ ; (21)

where T = t/tf, (x0, y0) are the initial hand position coordinates
at t = 0, and (xf, yf) are the final hand position coordinates at
t = tf. The estimated hand trajectory (xh(t), yf(t)) is then trans-
formed into joint space by using inverse kinematics – (2)
including corresponding derivatives of the joint angles _u

and €u. Finally, the estimated torques t(t), used as an initial
guess for the optimization process, are calculated via inverse
dynamics (3).

Dynamic optimization requires definition of a criterion
function which describes the objective of the movement. The
criterion function is expressed mathematically as a time
integral of a performance index, which in general may depend
on the system inputs, outputs and internal variables L = L(x, u,
t). In our case, a minimum torque trajectory is planned, where
the torques t required by each joint becomes the smallest, thus
the criterion function has the following form

J ¼
Z t f

0
tTt dt: (22)

To find the optimal trajectory, where criterion function is
satisfied, we use the first-order gradient algorithm. This
method is characterized by iterative algorithm for improving
estimates of the (un)specified initial or terminal conditions.
A first-order gradient algorithm used for solving this
optimization problem is presented step by step in
Appendix B.

The projection of the optimal trajectory given by joint
angles to a feature space was done by forward kinematics via
(1). The velocity vectors of the optimal trajectory was also
calculated with the use of Jacobian matrix that transforms the
internal to external coordinates – in our case the angular
velocity to the hand velocity vectors. The relation is given by

_xh
_yh

� �
¼ �L1 sin u1 � L2 sinðu1 þ u2Þ �L2 sinðu1 þ u2Þ

L1 cos u1 þ L2 cosðu1 þ u2Þ L2 cosðu1 þ u2Þ
� �

_u1
_u2

� �
:

(23)

To calculate the trajectory velocity profile, (24) was used.

vðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2h þ _y2h

q
(24)

2.4. Model evaluation

To compare predicted trajectories obtained by the optimiza-
tion and the experimental data, we investigated correlation of
the resulting trajectories and the velocity profiles. Various
definitions of trajectory curvature are defined in the literature.
We used following five curvature indexes: Normal Curvature
(NC), Maximum Curvature (MxC), Medium Curvature (MdC),
Total Curvature (TC), described in [17], and Whole deviation
(W), defined by [18]. NC is defined as a ratio of the curvilinear
abscissa to the minimum Euclidean distance between the
starting and ending point, where the numerator represents the
length of carried out trajectory, while the denominator is the
minimum distance between the selected points – Eq. (25) and
Fig. 4a.

NC ¼
PN�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2i þ dy2i

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx f � x0Þ2 þ ðy f � y0Þ2

q (25)

MxC (Fig. 4b) and TC (Fig. 4d) are defined as a maximum
and average value of all distances from the points defining
the trajectory and the straight line defining the minimum
distance. Similar curvature index is MdC (Fig. 4c), which is
the distance from the executed trajectory and the straight
line evaluated at half way. W (Fig. 4e) represents an area
bounded between the executed trajectory and the straight
line. It is also concerned with the direction in which the
trajectory is curved, meaning that if the trajectory is curved
to the right relatively to the vector from start to end, the area
is given a positive sign, otherwise it is negative. For
quantifying the tangential velocities of all predicted trajec-
tories we first normalized the movement duration and the
velocity profile. In order to compare the velocity profiles, the
experimental velocity profiles were averaged and thus
regarded as the reference profile. As a comparison of the
predicted and experimental velocity profiles we used i.e.
similarity index (SI), which is defined as a ratio of the
two compared velocity profiles' intersection (minimum
common area) to its union (whole area) as shown in
Fig. 4f. Unlike the dissimilarity index (DI) described by [5],
the similarity index is (1 � DI). Furthermore, according to the
calculated curvature indexes we examined the relation
between the predicted and experimental data using corre-
lation coefficient. If the curvature indexes of the experi-
mental trajectories completely corresponded to the
predicted trajectories, the slope of the regression line fitted
by the least-squares method would be 1.0, and the
correlation coefficient would be 1.0. The correlation coeffi-
cient is given by (26).



