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Abstract

Clinically useful and efficient assessment of balance during standing and walking is especially challenging
in patients with neurological disorders. However, rehabilitation robots could facilitate assessment procedures
and improve their clinical value. We present a short overview of balance assessment in clinical practice and
in posturography. Based on this overview, we evaluate the potential use of robotic tools for such assessment.
The novelty and assumed main benefits of using robots for assessment are their ability to assess ‘severely
affected’ patients by providing assistance-as-needed, as well as to provide consistent perturbations during
standing and walking while measuring the patient’s reactions. We provide a classification of robotic devices
on three aspects relevant to their potential application for balance assessment: 1) how the device interacts
with the body, 2) in what sense the device is mobile, and 3) on what surface the person stands or walks
when using the device. As examples, nine types of robotic devices are described, classified and evaluated
for their suitability for balance assessment. Two example cases of robotic assessments based on perturbations
during walking are presented. We conclude that robotic devices are promising and can become useful and
relevant tools for assessment of balance in patients with neurological disorders, both in research and in
clinical use. Robotic assessment holds the promise to provide increasingly detailed assessment that allows
to individually tailor rehabilitation training, which may eventually improve training effectiveness.
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Background
This work was developed in the frame of the project
“STate of the Art Robot-Supported assessments” or
STARS, as part of the COST Action TD1006 “European
Network on Robotics for NeuroRehabilitation” [1].
STARS is intended to equally serve clinical practitioners,
technology developers and manufacturers, as well as
researchers and scientists active in the field of neuroreh-
abilitation. The goal is to give recommendations for
development, implementation, and administration of
different indices of robotic assessments, grounded in the
scientific literature available at this time. ‘Robotic’ or
‘robot-supported’ assessment here points to quantitative
assessment performed through the use of specific

robotic tools, for example rehabilitation robots or robots
especially developed for assessment.
Maintaining balance is a critical component of many

daily tasks, from standing upright to walking on uneven
terrain. Here, we define balance as the continuous and
adequate adaptation of body posture to avoid falling. Im-
paired balance is common in patients with diverse health
conditions, in particular those with neurological damage
through, e.g., cerebral vascular accidents (CVA, or
stroke), traumatic brain injuries (TBI) or spinal cord
injuries (SCI) [2]. In these patients, impaired balance
manifests itself as a reduction of functional abilities, i.e.,
difficulty in sitting, standing or walking [3], as well as in
transitions such as sit-to-stand, stand-to-walk or turning.
Thus, restoring balance in these populations is critical to
improve patients’ quality-of-life and return to society.
Despite its importance, the assessment of balance in

clinical practice remains rather crude and has limited
value in the treatment of patients with neurological
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disorders. Outside of a few specific contexts (e.g.,
vestibular patients), current assessments consist of
qualitative scores of performance (e.g., normal, se-
verely impaired) or measures of overall performance
(e.g., completion time) in functional activities.
Although many assessments are reliable (i.e., produce
stable and consistent results) and have good fall-
prediction validity [4], they provide limited information
towards analysis or understanding of reduced perform-
ance. Further, there are very few assessments for patients
that require support (e.g., canes, walkers), despite their
remaining or potential abilities. This limits the richness
and clinical value of balance assessments, e.g., balance as-
sessments currently hardly help the clinician to tailor
training to individual needs.
A challenge in better assessing balance is that it

involves many underlying neuro-musculoskeletal and
sensory body functions [5–7]. The relative importance of
the involved body functions can vary across activities,
and constraints or deficits in any of these body functions
can impair or affect balance [8]. Neurological impair-
ments generally affect multiple body functions simultan-
eously and, together with the development of
compensatory strategies, obscures the relationship be-
tween specific impairments and outcomes of functional
performance assessments.
The human ability to maintain balance is a complex

function, and can be analysed from multiple viewpoints.
Three are of particular interest here: i) static vs. dynamic
balance; ii) the ability to maintain steady-state balance
when facing different challenges; and iii) core strategies
to maintain balance. At the highest, contextual level,
balance can be separated between static and dynamic,
depending on whether it is intended to maintain a body
posture or avoid falls during movements like locomo-
tion. Next, steady-state, anticipatory and reactive balance
control are related to the types of challenge to balance
that are counteracted [9]. These challenges can be fur-
ther classified as internal or self-generated disturbances,
such as voluntary reaching, and external, such as pushes
[10]. Finally, balance control is achieved through move-
ments that are composed of core strategies, or funda-
mental coordinated actions of the lower limbs intended
to maintain or recover balance. For example, standing
balance is maintained using the ankle, hip and stepping
strategies, while walking balance uses foot placement
strategies. Assessments can address different aspects of
balance, according to these distinctions, e.g., i) assess
during standing or walking, ii) assess with or without
external perturbations or anticipated motions, iii) assess
with procedures that require and measure specific bal-
ance strategies. To improve balance rehabilitation, it is
critical to understand how neurological impairments
have affected the different components of balance in a

specific patient. It is thus critical to assess balance cove-
ring different aspects of the indicated spectrum [11, 12]
to adequately measure its progress or deterioration, ana-
lyse the determinants of poor performance, and to
personalize training.
New technologies could improve balance assessments

by increasing information richness, precision and ease of
procedures, and by expanding the range of tasks. In
recent years, ‘advanced rehabilitation technology’, such as
wearable sensors and rehabilitation robots, is being de-
veloped. Rehabilitation robots are devices that directly
interact mechanically with the user, and can move their
limbs or support their body posture through use of ro-
botic technology. Regarding assessment of balance, these
developments may have the following benefits:

� faster and more repeatable procedures and
assessment results, through automatic acquisition
and processing of sensor data, instead of subjective
observation and classification;

� improved assessment of “severely affected” patients,
by measuring the amount of assistance provided
during task execution in patients that cannot
perform a task on own effort;

� improved assessment of reactive and dynamic
balance, through well-defined perturbations, also
during locomotion;

� improved information richness of assessments
through procedures and measures that relate to
determinants of poor functioning; and

� combined training and assessment by use of the
same devices for both procedures, especially in cases
where patients require functional support to
accomplish a task.

Despite the introduction of rehabilitation robots into
clinical practice [13], accessibility – including financial
costs and reimbursement models – and familiarity of
these devices are still barriers to their widespread use in
the clinic.
In this paper, we present an overview of the poten-

tial use of emerging robotic devices in the assessment
of balance. We propose a classification of these
devices, and specify requirements for these technolo-
gies to be useful for assessment of balance. This
paper focuses on balance assessments and rehabilita-
tion in stroke, and includes both static and dynamic
balance, especially during standing and level-ground
walking. Two experimental robotic devices specifically
developed to perform assessment of balance are
presented as example cases of robotic assessment. We
finalize by highlighting current challenges and recom-
mendations towards the adoption of robotic devices
in clinical assessment of balance.
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Clinical practice and developments in assessment
of balance
In contrast to ‘diagnostics’, which investigates and deter-
mines the (physical) damage, abnormality or diseased
state of the body, ‘assessment’ measures the (deterior-
ation of ) functional performance related to specific tasks
in the context of such damage, abnormality or disease.
This section will describe the main approaches to
balance assessment, and identify shortcomings.

Clinical assessments trade off information richness and
duration of the assessments
In current stroke rehabilitation, the assessment of
balance relies on various well-accepted clinical tests.
These clinical tests generally start from an overall
(high-level) functional perspective, and score a pa-
tient’s ability to perform specific activities while
maintaining balance using a classification based on
therapist observation, or simple measures related to
task completion (e.g., completion time). Important
examples are listed in Table 1. Extensive reviews and
more detailed descriptions of clinical assessment
procedures can be found in [5, 14, 15].
Assessments like the TUG assume that overall task

performance reflects the underlying quality of balance,
but only indirectly measure balance performance.
Typically, a single score that reflects performance

(e.g., time to stand-up, walk a specific distance, turn,
walk back and sit down) is measured; such metrics
are one-dimensional, and provide little information
towards understanding the components of poor bal-
ance performance and consequently for tailoring of
the rehabilitation training. Other assessments, like the
BesTest, score performance on a number of functions
to more directly assess different ‘sub-systems’: Bio-
mechanical Constraints, Stability Limits, Postural Re-
sponses, Anticipatory Postural Adjustments, Sensory
Orientation, and Dynamic Balance during Gait. Such
assessments provide multi-dimensional information
and can provide more insight on the different causes
and components of poor functional balance perform-
ance. However, the more dimensions are assessed, the
more time is required for administering the assess-
ment, which is a barrier for practical clinical use. In
general, all clinical assessment procedures require a
skilled clinician and typically at least half an hour of
testing time, and include observation-based classifica-
tion of the quality of performance on ordinal scales.
Furthermore, none of the procedures evaluates react-
ive balance control during walking (see Table 1). This
function is likely strongly correlated to the causes of
many falls. This is an additional example of clinical
assessments providing only limited information on the
determinants of reduced balance performance.

Table 1 Overview of several widely used clinical assessments for balance function

Clinical assessment Type of balance assessed
through procedure

Scoring

Steady
state

Antici
patory

Reactive

S W S W S W [S = Standing / W = Walking]

Romberg test [77] X - - - - - Ability to stand with eyes closed compared to eyes opened: able/unable,
or time (in seconds) position was maintained.

One-leg stance test, or single leg support,
or timed unipedal stance test [78]

X - - - - - Time in seconds until one-leg stand is ended, by: lowering the elevated
foot on the floor, taking hands off the hip or touching the standing leg
with the elevated foot.

Functional reach test [79] X - X - - - Maximum distance reached (from start) in centimeters.

Lateral reach test [80] X - X - - - Maximal lateral reach to the right and left (from start) in centimeters.

Get Up and Go test [81] - - X X - - Score from 1 (normal) to 5 (severely abnormal) based on perceived (ab)
normality.

Timed Up and Go test [82] - - X X - - Time (in seconds) to complete task and score from 1 to 5 based on
observer’s perception of risk of falling.

Performance-Oriented Mobility Assessment
(POMA), or Tinetti test [83]

X X X X X - Score from 0 (unable or highly impaired) to 1 or 2 (independent) on
multiple tasks, based on ability to perform task and need of support
(balance), or quality of movements (gait).

Berg Balance Test (BBT) [84] X - X - - - Score from 0 (low) to 4 (high), based on ability to perform multiple
separate tasks.

Balance Evaluation Systems test
(BESTest) [11]

X X X X X - Score from 0 (severe impairment) to 3 (no impairment) on multiple
tasks, based on ability to perform task; some related to time or speed.

Balance is separated into types according to two aspects: static (standing) or dynamic (walking); and steady-state, anticipatory or reactive (as defined in the
Introduction). Scoring of performance in each assessment is also briefly described. (For general reference [15, 85])
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Instrumented assessments are quantitative and time-
efficient, but have limited scope
To make assessments faster and less dependent on clin-
ician skills, methods have been developed to perform
quantitative, instrumented balance assessments, mainly
following two approaches.
A first instrumented approach is posturography,

which evaluates postural control in standardized,
instrument-based procedures. Posturography quanti-
fies postural balance performance in either unper-
turbed or perturbed conditions during standing on a
fixed or actuated instrumented platform. Posturogra-
phy measures the ability to maintain the body’s
Center of Mass (COM, or rather its vertical projec-
tion on the standing surface, COMv) within the Base
of Support (BOS) (Fig. 1), which is a formal, physical
definition of static balance. Center of Pressure (COP)
motions reflect the subject’s active control to keep
the body’s COMv within the BOS, and thus provide
related but complementary information. Additional
information on metrics used in posturography can be
found in the Appendix. Comprehensive reviews on
posturography can be found in [16–18].
Posturographic results are quantitative and have been

shown to correlate with risk of falling or with some of
the clinical balance assessments described above;

however, the exact understanding of normality and ab-
normality, as well as the interpretation and inter-relation
of the different metrics, remain a topic of research [18].
Posturography is, by its concept, limited to assessing bal-
ance performance during standing, and results obtained
provide limited information on balance during other
tasks, such as walking. This is supported by the observa-
tion that posturographic metrics correlate differently
with different clinical scales, and sometimes not at all.
A second, currently more exploratory, approach is to

equip subjects with unobtrusive sensors than can be worn
during clinical procedures [19], or even during daily life
[20] and calculate features from the collected data that
may reflect balance performance or changes in perform-
ance [21, 22]. This can be considered as a data mining ap-
proach. In the field of stroke rehabilitation, some features
have been shown to correlate with clinical metrics [23].
However, this approach is still in its infancy.

Concluding, even though several procedures of quali-
tative and quantitative assessment and measurement of
balance in impaired subjects are used in clinical and re-
search practice, there is still ongoing scientific debate on
understanding human balance control and optimizing
assessment methods and metrics. Clinical assessments
mostly assess the overall functional performance, but do

Fig. 1 Illustration of the widely used biomechanical indicators (COM, COMv, COP, BOS, GRF) describing, or containing information regarding
balance conditions. Features of one or a combination of these indicators is/are used to describe balance performance in current posturography
and can be used in robotic assessment. More details on metrics based on such indicators can be found in the Appendix
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not address determinants or components of poor per-
formance. Very few procedures consider reactive balance
control. Posturography introduces quantitative assess-
ment of balance during stance, and can include reactive
balance. None of the established clinical or posturo-
graphic assessments include reactive balance control
during walking.

Balance assessment using robotic devices extends
posturography
In recent decades, robotic devices for neurorehabilita-
tion training of lower extremity functions have been
introduced in clinical centers and research is being
performed on their practical benefits for training and
assessment [24–30]. Here, ‘robotic’ refers to any
electromechanical device that uses actuators as part
of a sensor-based control loop. A classification of the
diverse robotic tools is presented in the next section.
Different robotic tools can be used to provide
precisely timed and sized, repeatable perturbations.
Sensors are embedded in or can be easily added to
robotic devices, enabling the use of a single device
for therapy and assessment. The sensors could
provide detailed measurement of balance-related
reactions to specific perturbations. These data contain
rich information about the determinants of reduced
balance performance, and can potentially enrich the as-
sessment to support personalized analysis and training.
Assessments through robot perturbations can be seen as

an extension of ‘classical’ posturography, as they can be
based on the same or analogous measures in different con-
texts. Robots can provide different types of perturbations,
such as trips and hip shoves, as well as during different ac-
tivities, especially during walking. These new technical pos-
sibilities may largely expand the ‘toolkit’ of posturography,
and should be properly integrated into the field in order to
understand how robotic assessments relate to, can contrib-
ute to, and can benefit from the extensive body of know-
ledge built up in the field of posturography.
Additionally, most types of robotic devices used in re-

habilitation may be used to support patients in the exe-
cution of tasks. This could facilitate assessment in
severely affected patients, i.e., those that are not able to
perform the assessment tasks on their own effort (e.g.,
not able to stand or walk), but that have remaining func-
tionality when provided with sufficient assistance (assist-
ance-as-needed, AAN) [31]. Further, although most
robots were developed for therapy, the sensors required
for their operation continuously provide measurements
that could be used to assess patients’ balance perform-
ance - such as joint angles, or applied forces. Measures
during therapy activities, or short standardized protocols
at, for example, the beginning and end of each therapy
session, could provide more detailed information about

patient progress as well as inform the effectiveness of
different therapies.
A general concern for balance assessment with ro-

botic devices is that the robot should not (excessively)
influence or restrict the natural movement capabilities
of the patients. The robot should minimally affect the
baseline condition (e.g., walking), as well as patients’
reactions to perturbations. This is determined by the
device’s degrees–of-freedom and their zero-force or
transparency control performance [32]. Transparency,
in this context, is understood as control methods that
allow unhindered motion of the subject. The effect of
blocking or adding substantial inertia to the human’s
degrees-of-freedom involved in balance control should
be carefully evaluated on their influence on natural
execution of tasks. Several publications have assessed
such aspects in the context of rehabilitation robots
[33]. When using AAN, the robotic device should
assist, but not completely execute, the task [31].

Proposed classification scheme for rehabilitation robots
for standing and walking
In this section, we provide a classification of robot types,
structured according to characteristics that are relevant for
possibilities and limitations for the assessment of balance.
Within this classification, we position different robots that
currently can be found in research or clinical practise. We
only consider systems that allow execution of standing and
walking functions by patients; thus, devices that only pro-
vide gait-like motions to the legs while being seated, such
as those as classified as “Stationary Gait Trainers” in [27],
are not included as they do not require any standing or
walking balance capabilities from the patient.
We propose to classify rehabilitation robotic devices

considering three important factors:

1. Interaction – how the device interacts with the body.
We distinguish three main types of interaction:

S. Surface – if the device interacts by moving the
surface on which the patient is standing or walking,
such as perturbation platforms, treadmills, or
actuated footplates;

C. Connector – if the device interacts through a
connection at a specific location on the body, e.g., at
the pelvis, or through a harness; and

D. Distributed – if the device is connected to multiple
locations on the body, such as in exoskeletons.

2. Mobility – how mobile the device is. We distinguish
three main types of device mobility:

W.Wearable – if the weight of the device is carried by
the patient, as a device that is worn on the body,
such as an exo-suit;
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M.Mobile – if the device mostly supports its own
weight and can move in the environment (for
example through wheels, stepping, or an overhead
suspension); and

F. Fixed – if the device supports its own weight and
cannot move around in the environment.

3. Surface – on what kind of surface the person stands
or walks when using the device. We distinguish
three main types of operation:

O.Over-ground – if the device is operated with the
patient standing or walking on a regular floor
surface;

T. Treadmill – if the device is operated with the
patient walking (or standing) on a treadmill; and

P. Plates – if the device is operated with the patient
standing or walking on an actuated plate that is
continuously in contact with the feet (platform), or
with each foot separately (footplates).

Classification of sample robotic devices used in
neurorehabilitation and their use for assessment
To demonstrate the use of the classification scheme pro-
vided in the previous section, we will give an overview
of nine different types of robotic devices used or being
developed in neurorehabilitation research, and classify
them according to the scheme. The classification scheme
can be applied to any type of robotic device for balance
training and assessment; however, the nine types de-
scribed include only currently existing configurations.
Typical examples of these nine types, together with their
classification and their potential abilities to assess
balance, are presented in Table 2.

I. Perturbation platforms and treadmills (SFP/SFT)
Perturbation platforms, e.g., actuated standing sur-
faces, are often used in ‘classical’ posturographic mea-
surements [17]. Depending on the design, the
standing surface can be moved in at least 1, and in
up to 6, degrees-of-freedom. These robots are classi-
fied here as surface-, fixed-, plates-type (SFP) robots.
They provide a controlled environment to challenge
standing [34] and, if a treadmill is mounted on the
platform, also during walking. Fast accelerations of
such platforms can provide perturbations required for
balance assessment, including stepping reactions [35].
Perturbation platforms are not suitable to provide as-
sistance to patients.
Treadmills with high dynamic capabilities can also be

considered perturbation platforms [36] when providing
short acceleration or deceleration pulses, analogous to
actuated platforms, although treadmills are typically
limited to one perturbation direction. In this case, they

are classified here as surface-, fixed-, treadmill-type
(SFT) robots. Some treadmills use a separate belt for
each foot (split-belt treadmills), allowing different per-
turbation directions on each side. Treadmills that can
move in the two planar directions (anterior-posterior
and medial-lateral), as well as in the orientation of the
walking surface, are sometimes named OmniDirectional
Treadmills. As an example of this treadmill category, the
SENLY research platform [37] consists of two separ-
ate treadmills with additional actuators that allow per-
turbations to the feet both in the anterior-posterior and
medial-lateral directions.

II. Treadmill-mounted pusher devices (CFT)
Robotic pusher devices are designed to provide con-
trolled forces, such as pushes or pulls, to the pelvis or
trunk during standing or treadmill walking. A device of
this type is presented as example 1 (Fig. 2) [38], another
example is the BAR-TM, similar to the device presented
in Fig. 3 [39]. These robots are classified here as con-
nector-, fixed-, treadmill-type (CFT) robots. Intrinsically,
these devices measure the interaction force at, and the
motion of, the single point of contact, which is generally
closely related to the motion of the COM. More com-
plex devices could potentially also support or correct
pelvis motions, including support of the body weight.

III. Overhead active body weight support systems (CFT/CFP/
CFO/CMO)
Body Weight Support (BWS) systems allow the gene-
ration of a constant or controlled vertical supportive
force to provide safety and body-weight support during
balance and gait training. Such devices are only robots if
they have a controllable actuator, for example to follow
the patient’s movements to provide a strictly vertical
force, or to control the amount of BWS according to
momentary need. Robotic BWS systems can support
training on treadmills (in this case, classified as CFT)
[40, 41], over-ground with a fixed mounting (in this case,
classified as CFO) such as for example the ZeroG [42],
over-ground on a mobile frame (CMO) [43], or poten-
tially also on actuated footplate systems (in this case,
classified as CFP).
The typical active BWS system is not able to provide

horizontal perturbations, as required for advanced bal-
ance assessment, but more complex BWS systems, such
as the FLOAT [44], may be used to provide a range of
perturbations when standing [45]. However, it is impos-
sible to transfer purely horizontal forces through cable-
based systems like the FLOAT that have been developed
to primarily provide controlled vertical forces. Add-
itional robotic devices could be combined to provide
perturbations.
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Table 2 Examples of robotic devices used in rehabilitation that are suitable for balance assessment

Each device is listed by its rehabilitation robot type according to the classification introduced in this paper. The types of balance that can be assessed with each
device are indicated in the last column (X – feasible to be assessed,? – unclear if feasible, because unknown how well the transparency control functions;
S – Standing, W- Walking). For more details on specific devices, refer to section in the main text on “Classification of sample robotic devices used in
neurorehabilitation and their use for assessment”.
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In general, BWS systems are suitable to provide AAN
support to ‘severely affected’ patients to stand or walk
and thus facilitate their assessment.

IV. Mobile self-balancing platforms for balance training (SMP)
Devices with a standing surface mounted on two wheels
with an upright handgrip, that are able to self-balance
on their two wheels, have been implemented as rehabili-
tation robots for balance training in patients with neuro-
logical disorders, for example the “Balance Training
Assist” [46]. The standing surface tilts forward and back-
ward, thus challenging the standing balance of the
patient. These robots are classified as surface-, mobile-,
platform-type (SMP) robots. With this configuration,
they are only able to provide sagittal perturbations,

either by rotating the standing surface around the
wheels, or by accelerating forward or backward.

V. Mobile robotic gait trainers (CMO)
Mobile robotic gait trainers are robots that connect to
the user at the pelvis, lower- or upper-trunk, while being
mounted on a wheeled platform. They are used to
provide body weight and/or posture support as well as
safety during over ground gait and balance training.
These devices can have various passive and actuated de-
grees of freedom, or, alternatively, spring-based posture
correction [47, 48]. The robotic component can be the
support system, when it controls the interaction force
with the patient, or the wheeled base, when it provides
automated navigation or actively follows the patient’s
walking path.

Fig. 2 To systematically assess how patients maintain their balance when being perturbed during walking, the University of Twente has developed a
pelvic perturbation device (a and b) [38]. This device consists of an admittance-controlled motor (Moog, Nieuw Vennep, the Netherlands) connected
via a lever arm and a rod to a pelvic brace worn by the subject. The device allows providing perturbations in different directions, with different
magnitudes and different durations at precisely timed instances of the gait cycle while walking on a treadmill (c, mediolateral perturbations timed at
toe off with magnitudes expressed as % of body weight). In collaboration with Roessingh Research & Development, the device was used to assess the
foot placement strategies of ambulatory stroke survivors when being perturbed away or towards the stance leg at the start of swing of the paretic or
non-paretic legs. Responses of the step directly following the perturbation in a single stroke survivor are indicated in (d). Whereas the stroke survivor
made a cross step, as evidenced by the negative step width, with his non-paretic leg when being forcefully perturbed towards the paretic leg, he did
not make a cross step with his paretic leg. When being perturbed away from the stance leg, both the paretic and non-paretic side only
slightly adjusted the step width but the foot was placed faster on the ground, as evidenced by the decreased swing time, to counteract
the perturbation
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Fig. 3 (See legend on next page.)

Shirota et al. Journal of NeuroEngineering and Rehabilitation  (2017) 14:80 Page 9 of 19



These robots are classified as connector-, mobile-,
over-ground-type (CMO) robots. Only devices with an
active, controllable interface to the patient can provide
controlled perturbations. A device of this type, e.g., as
example 2 (Fig. 3), the BAR-OG, can apply pushes in
various directions in the transverse plane, and also pro-
vide assistive forces as needed (AAN) to keep balance.
Another example of this type is a wheeled platform that
interfaces with the human upper body and allows vari-
able support, resistance, and perturbations in all degrees
of freedom during standing and walking on even ground,
but also during more challenging activities such as
stepping over obstacles and walking on uneven or soft
terrain, i.e. the KineAssist [49].

VI. Treadmill-mounted exoskeletons (DFT)
Treadmill-mounted exoskeletons are devices that allow
actuating the user’s leg joints or segments through a set
of robotic links. These robots are installed above a tread-
mill, such that the weight of the device is not supported
by the patient. These robots are classified here as distri-
buted-, fixed-, treadmill-type (DFT) robots.
Many of the first-generation of such devices con-

strained the pelvis in the coronal and sagittal planes,
thereby ensuring standing/walking balance, which
made them unsuitable for balance assessment.
Recently developed devices allow or also actuate the
pelvis’ translations in the medial-lateral and anterior-
posterior directions and rotations in the transverse
plane, in addition to allowing hip ab/adduction, such
as LOPES I [50], LOPES II [51], the newer Lokomat
[52], and other similar devices [53]. This allows
patients in the device to maintain balance by them-
selves, and assessment of their balance control can be
implemented. This type of device can provide pertur-
bations as well as provide AAN.

VII. