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Abstract—The objective of this work was to develop and val-
idate a novel unobtrusive method for measuring person’s phys-
iological response with a low-cost integrated sensory system for
use in a physical control task. Two different sensory handles were
designed (cylindrical and hemispherical shape) and used in a phys-
ical human–robot control task. Twenty-three participants under-
went a measurement session with both handles, performing four
different tasks for each handle. Two basic task conditions were
permuted: physical load (high/low) and task dynamics (high/low).
Electrocardiogram, photoplethysmogram, electrodermal activity,
and peripheral skin temperature signals were recorded by sensory
handles and a reference high-accuracy biosignal amplifier to deter-
mine the raw signal correlation between the measurement systems.
Additionally, several standardized physiological parameters were
calculated and discussed for both systems. Results of raw signal
correlation showed a high correlation between the reference mea-
surement system and the sensory handles. Pearson’s correlation
coefficients were above 0.8 for most of the physiological signals
in all task conditions. Some effect of physical load and high task
dynamics was registered. In terms of signal quality, the hemispher-
ical design outperformed the cylindrical design. Correlation results
show that the proposed system correlates well with the reference
system for all tasks. In terms of optimal design for signal quality
and comfort, hemispherical handle shape is more appropriate. Un-
obtrusive nature and short setup time of such a method deems it
appropriate for home use, monitoring, and research.

Index Terms—Affective engineering, haptic interaction, human–
machine interaction, physiological sensors, unobtrusive sensors.

I. INTRODUCTION

IN THE past few decades, quantitative measurement of per-
sons’s affective state and emotion reactivity has become a

major topic of research for a broad area of applications, rang-
ing from rehabilitation robotics in human–robot interaction to
user experience testing in human–computer interaction. Affec-
tive state is a representation of subject’s psychophysiological
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state along two principal dimensions: valence and arousal [1].
This representation could provide valuable information on how
a person is motivated, entertained, engaged, and satisfied with a
certain task or product.

In human–robot interaction applications, motor rehabilitation
has progressed from simple passive mechanisms for physical
exercise with physical therapist present at all times to semiau-
tonomous robotic interfaces that can offer personalized therapy
for each patient [2], [3] or objectively asses the patient’s limb
mobility and biomechanical parameters [4]. These are often
combined with virtual environments to make the exercise more
engaging and to increase the persons’s motivation [5], [6]. This
type of motor rehabilitation is especially effective with post-
stroke patients, where motivation and engagement in physical
exercise is inherently low. In an effort to improve the success
of rehabilitation, several attempts have been made to incor-
porate a quantitative measure of persons’s affective state, that
can, together with their motor performance parameters, provide
different control strategies of the physical interaction task by
adjusting the task difficulty [7]–[9].

Previous research has shown that estimation of person’s psy-
chological state is possible by measuring physiological param-
eters, such as heart rate (HR), skin conductance, peripheral skin
temperature, and respiration [10], [11], and adapting the pa-
rameters of the physical control task based on the measured
physiological response [12]. Similar research was performed by
Badesa et al. [13], [14], using multisensory data to adaptively
change the complexity of the virtual reality task. Enhanced
human–robot interaction experience is reported by Guerrero
et al. [15] using a biocybernetic closed-loop controller to adapt
the robot assistance. Similarly, Morales et al. [16] presented a
new concept of a multimodal assistive robotic system to address
the growing trend of patient-tailored assistance. In an effort to
improve the healthcare services in the future, Swangnetr and
Kaber [17] proposed an algorithm for emotional classification
in patient–robot cooperation, using physiological data acquired
using standard bioamplifiers. A thorough overview of the af-
fective engineering field has recently been done by Balters and
Steinert [18], where applications and physiological measure-
ment methods were discussed. Most of the aforementioned re-
search was based on physiological data analysis, acquired by
high-tech and expensive medical equipment. Although this type
of equipment is noninvasive, it is usually not user-friendly and
does not enable fast setup. Previous research by Dijkers et al.
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[19] found that many therapists may stop using devices if the
setup takes more than 5 min. Fast setup time and ease of use,
together with the desired device accuracy, should therefore be
considered.

A possible solution for an unobtrusive measurement of per-
son’s physiological response can be realized by placing sen-
sors at the grasping point off the haptic robot tip. This way,
no additional setup is needed. The person can interface with the
virtual environment through robot interaction and have the phys-
iological parameters simultaneously measured by the integrated
sensors at the handle. This approach could enable researchers
for faster experiments and open the door to home-based mea-
surement solutions, not requiring additional personnel for task
setup.

Such thinking is well aligned with notable increase in low-
cost, wearable, and unobtrusive sensory systems for healthcare
in order to tackle the problem of aging population, ubiquity of
chronic diseases, or simply the trend of healthier lifestyle [20],
[21]. These sensors often measure some of the person’s phys-
iological signals and combine them with biomechanics. After
a comprehensive review of commercial low-cost measurement
devices, the authors determined that a custom-embedded so-
lution was necessary, since none of the present off-the-shelf
solutions can be applicable. Heuer et al. [22] measured phys-
iological signals through direct contact electrodes and sensors
embedded in the steering wheel of a vehicle. Similarly, phys-
iological sensors were integrated in a smart wheelchair for an
unobtrusive measurement during patient use [23]. In order to
assess the person’s psychological state during physical rehabil-
itation task without applying additional sensors and electrodes,
a simple combination of grasping and measurement is a natural
choice.

Our focus is on the measurement of physiological parameters,
namely HR and its variability [using electrocardiography and
photoplethysmography (PPG)], electrodermal activity (EDA),
and peripheral skin temperature. These parameters are mostly
linked with physical activity and emotional arousal [24] through
the sympathetic part of the autonomous nervous system and
have been intensely used in the literature, showing significant
changes with regard to different cognitive tasks [25]. Physio-
logical responses can also be influenced by physical activity.
In the past, efforts have been made to separate cognitive and
physical response to determine which physiological measure is
most reliable in motor rehabilitation, where physical workload
is also present [26].

This paper starts with the development of an embedded low-
cost sensory system and its application in two types of han-
dle configurations having cylindrical and hemispherical shapes.
These are placed at the human arm to haptic robot interac-
tion point. The signals from this low-cost embedded system
are processed in a same way as the normative data that were
gathered from the established commercial system. The goal and
motivation for this work is the comparison of signals carrying
physiological features. This paper is focused on the reliability
of signals and presence of noise and artifacts in the case of a
low-cost unobtrusive system versus an established commercial
system.

Fig. 1. Overview of the system architecture. Separate analog front ends are
locally regulated to ensure stable operating voltage. Isolation for this prototype
is provided externally, and power is supplied by the USB port.

II. SYSTEM DESIGN

A. Sensor Architecture

A full sensory system architecture is illustrated in Fig. 1.
Various analog conditioning circuits are used to acquire person’s
physiological signals.

The single-lead electrocardiogram (ECG) monitor circuit was
designed as proposed by Richard and Chan [27] for measuring
HR and heart rate variability (HRV). For the purpose of unobtru-
sive measurement, dry stainless steel electrodes also commonly
found in ECG monitors for home use were used.

For measuring EDA, a circuit as proposed by Poh et al. [28]
was designed, using a nonlinear feedback automatic bias con-
trol with low-power operational amplifiers (TLC274 by Texas
Instruments), also utilizing dry Ag/AgCl electrodes.

A conditioning circuit for peripheral skin temperature mea-
surement was designed using a negative temperature coeffi-
cient (NTC) glass thermistor (62S3KF354G by Betatherm),
connected in a Wheatstone bridge and amplified using an in-
strument amplifier (AD8223 by Analog Devices).

Since ECG monitors require bimanual measurement [29], we
upgraded the system with a second HR measurement using PPG.
An off-the-shelf PPG sensor (Pulse Sensor by World Famous
Electronics) was used in order to enable for unimanual measure-
ment and to test the appropriateness of the PPG signal to serve
as a standalone sensor for measuring HR and HRV. Such a setup
could provide the possibility for fusing ECG and PPG signals
for a more robust HR estimation in the future. Next possible
upside of adding the PPG sensor can be the additional clinical
parameters that can be extracted using both ECG and PPG data
(e.g., pulse transit time [30]). All signal conditioning is inte-
grated on the PPG sensor printed circuit board that, with the
adequate gain, already produces an analog waveform for digital
conversion.

Additionally, a force cell conditioning circuit was designed
to enable the use of grasping force measurement. A low-power
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Fig. 2. Handle designs with integrated physiological sensors. (a) Cylindrical
shape (c-handle). (b) Hemispherical shape (s-handle).

high-accuracy instrumentation amplifier with a precision ref-
erence and differential input amplification (INA125 by Texas
Instruments) was used for load cell signal amplification. All
conditioning circuits had local voltage references to produce a
stable and noise-free analog voltage.

A microcontroller board (STM32F4 Discovery by ST Micro-
electronics) was used for analog-to-digital (A–D) conversion,
signal processing, and communication. Power is drawn directly
from the universal serial bus (USB) port on the local com-
puter and then locally regulated on the board. A–D conversion
was made by an integrated 12-bit analog-to-digital converter
(ADC). With Nyquist frequency set at fNyquist = 100 Hz, real-
time operation is possible, and the most relevant bandwidths
of physiological signals are covered in accordance with [31].
QRS complex of the ECG has the highest frequency content
of all measured signals and is located in the range of 10 Hz.
We oversampled the analog signals with a sampling frequency
fsampling = 4n · fNyquist, where n = 4, to increase the resolu-
tion to 16 bits [32]. After the data have been processed, it is
communicated via universal asynchronous receiver/transmitter
(UART), through UART to USB data transfer interface (FT232
by Future Technology Devices International), and finally passed
to the local computer through the use of external isolation (USB-
to-USB isolator by Baaske Medical). Isolation is needed for
safety and for reduction of measurement interference.

B. Handle Design

To enable an inconspicuous and unobtrusive measurement
of physiological parameters, sensors have to be placed at the
point of the haptic interaction between the robot and the human;
thus, the electrodes and sensors were integrated in the robot
handle. Two mountable robot handles with different shapes were
developed for this purpose: one cylindrically shaped (c-handle)
and one hemispherically shaped (s-handle) handle, as presented
in Fig. 2.

After a preliminary study of comfort in the rehabilitation task
within the laboratory staff, s-handle showed much better results
regarding comfort than the c-handle. However, the cylindrical
shape is more universal and can be easily used in different
orientations, for different rehabilitation tasks, enabling grasping
force measurements.

Electrodes and sensors were integrated to the handles as pro-
posed in the literature [18] and in a way to be as intuitive and

Fig. 3. Predicted measurement locations for both left and right palms at time
of interaction with the robot. Left (active) hand is interacting with the robot
and is simultaneously being measured for physiological response at the handle.
Right (passive) hand is resting on the static handle, populated only by the ECG
electrodes.

inconspicuous as possible. The person should be able to grasp
the handle with no special care, not needing to focus on the
sensors and electrodes during task. Both handles were designed
for the left hand to simulate reduced motor capabilities when
experimenting with healthy subjects.

Predicted measurement locations are illustrated in Fig. 3.
EDA measurement is made through Ag/AgCl electrodes posi-
tioned in such a way that distal phalanges of the second and
fourth fingers cover the entire surface of the electrode. PPG
measurement is made by covering the pulse sensor with the
distal phalanges of the third finger. Peripheral skin temperature
is measured at the distal phalanges of the fifth finger. Finally,
stainless steel electrodes for measuring ECG are appropriately
positioned on the handle, enabling contact with proximal/thenar
palmar surface.

A second (static) handle was added to the system to ensure
that the bimanual measurement of the ECG was possible, and
additionally to provide a bimanual frame of reference for the
person [33], during the physical control task. The second han-
dle, which was designed for the right hand, is hemispherically
shaped for best ergonomic fit and includes only the stainless
steel electrodes.

C-handle was designed and 3-D printed in the Laboratory of
robotics, while s-handle was hand made for best ergonomic fit
out of expanded polystyrene.

III. MATERIALS AND METHODS

A. Hardware

Haptic Master robot (Moog FCS, The Netherlands) was used
as the haptic robot interface for the motor rehabilitation task.
The end-effector of the robot is equipped with a three-axis force
sensor. The robot itself enables force-controlled movement in
three degrees of freedom (DOFs). Handles were mounted to the
force sensor at the robot end-effector (see Fig. 4).

A 2.4 m × 1.7 m screen was used to display the virtual reha-
bilitation task. Subjects sat at a distance of 3.2 m in front of the
screen, with the robot positioned at their left-hand side.
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Fig. 4. Subject performing a physical control task by balancing the inverted
pendulum in a virtual environment.

A g.USBamp (g.tec Medical Engineering GmbH, Austria)
amplifier was used as a “gold standard” reference physiological
measurement system. ECG was recorded using four dispos-
able pregelled electrodes, with one electrode at the left part of
the chest, one at the right part of the chest, one at the right
part of the abdomen, and a ground electrode applied to the up-
per right part of the back. EDA was measured with a g.GSR
sensor, placed on the distal phalanges of the second and fourth
fingers on the nonactive hand, to enable the same measurement
conditions as on the active hand. Peripheral skin temperature
was measured with a g.TEMP sensor, attached to the distal pha-
langes of the fifth finger. PPG was measured with a g.PULSE
sensor, attached to the distal phalanges of the third finger. All
signals were sampled at 100 Hz to enable the same conditions
as with the proposed measurement system.

B. Participants

A total of 23 students and staff members (age 26.8 ± 6.9)
of the University of Ljubljana participated in the study. Each
participant performed a single measurement session, consisting
of eight measurement blocks in total, four with each handle.
Eighteen participants were males, and five were females. All
participants were healthy with no physical or cognitive defects.
One female person recording was discarded due to severe signal
corruption.

C. Physical Control Task

A mathematical model of the inverted pendulum was imple-
mented in a virtual environment as the physical control task
[26]. The inverted pendulum is an inherently unstable system
without control, so the participants had to balance the pendulum
by applying a virtual force to the cart (robot end-effector). The
amount of force needed and the pendulum dynamics were ad-
justed through the mathematical model by changing the param-
eters such as gravity, friction, damping, mass, and pole length.
If participants did not manage to stabilize the pole, the pole was
reset to the vertical position after the cart was brought back to

the middle of the screen. All robot movements and haptics were
limited only to the x-axis (horizontal axis) of the robot to enable
a 2-D rehabilitation task and to simplify the experiment.

In order to create different physical conditions in the physical
control task, mass of the cart was changed between two values
(mass at high physical load was set to five times higher in
comparison to low physical load). Different dynamic conditions
were created by changing the length of the pole between two
values (high dynamics were set at one-third of the length of
the pole at low dynamics). With high physical load, the robot
produced larger reaction forces at the end-effector for the person
to move the cart. With high dynamics, the pendulum reacted
much faster to the cart movement, also falling much faster. In
this condition, participants had to react faster in order to balance
the pole. This way, two conditions were permuted to create four
different tasks (a similar design, but for different purpose, was
used in [26]):

Task 1 (T1): low physical load and low dynamics;
Task 2 (T2): low physical load and high dynamics;
Task 3 (T3): high physical load and low dynamics;
Task 4 (T4): high physical load and high dynamics.

D. Experiment Protocol

The experiment was conducted in a quiet environment of the
laboratory, where participants were not disturbed by random
noise and other stimuli. Only experiment supervisor and one
participant were present in the room during the experiment.

Participants were seated in front of the robot, g.tec sensors
were applied to their passive hand and the chest, and the exper-
iment protocol was explained. Support for the active arm was
provided by an armchair. The passive arm was resting on a soft
comfortable material at approximately the same height as the
active arm. After seating, subjects were encouraged to practice
T1 only once, for up to 2 min to get the basic knowledge of
the inverted pendulum task to provide for a steady and pre-
dictable physiological response. In addition, the short practice
session allowed the experiment supervisor to comment and cor-
rect the palm–handle point of interaction for every subject in
order to minimize the effect of motion artifacts during actual
tasks.

After the initial practice session, subjects performed four
blocks of measurement trials separately for both handle op-
tions. Each block consisted of a 3-min rest period and was
followed by a 3-min task period. The rest period served as a
baseline for physiological measurements. Tasks were selected
randomly. After the first four blocks, the handle was replaced.
During replacement, participants were allowed to rest briefly
with reference sensors attached. Following the replacement, all
four blocks of measurements were repeated.

E. Performance and Biomechanical Measures

Performance was evaluated with parameters, such as success
rate, mechanical work, and mean frequency of position signals.
Success rate is determined by counting how many times the
pendulum has fallen during the task. Subjects with better bal-
ancing will have a lower count than others. Also, under the task
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condition with low dynamics, subjects should, in general, have
a lower count than at the high dynamic condition. Total mechan-
ical work Wtotal is calculated as the sum of all work increments,
calculated as a dot product of position s and force F signals
from the robot

W =
∫

c

�F · d�s → Wtotal =
∑

F · s · cos θ =
∑

|F · s|.
(1)

Since the task was designed for single degree of motion (hor-
izontal movements), we are calculating forces and work using
data only from horizontal movements. Total work should in-
crease through the tasks, especially in tasks with greater physi-
cal load. Mean frequency of position signals was calculated to
confirm the effect of the high dynamic condition and should
increase when the high dynamic condition is active. Mean fre-
quency fmean was calculated using Welch’s power spectral den-
sity estimate (as proposed in [34])

fmean =
∑

pxx · f∑
pxx

(2)

where pxx is the power spectral density, and f is the frequency
vector.

F. Physiological Parameters

Physiological recordings were obtained from both handle and
reference measurement systems for every subject. After the ex-
periment, signals were processed offline for 3-min periods of
both baseline and task, from which several standardized param-
eters were extracted for each period.

From ECG recordings, the mean HR was calculated as a mean
value of time differences between consecutive RR peaks in the
QRS complex. Additionally, two standardized HRV parameters
[35], [36] were also extracted: the standard deviation of suc-
cessive NN intervals (SDNN) and the square root of the mean
squared differences of successive NN intervals (RMSSD). The
ECG processing algorithm is the same for both the bimanual
measurement and the reference ECG recording. Since ECG sig-
nals are taken at various locations, morphology of the signals
and timing is not similar enough to provide for raw correlation
processing. For determining the correlation of the HRV infor-
mation between systems, an HRV signal was produced by cubic
spline interpolation of consecutive HR values.

Same parameters (mean HR, SDNN, and RMSSD) and same
HR signal were extracted from the first derivative of the PPG
signals.

EDA recording can be decomposed into two separate com-
ponents: a low-frequency (tonic) component and a higher fre-
quency (phasic) component. The tonic component describes the
overall skin conductance over a longer period of time and is
obtained by filtering the raw signal with a low-pass filter with
a cutoff frequency of 0.05 Hz [37]. Similarly, the phasic com-
ponent was obtained by high-pass filtering of the raw signal
with a cutoff frequency of 0.05 Hz to observe the higher fre-
quency fluctuations of skin conductance that are modulated on
top of the slower tonic component. From the tonic component,
the mean skin conductance level (SCL) parameter is extracted.

Skin conductance responses (SCRs) are a quantitative measure
of skin conductance fluctuations in a period of time, classified
as an amplitude increase of 0.05 μS and with a peak occurring
within less than 5 s after the beginning of the increase. SCR
frequency was calculated for the duration of baseline and task
periods.

Final skin temperature was calculated as an average periph-
eral skin temperature of the last 2 s of each task period.

G. Motion Artifacts

An extensive study to quantify the effects of motion artifacts
on signal quality was devised. First, sources of motion that in-
fluence the electrodes and sensors at the handle are determined.
These are mostly the horizontal movements of the task, handle
grasping, and the passive rotation of the handle. As we have
designed our experiment with a redundancy of biomechanical
sensors, we can model the artifacts arising from three-DOF
sources of motion using the horizontal interaction force from
the robot end-effector force cell, grasping force from the handle
force cell, and angular velocity from the inertial sensor that was
attached to the posterior side of the hand.

As proposed by Sweeney et al. [38], different Quality of
Signal (QOS) metrics were produced for all three sources of
motion. The proposed method utilizes a 1-s moving window
that scans across the signal and compares all the sample values
to a threshold value. Based on how many sample values are over
the threshold, the algorithm will return QOS value between 0
and 1. Value 1 represents maximum motion artifact around that
sample. Three new signals were produced using this method:
QOSFx

(horizontal force component contribution), QOSFg r

(grasping force component contribution), and QOSΩy
(angu-

lar velocity component contribution). Threshold values were set
as suggested in the literature [38]. Threshold for horizontal force
(THRFx

) and angular velocity (THRΩy
) was calculated using

three standard deviations of Fx and Ωy from an average user.
Grasping force threshold (THRFg r

) was empirically set based
on its influence on the signal quality. The threshold values were
THRFx

= 2 N, THRFg r
= 6 N, and THRΩy

= 0.1 rad/s. QOS
samples are summed to produce a scalar representation of mo-
tion artifact presence for a specific session (QOSS—quality of
signal surface) and normalized to the entire period of the session
to produce a relative measure. QOSS = 100% would mean that
the quantity in question was over the threshold for the entire
duration of the session.

Together with the QOS signals that quantify the effect of
motion, binary algorithm detection signals (DET) were pro-
duced, which quantify the algorithm detection capability and
functioning. From ECG and PPG signals, we calculate HR val-
ues through a threshold algorithm that uses minimal amplitude
and minimal peak distance thresholds. If consecutive HR values
are within the average population, the signal will be set on 0; in
other case, when detection is failing, it will return 1. For EDA
and temperature signals, that are located in the lower frequency
ranges, we examine the signals for fast rates of transition that
could result only from motion artifacts. A moving window of
ten samples and a threshold value of 0.25 μS is implemented for
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EDA algorithm detection. For temperature, a 50-sample window
with a threshold value of 0.03 K is used. Difference between
maximum and minimum value of the window is calculated at
every sample.

The positive detection percentage (PDP) parameter is cal-
culated for every subject to produce a mean PDP value for all
physiological signals. The number of events (NOE) parameter is
calculated to describe the frequency of negative detection occur-
rences as the number of transitions from 0 to 1 in the algorithm
detection signal.

In addition, QOS overlap (QOSO) was calculated between
algorithm detection signals (DET) and QOS signals as a ratio
between the surface of QOS included in (DET) signal and the
entire QOS surface to determine how much of the QOS signal
is contained within the period of the failed detection

QOSO[%] =
∑n

i=1 QOS(i) · DET(i)∑n
i=1 QOS(i)

· 100. (3)

H. Data Analysis

Performance and biomechanical measures for both handles
were compared between four tasks. One-way repeated measures
analysis of variance (ANOVA) was used to determine the sta-
tistical significance of differences between tasks. The purpose
of this step was to show how different task conditions changed
during the experiment.

In the second step, similarities of physiological recordings
for both handles were tested against the g.tec recordings using
Pearson’s correlation coefficients (PCCs). For ECG and PPG
recordings, the calculated HR signal was used for analysis, since
raw signals would not produce meaningful results. For EDA and
temperature analysis, raw signals were used. Raw signals were
filtered prior to analysis to reduce the effect of motion arte-
facts and noise: for EDA recordings, a low-pass Butterworth
filter with a cutoff frequency of 3 Hz was used, while for the
temperature, the cutoff frequency was set at 1 Hz. After fil-
tering, signals were split into baseline and task segments, and
PCCs were calculated. Additionally, significance of differences
between task and baseline PCCs was determined using paired
t-tests to analyze the effect of task on signal correlation.

For the final step of data analysis, we compared the calcu-
lated physiological parameters in task conditions to the same
parameters in baseline conditions. Absolute values of parame-
ters were used for comparison of baseline and task conditions
using paired t-tests. Relative values for each parameter were
calculated to show the similarity of the calculated parameters
between the handles and the reference system. Relative values
were calculated either by subtracting the baseline values from
the task values or by additionally dividing the values with the
baseline values to find the percentage of the difference. The pur-
pose of this step was to show that by calculating physiological
parameters, significant change in baseline-task parameters can
be detected by both the proposed and reference systems for the
same conditions.

All signals were processed by custom algorithms written in
MATLAB (The MathWorks, Inc.). Sigma Plot (Systat Software,
Inc.) was used for statistical analysis.

Fig. 5. Total work (top), mean frequency of position (middle), and task perfor-
mance (bottom). Gray lines are connecting the mean values of both c-handle and
s-handle measurements to better illustrate the effect of task on task performance
and biomechanical parameters.

The threshold for statistical significance was set at p = 0.05.
Statistical significance of difference was calculated by either
one-way repeated measures ANOVA, followed by the Tukey
posthoc test, or by paired t-test. The Kolmogorov–Smirnov test
was used to test for normality. Whenever the normality test
failed, ANOVA on ranks or signed rank test were used.

IV. RESULTS

A. Performance and Biomechanical Measures

For total work performed by subjects [see Fig. 5(top)], a
significant difference was found (p < 0.001) among the tasks
for both handles, and pairwise comparisons found significant
difference (p < 0.05) between all low and high physical load
conditions (T1–T3, T1–T4, T2–T3, and T2–T4) for both han-
dles.

Mean frequency of the position signal [see Fig. 5(middle)] has
shown a significant difference (p < 0.001) among the tasks for
both handles, and pairwise comparisons revealed significant dif-
ference (p < 0.05) between low and high dynamic conditions
(T1–T2, T3–T2, and T3–T4) for both handles. Additionally,
significant difference (p < 0.05) was identified between T1 and
T4 for c-handle, but not for s-handle. There was a significant
difference found for task performance (p < 0.001) among the
tasks for both handles, and pairwise comparisons found sig-
nificant difference (p < 0.05) between high and low dynamic
conditions (T1–T2 and T2–T3) for both handles. Additionally,
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Fig. 6. Raw physiological waveforms (left) and PCCs for all tasks are represented as box plots (right). (a) EDA, (b) peripheral skin temperature, (c) ECG HR
signal, and (d) PPG HR signal. Gray lines are connecting the median values of PCCs in tasks to better illustrate the correlation trend between different tasks.
B and T are marking baseline and task period for each of the four tasks, respectively.

statistically significant difference (p < 0.05) was found between
T3 and T4 for s-handle but not for c-handle. Mean values of task
performance are given in the bottom graph of Fig. 5.

B. Signal Similarity

Results for signal similarity can be seen in Fig. 6. PCCs were
calculated between g.tec and handle signals for both handles. For
EDA signals [see Fig. 6(a)], median values of PCCs in baseline
rb are higher (0.81 ≤ rb ≤ 0.93 for c-handle and 0.92 ≤ rb ≤
0.95 for s-handle) than in task rt periods (0.69 ≤ rt ≤ 0.84
for c-handle and 0.84 ≤ rt ≤ 0.9 for s-handle). A significant
baseline-task correlation reduction (p < 0.05) was found for
T1, T2, and T4 of s-handle results; others were not significant.

For skin temperature [see Fig. 6(b)], median values of PCCs
showed a reduction in correlation for T1 (rb = 0.89, rt = 0.87
for c-handle and rb = 0.94, rt = 0.93 for s-handle) and T4 (rb

= 0.92, rt = 0.81 for c-handle and rb = 0.96, rt = 0.93 for
s-handle). Increase in baseline-task correlation was found for
T2 (rb = 0.87, rt = 0.89 for c-handle and rb = 0.92, rt = 0.94
for s-handle) and T3 (rb = 0.82, rt = 0.92 for c-handle and

rb = 0.91, rt = 0.94 for s-handle). A significant difference of
baseline-task correlation (p < 0.05) was found for T1 and T4
of c-handle results; others were not significant.

For ECGHR extracted signals [see Fig. 6(c)], median values of
PCCs showed high correlation in both baseline and task periods
(0.95 ≤ rb ≤ 0.96 for both handles, 0.93 ≤ rt ≤ 0.96 for both
handles). For both handles, a significant difference of baseline-
task correlation (p < 0.01) was found for T2 (rb = 0.95 and
rt = 0.93 for c-handle, and rb = 0.95 and rt = 0.94 for s-
handle).

For PPGHR extracted signals [see Fig. 6(d)], median values
of PCCs showed high correlation in T1, T2, and T3 (rb > 0.99
and rt > 0.98 for all three tasks and both handles). A significant
difference of baseline-task correlation (p < 0.05) was found for
both handles in T4 (rb = 0.99 and rt = 0.98 for c-handle, and
rb = 0.99 and rt = 0.96 for s-handle).

Fig. 7 presents differences between s-handle and c-handle
correlation values in all conditions, showing correlation both in
the baseline and in the task. S-handle showed better correlation
for most of the signals through all four tasks, except for PPGHR
curve that showed higher correlation for c-handle for all tasks.
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Fig. 7. Difference in PCCs for all physiological signals between s-handle and
c-handle. Difference is calculated as rs−handle − rc−handle, where a positive
value presents better s-handle correlation, and a negative value presents better
c-handle correlation.

C. Baseline–Task Parameters

Mean relative values of the calculated physiological param-
eters are reported in Table III for c-handle and Table IV for
s-handle. Values are reported for recordings of both the pro-
posed system (handles) and the reference system (g.tec).

Significant differences in parameter values between the base-
line and the task are bolded and additionally marked with as-
terisks. Results show no significant difference in mean HRECG
and mean HRPPG parameters for both integrated systems and
the reference system. For HRV parameters, a significant dif-
ference was observed in all four tasks for SDNNECG and
SDNNPPG for both integrated and g.tec measurement systems.
For RMSSDECG , a significant difference was observed for T2
and T4 for both systems, and RMSSDPPG was found significant
for T1 and T4 for both systems. Mean SCL showed a significant
difference in T3 and T4 for c-handle, but not for g.tec. SCR
frequency was found significant for all four tasks for both c-
handle and g.tec, except for T3, where the g.tec parameter is not
found significant. Final skin temperature difference was found
significant across all four tasks.

For s-handle, a significant difference was observed in all four
tasks for SDNNECG and RMSSDECG . For SDNNPPG , a signifi-
cant difference was observed for all four tasks for both s-handle
and g.tec, except for s-handle in T3. RMSSDPPG was found
significant only for g.tec in T1 and T2. Mean SCL showed a sig-
nificant difference in T1 and T2 for s-handle, but not for g.tec.
SCR frequency was found significant for all four tasks for both s-
handle and g.tec, except for T3, where the g.tec parameter is not
significant. Final temperature difference was found significant,
when high physical load was present (i.e., in T3 and T4).

D. Motion Artifacts

Mean values of QOSS are given in Table I. Largest artifact
occurrence is found for QOSSWy

= 3.4% at T2, followed by
QOSSFx

= 1.58% for T4. Largest NOE is found for EDA sig-
nals at T4, where the detection is failing with an average rate of
1.2 events per minute. High values of PDP are found for both
EDA and temperature detection algorithms, where both values
are over 99% positive detection within the entire session. A sig-
nificant decrease is found only for PDPppg at tasks T3 and T4,
where the value lowers to 90.1% and 91.7%.

TABLE I
MEAN VALUES OF QOSS, NOE, AND PDP CALCULATED FOR ALL

FOUR TASKS

PARAMETER TASK 1 TASK 2 TASK 3 TASK 4

QOSSF x [%] 0.00 0.00 0.06 1.58
QOSSF g r [%] 0.00 0.36 0.01 0.3
QOSSW y [%] 0.49 3.4 0.76 1.23

NOEp p g [ev/min] 0.37 0.4 0.60 0.58
NOEecg [ev/min] 0.43 0.55 0.53 0.52
NOEeda [ev/min] 0.42 0.82 0.49 1.2
NOEtemp [ev/min] 0.42 0.73 0.43 0.55

PDPp p g [%] 98.2 95.9 90.1 91.7
PDPecg [%] 98.1 97.2 96.4 96.6
PDPeda [%] 99.6 99.7 99.4 99.1
PDPtemp [%] 99.4 99.6 99.7 99.9

TABLE II
MEAN VALUES OF QOSO BETWEEN ALGORITHM DETECTION SIGNALS (DET)

AND QOS FOR T4

DETp p g DETe c g DETe d a DETt e m p

QOSOF x [%] 48.6 15.3 4.7 4.29
QOSOF g r [%] 20.3 16.2 8.7 5.98
QOSOW y [%] 24.6 11.8 4.2 3.92

Mean values of QOS and algorithm detection overlap are
found in Table II, where DETppg appears to be most influ-
enced by QOSOFx

, with a mean overlap value of 48.6%.
A similar effect on DETECG is shown by QOSOFx

= 15.3%
and QOSOFg r

= 16.2%. Largest DETeda contribution is by
QOSOFg r

= 8.7%.

V. DISCUSSION

A. Signal Similarity

Task conditions were changed to test for signal correlation
between two integrated systems (handles) and reference system
(g.tec). For EDA, median PCCs experienced a decrease, while
transiting from the baseline to the task. Most of the values were
above 0.8, except for the first two tasks in c-handle EDA mea-
surement. Although higher values of correlation were calculated
for s-handle in the first two tasks, both handles demonstrated
a statistically significant drop in tasks for both low and high
dynamics in the low physical load conditions (T1 and T2). This
implies a noticeable effect of motion artifacts on EDA measure-
ment, induced by more jerkier movements in conditions with
low physical load. In high physical load conditions, no signifi-
cant reduction in correlation was noted for both handles in low
dynamics condition (T3), but s-handle showed a significant re-
duction of correlation in the high dynamic condition. This is to
be expected as the high dynamic conditions induce higher fre-
quency of arm and hand motion, which in terms produce more
noticeable motion artifacts. Ag/AgCl surface electrodes can eas-
ily detect unwanted noise created by motion and signals can get
corrupted by a minimal loss of the skin–electrode contact.

It should also be noted that comparison of EDA recordings by
themselves is not a simple task, since same-site recording is not
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TABLE III
MEAN RELATIVE VALUES OF CALCULATED PARAMETERS FOR C-HANDLE AND THE REFERENCE SYSTEM (G.TEC)

TASK 1 TASK 2 TASK 3 TASK 4

C-HANDLE G.TEC C-HANDLE G.TEC C-HANDLE G.TEC C-HANDLE G.TEC

mean HRE C G [BPM] −1.2 ± 2.3 −1.2 ± 2.2 −1 ± 3.2 −1 ± 3.2 −0.4 ± 2.4 −0.4 ± 2.3 −0.4 ± 2.7 −0.4 ± 2.7
SDNNE C G [%] −13 ± 16∗∗ −13 ± 17∗∗ −20 ± 17∗∗ −22 ± 16∗∗ -15 ± 16∗ −15 ± 16∗ −23 ± 15∗∗ −25 ± 15∗∗

RMSSDE C G [%] −7.8 ± 15∗ −6.6 ± 14 −10 ± 19∗ −10 ± 19∗ −7.3 ± 2.9 −7.4 ± 19 −9.4 ± 22∗ −15 ± 16∗∗

mean HRP P G [BPM] −1.2 ± 2.3 −1.1 ± 2.2 −1.7 ± 2.7 −1.7 ± 2.7 −0.4 ± 2.5 −0.3 ± 2.4 −0.8 ± 3.3 −0.5 ± 2.9
SDNNP P G [%] −14 ± 16∗∗ −14 ± 18∗ −17 ± 21∗∗ −19 ± 17∗∗ −17 ± 19∗ −17 ± 15∗ −23 ± 16∗∗ −26 ± 16∗∗

RMSSDP P G [%] −6.2 ± 16∗ −7.3 ± 15∗ 0.2 ± 29 −5.1 ± 17 −1.5 ± 34 −12 ± 19∗ −16 ± 16∗∗ −17 ± 18∗∗

Mean SCL [μS] 0.6 ± 1.4 0.3 ± 1.7 0.9 ± 2.0 0.7 ± 1.6 0.8 ± 1.4∗ −0.5 ± 3.0 0.5 ± 1.1∗ 0.5 ± 3.0
SCR frequency [%] 96 ± 136∗∗ 68 ± 91∗∗ 119 ± 178∗∗ 40 ± 53∗∗ 126 ± 241∗∗ 35 ± 103 58 ± 69∗∗ 36 ± 43∗∗

Final temperature [K] −0.2 ± 0.3∗ −0.3 ± 0.3∗∗ −0.2 ± 0.4∗ −0.3 ± 0.3∗∗ −0.2 ± 0.3∗∗ −0.3 ± 0.3∗∗ −0.3 ± 0.4∗ −0.3 ± 0.4∗∗

Statistically significant differences from baseline values are marked with asterisks: ∗ for p < 0.05 and ∗∗ for p < 0.01.

possible due to crosstalk, repeated measures are not reliable due
to habituation, and bilateral recording sites will also produce
different responses [39].

B. Physiological Parameters

Temporal changes of skin temperature are slower than those
of other physiological signals, so most of the higher frequency
motion artifacts can be filtered away prior to processing. Ther-
mistor time constant also plays an important role in temporal
response, since a sensor with a larger time constant will not
show higher frequency motion artifacts. Skin temperature gen-
erally increases as the first-order system step response from the
moment of contact to reach the final value in baseline. With this
in mind, an appropriate thermistor with lower time constant has
been used to reduce the rise time. Once the final value is reached,
skin temperature generally fluctuates around that value. When a
subject is presented with stimuli (task), a significant drop in the
skin temperature is induced as a result of increased perspiration.
This response appears to improve the skin temperature correla-
tion from the baseline to the task for the second and third tasks.
A significant drop in correlation was registered in T1 and T4
for c-handle, which can be a consequence to an unergonomic
handle shape and/or nonuniversal sensor placement.

For ECG measurement, high dynamics and low physical load
condition showed most significant effect on signal correlation
for both handles. This implies that ECG signal correlation is
less affected in tasks with higher physical load, providing a
firm grip on surface stainless steel electrodes. Since the overall
correlation reduction in all tasks is minimal, ECG bimanual
measurement is considered a viable option for HR measurement
in physical control tasks. A different effect is observed in PPG
measurement, where correlation is significantly reduced in high
physical load conditions. This is due to PPG sensor measuring
slight changes in light reflectance, which in static conditions
translates to the pressure wave propagating through the arteries.
When different external pressure is applied to the skin–sensor
contact, this PPG measurement is distorted. Calculation of PCCs
shows that physical load is the main cause of interference, since
both T1 and T2 showed no major correlation reduction. Another
aspect can also be the handle design and sensor integration.

While fingers can be isolated from movement in low physical
load conditions, they have to take an active part in balancing
and stabilizing the handle in high physical conditions.

Median values of PCCs mostly reside above the 0.8 line
(see Fig. 6), except in c-handle EDA measurements for
T1 and T2, which is promising, comparing these results to
other literature [28], [40]. S-handle design outperformed the
C-handle in all tasks and for all signals, except for the PPG
measurements, where the cylindrically shaped handle showed
higher correlation for both baseline and task measurements
(see Fig. 7). Correlation results show that the proposed system
correlates well with the reference system in both cases; in
terms of the optimal design for signal quality and comfort,
hemispherical shape is more appropriate.

In total, nine parameters were calculated for both handles (see
Tables III and IV), most of which showed a significant change
in the task at specific conditions, except for mean HRECG and
mean HRPPG . Mean relative values of the HR were very similar
between the proposed systems and g.tec for all tasks; thus, we
can assume that the HR parameter can be used in both high dy-
namics and high physical load conditions. No deviation between
PPG and ECG measurement was noted for the HR parameter,
which implies that this parameter can be determined accurately
by both measurement methods for all task conditions.

Values of HRV time-domain parameters tend to decrease in
high arousal situations. For SDNN parameter, a significant de-
crease was found for all task conditions for both handles. While
comparing mean relative values of SDNNPPG between both the
proposed and reference systems, results show no major error;
thus, we concluded that bimanual ECG measurement performs
well in terms of measuring SDNN parameter, and also that this
parameter showed meaningful information regarding different
workload in the task. Results also showed a significant decrease
in the SDNNPPG parameter for all four tasks for c-handle, and
mean relative values were also comparable between the pro-
posed and reference systems. However, s-handle results in the
third task failed to show significance in comparison to the ref-
erence system, and also larger error in mean relative values is
evident for T4. This is similar to what the raw signal correlation
data have shown. The trend in mean relative values is still very
similar to that of the reference system, so we concluded that
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TABLE IV
MEAN RELATIVE VALUES OF CALCULATED PARAMETERS FOR S-HANDLE AND THE REFERENCE SYSTEM (G.TEC)

TASK 1 TASK 2 TASK 3 TASK 4

S-HANDLE G.TEC S-HANDLE G.TEC S-HANDLE G.TEC S-HANDLE G.TEC

mean HRE C G [BPM] −0.1 ± 2.7 −0.1 ± 2.7 0.7 ± 0.7% 0.9 ± 0.9% 0.1 ± 0.1% 0.2 ± 0.2% 0.1 ± 0.1% 0.1 ± 0.1%
SDNNE C G [%] −14 ± 17∗∗ −14 ± 17∗∗ −21 ± 21∗∗ −21 ± 22∗∗ −14 ± 20∗ −13 ± 20∗ −12 ± 18∗ −13 ± 19∗

RMSSDE C G [%] −10 ± 16∗∗ −10 ± 16∗∗ −15 ± 18∗∗ −17 ± 18∗∗ −10 ± 21∗ −12 ± 17∗ −6.6 ± 14∗ −8.1 ± 16∗

mean HRP P G [BPM] −0.3 ± 2.7 −0.4 ± 2.7 0.3 ± 0.3% 0.5 ± 0.5% 0.1 ± 3 0.2 ± 0.2% 0.1 ± 0.1% 0.2 ± 0.2%
SDNNP P G [%] −12 ± 17∗ −14 ± 17∗∗ −17 ± 21∗∗ −20 ± 21∗∗ −8 ± 29 −10 ± 21∗ −12 ± 20∗ −17 ± 17∗∗

RMSSDP P G [%] −7.1 ± 19 −11 ± 15∗ −10 ± 17 −17 ± 21∗ 1.9 ± 53 −13 ± 18 2.8 ± 43 −7.1 ± 21
Mean SCL [μS] 0.5 ± 1∗ 0.1 ± 0.1% 1.4 ± 1.7∗∗ 0.5 ± 0.5% 0.1 ± 0.1% −0.1 ± 18 0.8 ± 2 0.1 ± 0.1%
SCR frequency [%] 149 ± 225∗∗ 42 ± 63∗∗ 176 ± 272∗∗ 51 ± 90∗∗ 80 ± 174∗∗ 35 ± 69 86 ± 123∗∗ 59 ± 106∗∗

Final temperature [K] −0.1 ± 0.5 −0.2 ± 0.4∗ −0.1 ± 0.4 −0.2 ± 0.4 −0.3 ± 0.5∗∗ −0.3 ± 0.4∗∗ −0.3 ± 0.4∗∗ −0.2 ± 0.3∗∗

Statistically significant differences from baseline values are bolded and marked with asterisks: ∗ for p < 0.05 and ∗∗ for p < 0.01.

with careful sensor design and placement, the SDNN parameter
can also be determined via the PPG measurement method.

The RMSSD parameter is also frequently used as the time-
domain method for assessing HRV. RMSSDECG was accurate
for both proposed systems, with only larger error noted in
T4 for c-handle measurement. RMSSDPPG parameter showed
poor performance and larger error in comparison to that of
the reference system. The only exceptions were T1 and T4 in
c-handle measurement and T1 in s-handle measurement. The
RMSSDPPG parameter can thus be reliable only in tasks with
low dynamics and low physical load, while RMSSDECG can be
used reliably for all task conditions.

EDA parameters have to be examined with caution, since bi-
lateral measurements can differ in dc levels (tonic component)
and conductivity fluctuations (phasic component). As found in
previous studies, Mean SCL is closely linked to physical work-
load and in some cases cognitive workload. Interesting effect
was found for Mean SCL parameter, which showed significant
increase only for recording of the proposed system, but not for
the reference system. For c-handle, Mean SCL was significant
in both conditions of high physical load; for s-handle, it was
significant for both conditions of low physical load. This can be
due to the fact that the reference system was applied to the hand
not involved in the physical control task and, hence, did not
experience such perspiration throughout the task in comparison
to the active hand.

SCR frequency has shown a significant increase from the base-
line for all tasks and both handles. The trend of mean relative
values between the proposed and reference systems is correlat-
ing well for c-handle measurement; however, large deviations
in mean relative values can be seen from the results. This can
be due to bilateral measurement as mentioned before, or due
to the differences between the measurement systems. The ref-
erence system uses a preamplifier with an integrated low-pass
filter, which could be the reason for the lower SCR detection
rate in high arousal situations. The final temperature parameter
showed significant reduction in almost all tasks except in T1
and T2 of s-handle measurement, which was expected due to
the low physical load condition. In all tasks, low error of mean
relative values was found between both the proposed system
and the reference system.

C. Motion Artifacts

The highest value of SQSS was calculated for the angular
velocity contribution in T2, which is aligned with the experi-
ment protocol, where T2 was supposed to induce fast and jerky
movements. It is interesting to point out that horizontal force
contribution (SQSSFx

) is not raised to a higher level. This could
be due to the fact that the virtual mass was minimal in T1 and
T2, and thus, it did not produce high enough force to pass the
threshold. As expected, the artifact occurrence is increased in
T4 for both horizontal force and angular velocity contribution.

The NOE parameters are used to show the mean failing rate
of the algorithm and are mostly all below 1 event per minute.
The lowest values of NOE are found for T1, which is expected
due to the low dynamics and virtual mass.

Similarly, the PDP parameters are showing the percentage
of positive detection within the entire session. It appears that
although the failing rate of the algorithms is similar across all
quantities, the PDPeda and PDPtemp are having higher percent-
ages of positive detection within the session. This implies that
artifacts are influencing the detection algorithm for a shorter
period of time. The lowest value of PDP is found for PPG al-
gorithm detection, where results align with the raw correlation
results from previous section.

To try and quantify different contributions of motion for
a specific physiological signal, QOSO was calculated for T4
[see (3)]. Results of the different QOSO contributions are seen
from Table II. Since PPG signals are most prone to motion arti-
fact disturbance, it is normal to expect higher values of overlap.
From the results, horizontal force is the largest contributor to
the PPG algorithm fail rate, followed by the angular velocity
and finally grasping force. An interesting result is shown for the
EDA algorithm fail rate, where the largest contribution is cal-
culated for the grasping force. The smaller values of QOSO are
expected for more robust signals (e.g., EDA and temperature),
where algorithm is not failing that often.

VI. CONCLUSION

We have presented a novel physiological measurement system
for use in a physical rehabilitation task. Human–robot studies,
based on physiological data analysis, are currently done mostly
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by high-tech and expensive medical equipment with long setup
times. To achieve a user-friendly and unobtrusive measurement
with fast setup time, sensors were integrated into two different
handle designs: a cylindrical and hemispherical shape. To best
of our knowledge, this is the first case of an integrated physio-
logical measurement system attached to a robot end-effector for
an unobtrusive human–robot interaction measurement.

Experiment included a haptic robot manipulator with a mea-
surement handle attached to its end-effector and a virtual task.
By changing the model of the virtual environment, we ma-
nipulated task dynamics and physical workload to assess the
change in signal integrity. Correlation with the reference sys-
tem attached to the static hand showed different effects of task
conditions on correlation values. For low physical load, most
of the noticeable effects were seen only in EDA measurement.
PPG measurement was mostly influenced by the high physical
load condition. ECG measurement was found to be very ro-
bust in all four conditions. The temperature measurement has
shown some effect in high physical load and high dynamics
conditions. Additionally, most of the calculated physiological
parameters have demonstrated robustness to handle-embedded
sensory measurement.

To quantify the effect of motion, we devised a comprehensive
study of motion artifacts and their effect on the signal quality.
Artifacts were modeled as three-DOF sources of motion using
the horizontal interaction force from the robot end-effector force
cell, grasping force from the handle force cell, and angular ve-
locity from the inertial sensor that was attached to the posterior
side of the hand. QOS metrics were calculated and postpro-
cessed to acquire parameters that described the influence of all
three motion contributions. Results of raw signal correlation
were aligned with the findings of motion artifact processing.

Importantly, results have also proven that hemispherical han-
dle performed better for all physiological measurements than the
cylindrical handle, except for PPG measurement. The results
speak for reliability of such a measurement approach, which
can be applied to all areas of human–machine interaction. Fur-
thermore, these methods can be used in designing home-based
rehabilitation and monitoring solutions.

Future work can be done by optimizing the handle design for
higher comfort and universal use (sensory placement to cover
wide range of hand sizes) and to develop adaptive algorithms
for robust monitoring of physiological signals based on motion
analysis.
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