Fig. 4 – Comparison parameters explaining trajectory curvature and its velocity profile. Five different curvature indexes were
used: (a) Normal Curvature (NC) – ratio of the executed trajectory length L to the straight line connecting the starting and
ending point h; (b) Maximum Curvature (MxC) – maximum distance between L and h; (c) Medium Curvature (MdC) – distance
between L and h evaluated in h/2; (d) Total Curvature (TC) – mean value of all the distances d between L and h; and (e) Whole
deviation (W) – signed area between L and h. For quantification of deviation of the velocity profile we used the similarity
index (SI) – ratio of the two compared velocity profiles' intersection to its union (f).
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r ¼
PN

i¼1ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðxi � xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðyi � yÞ2

q (26)

3. Results

3.1. Comparison with experimental data

Fig. 5 illustrates the iterative search of an optimal trajectory
during the optimization process. The upper left graph shows
the trajectory S1–T1, where it curved to the left side of the initial
straight line. According to the optimal trajectory curvature, the
velocity profile became slightly different. The initial guess for
the dynamic optimization was the minimum jerk trajectory,
which defines bell-shaped velocity profile, but here it turns out
to be more U-shape with the peak moved slightly to the right.
This velocity profile is shown from the upper right graph in
Fig. 5. The lower left graph shows the corresponding shoulder
t1 and elbow t2 torques, which were minimized according to
the optimization criterion (22). The lower right graph shows
the convergence function of the first-order gradient algorithm
used for numerical searching. To satisfy the optimality
conditions, the algorithm needed about 300 iterations on
average for all nine examined trajectories.

The results of dynamic optimization of the human arm
trajectory planning with the minimum torque criterion
compared with the experimental trials made by Suzuki et al.
[4], are shown in Figs. 6–8. Fig. 6 illustrates the hand
trajectories starting from the positions S1, S2 and S3,
respectively, to all ending positions. There are three trajectory
profiles in our comparison: shortest, intermediate and long
trajectories. The shortest hand trajectories (S2–T1 from Fig. 6B
and S3–T2 from Fig. 6C) are nearly straight, whereas the
intermediate hand trajectories (S1–T1, S1–T2 from Fig. 6A, S2–T2,
S2–T3 from Fig. 6B and S3–T1, S3–T3 from Fig. 6C) are curved,
while the longest hand trajectory (S1–T3 from Fig. 6A) is highly
curved [4]. Fig. 7 illustrates the velocity profiles of all nine
trajectories with the comparison of the experimentally
obtained results. Gray-filled area represents a set of all
experimental velocity profiles, which were obtained by [4],
while dashed line shows the average of this area and was used
for the reference velocity profile. Fig. 8 shows the relation
between the mean velocities and the peak velocity times of
each predicted trajectory. The peak velocities were normalized
with respect to the movement duration expressed as a
percentage, and the mean velocities were calculated for each
predicted trajectory. The results show that in the case of
slower movements, the peak velocity moved toward the
beginning of the movement, and toward the end in the case of
slightly faster movements.

As these figures show, there is a good qualitative and
quantitative match between the predicted and experimental
trajectories. The curvature indexes as a comparison calcula-
tion between the predicted and experimental data showed
considerable similarities. They reveal significant positive
correlations, which are represented in graphs in Fig. 9. The
slopes of the regression line fitted by the least-squares
method were 1.25, 1.04, 1.03, 1.04 and 1.02 for the curvature
indexes NC, MxC, MdC, TC and W, respectively. All slopes
were almost 1 except in the case of predicted-experimental
NC, where the slope was a little higher. The corresponding
correlation coefficients were 0.9861 ( p < 10�5), 0.9985
( p < 10�9), 0.9983 ( p < 10�9), 0.9974 ( p < 10�8) and 0.9993
( p < 10�10). Referring to the predicted and the reference
velocity profile, similarity indexes were calculated for each
pair of the trajectories (predicted and experimental). The
lower right graph in Fig. 9 shows the similarity indexes of all
nine velocity profiles. The average value of similarity indexes
was 81 � 5%. Also, it could be seen that the peak velocities of
predicted data were moved either to left or right from the 50%
of movement duration.



Fig. 5 – Iterative searching of the optimal trajectory between points S1 and T1. The arm trajectory was curving to one side of
the initial straight line (upper left graph). The tangential velocity profile became more U-shape from the initial bell-shape and
the peak velocity moved slightly to the right (upper right graph). The lower left graph shows the corresponding joint torques,
which became as smaller as possible according to minimum torque criterion, and the lower right graph shows the
convergence of the first-order gradient algorithm. The optimal solutions are colored red.

Fig. 6 – Predicted (solid lines) and experimental (dotted lines) trajectories are shown in parts A–C. The largest hand path S1–T3

(part A) shows higher curvature than the other two intermediate paths. The shortest hand paths S2–T1 (part B) and S3–T2 (part
C) are nearly straight, while the other intermediate paths are gently curved. The predicted trajectories with a minimum
torque criterion show a good matching with the experimental trajectories. The peak velocities are marked (^) on the
predicted trajectories.
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Fig. 7 – The predicted velocities (solid lines) are similar to
the set of experimental velocity profiles (gray-filled area
with average – dashed line).

Fig. 8 – Velocity characteristics. Peak velocity times (^) of
predicted trajectories, which are normalized with respect
to the movement duration expressed as a percentage. In
comparison of the mean velocities (bar graph) of each
trajectory, the peak velocity moved toward the beginning
of the movement in the case of slower movements, and
vice versa. The dotted line shows 50% of the movement
duration.

Fig. 9 – Correlations of the curvature indexes: Normal Curvature (NC), Maximum Curvature (MxC), Medium Curvature (MdC),
Total Curvature (TC) and Whole deviation (W) of trajectories, and similarity indexes (SI) of velocity profiles between predicted
and experimental data. Positive correlation values (r) near 1 represent good similarities between predicted and experimental
trajectories, while similarity indexes of velocity profiles show approximately 81% match in average.
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3.2. Optimal trajectories in case of simulated flexor muscle
tightness

Fig. 10 shows the predicted optimal trajectories, where the
solid trajectories represent the hand paths under the normal
arm condition and the dashed lines represent the optimal
hand paths where the flexor muscles ( pectoralis major,
brachialis and biceps brachii) were included into the arm model.
Besides hand paths, we also illustrated the muscle static field
(described in Section 2.1.4), where different areas of static joint
torques could be seen. The maximum value of static joint
torques was 4.8 N m. The starting points are located in the



Fig. 10 – The predicted trajectories under normal conditions (solid lines) compared with predicted trajectories under muscle
tightness conditions (dashed lines) are shown in parts A–C. In the background of arm's workspace the muscle static field is
shown, where it represents static joint torques due to flexor muscle tightness in each position. The velocity profiles of each
pair of trajectories are shown above, where peak velocities are marked on the trajectories.
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middle zone of muscle static field, while the ending points are
located at the edge of the workspace, where large joint torques
are needed to keep the hand in this positions. Fig. 10 (upper
panel) shows the normalized velocity profiles for each pair of
trajectories. It can be clearly seen that the arm's muscle
tightness trajectories are different from the normal trajecto-
ries. They are significantly differently curved with quite
different velocity profile. The longest (S1–T3) and some
intermediate hand paths (S1–T1, S1–T2, S2–T2 and S2–T3) under
muscle tightness conditions approximately follow the mini-
mum muscle static area at the beginning of the movement,
where the hand velocities are relatively low. Eventually, as the
hand approaches the ending point, the higher hand velocities
are. The ‘‘muscle tightness’’ trajectories from part A and B in
Fig. 10 have single-peaked velocity profile with the peak
located in the ‘‘red’’ area of muscle static field. A somewhat
different situation is shown in Fig. 10C, where the ‘‘muscle
tightness’’ trajectories have two velocity peaks. The first peak
position is located soon after the movement start, while the
second velocity peak is already located in the ‘‘red’’ area of
muscle static field as in the case of part A and B in Fig. 10. The
first velocity peak from the ‘‘muscle tightness’’ trajectories
S3–T2 and S3–T3 is significantly lower than the second peak,
while the ‘‘muscle tightness’’ trajectory S3–T1 has two almost
equal high velocity peaks – first in the early part and second in
the final part of movement duration. In contrast to this
trajectory all ‘‘muscle tightness’’ trajectories have similar
velocity characteristics. In the early part of movement
duration, where the muscle tightness has a relatively low
impact on the movements, the hand velocities are significant-
ly lower compared with the normal trajectories, while the
more as the impact of muscle tightness increases, the higher
are velocities.

4. Discussion

We have developed an optimization framework related to 2
DOF dynamic arm model that incorporates tightness of six
major muscle groups and a cost function that minimizes
squared torques in shoulder and elbow while performing
planar reaching movement. Optimal reaching trajectories
were calculated for various starting/target points within the
arm workspace that closely resembled experimental data
performed in a group of neurologically intact individuals from
Suzuki et al. [4]. Comparison between the results of our model
and the experimental data has shown high degree of
similarity. We further included some degree of muscle
tightness in the flexor muscle groups in order to investigate
the influence on the resulting ‘‘minimum effort’’ reaching
trajectories. Our findings show that entirely different trajec-
tories minimize the selected cost function in case of
simulated tonic spasticity, which is predominantly the case
after stroke.

The results of our study suggest that when computing
optimal path for trajectories well within ROM of the arm and of
short distances (such as S2–T1 and S3–T2), the selection of a cost
function plays a little role. The trajectories predicted either by
minimum jerk [3], by minimum torque change model
[5,7,8,19,20] or by various cost functions including ones that
relate to ‘‘economy of movement’’ in relation to point-to-point
planar movements [21], would be more or less similar – nearly
straight hand path with bell- or U-shaped velocity profile.
However, when the distances between the starting and ending
points are bigger and especially when the ending points are
close to the boundaries of achievable ROM much more curved
trajectories are utilized by humans as shown experimentally
by Suzuki et al. [4]. Their results were corroborated by
numerous simulation studies [5,6,8,19] that used optimization
tools where predominantly minimum torque change cost
function was minimized. Selection of a minimum torque
change model implies presumed ‘‘smoothness’’ in the human
movement which may be plausible in neurologically intact
individuals. The results of our study have shown that very
similar results are obtained, if a cost function, minimizing
squared joint torques that relates to ‘‘economy of movement’’,
is utilized. This is an extent of the results from [21] where
comparison between the ‘‘smoothness’’ and ‘‘economy of
movement’’ cost functions in simple 1 DOF movement were
practically identical. However, a selection of a minimization of
squared joint torques seems to be very natural choice in the
context of arm rehabilitation as this implies that such a
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trajectory can be calculated where rehabilitation robot
provides minimal assistance which is in line with the well
accepted concept of ‘‘assistance-as-needed’’ rehabilitation
strategy.

The results of our study show that currently used
approach in rehabilitation robotics where a straight line
movement between the two points in arm reaching training
is supported by an impedance/admittance haptic tunnel may
not be an optimal training strategy. We have demonstrated
that muscle tightness plays a major role in calculation of
minimum torque trajectories. For the kinematic and dynam-
ic parameters associated with the selected reaching points
the optimal trajectories are to the first approximation largely
determined by the static torque field originating predomi-
nantly from simulated muscle tightness. This gives implica-
tion for a patient-specific tailoring of training trajectories
that may be derived according to the experimentally
identified static torque field originating from muscle tight-
ness. The developed optimization tool proved to be stable
and converged relatively fast toward optimal solution.
However, the convergence of the proposed method also
depends on the model nonlinearities, selection of a sufficient
damping in both joints and selection of muscle tightness
model. While there is little doubt that the qualitative aspects
of the resulting trajectories in the case of flexor muscle
tightness are in the agreement with clinical practice we will
further need to experimentally verify the results of this
simulation study.

5. Conclusions

Optimization model using a minimum joint torque cost
function is able to predict the planar arm trajectories that
closely resemble the experimental data. The optimal reaching
trajectories are considerably different when muscle tightness
is incorporated in the biomechanical model of planar arm
reaching, which has important implications for selection of
the appropriate subject-specific training trajectories sup-
ported by rehabilitation robots.
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Appendix A. Optimization framework

The dynamic system is described by the following system
of differential equations and boundary conditions specified at
a fixed terminal time:

_x ¼ f ðx; t; tÞ; (A.1)

xð0Þ ¼ u10 u20 v10 v20½ �T; (A.2)

xðt f Þ ¼ u1 f u2 f v1 f v2 f
	 
T

; (A.3)
0 � t � t f ; (A.4)

where x(t) is determined by t(t). Consider a performance index
(scalar) of the form

J ¼
Z t f

0
Lðx; t; tÞdt: (A.5)

The problem is to find the functions t(t) that minimize J. If
equation

@L
@t

þ ½ pðtÞ þ RðtÞn�T @ f
@t

¼ 0 (A.6)

is satisfied, we have a stationary solution that satisfies the
terminal constraints. This equation may be written as

@H
@t

¼ 0; (A.7)

where H (the Hamiltonian) is a scalar function as follows:

H ¼ Lðx; t; tÞ þ lTðtÞ f ðx; t; tÞ (A.8)

and l(t) is a vector of Lagrange multipliers that consists of
influence functions p(t) and R(t):

lðtÞ ¼ pðtÞ þ RðtÞn: (A.9)

Appendix B. Numerical solution of optimization
problem: first-order gradient algorithm [16]

STEP (a) Estimate torques of shoulder and elbow joints t(t).
STEP (b) Integrate the system equations _x ¼ f ðx; t; tÞ forward

with the specified initial conditions x(0) and the
estimate torques from STEP (a). Record x(t), t(t) and c

[x(tf)], where

c½xðt f Þ� ¼
u1ðt f Þ � u1 f
u2ðt f Þ � u2 f
v1ðt f Þ � v1 f
v2ðt f Þ � v2 f

2
664

3
775 (B.1)

STEP (c) Determine a 4 � 1 vector of influence functions p(t),
and a 4 � 4 matrix of influence functions R(t) by
backward integration of the influence equations,
using the x(tf) obtained in STEP (b) to determine the
boundary conditions.

_p ¼ � @ f
@x

� �T

p � @L
@x

� �T

; pðt f Þ ¼ 0 0 0 0½ �T

(B.2)

_R ¼ � @ f
@x

� �T

R; Rðt f Þ ¼ I4�4 (B.3)

STEP (d) Simultaneously with STEP (c), compute the following
integrals:

ICC ¼
Z t f

0
RT @ f

@t
Y�1 @ f

@t

� �T

R dt ð4 � 4 matrixÞ (B.4)

IJC ¼ ITCJ

¼
Z t f

0
pT

@ f
@t

þ @L
@t

� �
Y�1 @ f

@t

� �T

R dt ð4-row vectorÞ

(B.5)
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IJJ ¼
Z t f

0
pT

@ f
@t

þ @L
@t

� �
Y�1 @ f

@t

� �T

p þ @L
@t

� �T
" #

dt ðscalar

(B.6)

where U is an 2 � 2 positive definite matrix with
weighting parameter w:

Y ¼ w 0
0 w

� �
: (B.7)

STEP (e) Choose values of dC to cause the next nominal
solution to be closer to the desired values C[x(tf)] = 0,
where dC = � eC[x(tf)], 0 < e � 1. Then determine n

from

n ¼ � ICC½ ��1ðdC þ ICJÞ: (B.8)

STEP (f) Repeat STEP (a) through STEP (f), using an improved
estimate of t(t), where

dtðtÞ ¼ �½Y ðtÞ��1 @L
@t

þ ½ pðtÞ þ RðtÞn�T @ f
@t

� �T
: (B.9)

Stop when C[x(tf)] = 0 and IJJ � IJC I�1
CC ICJ ¼ 0 to the

desired degree of accuracy.
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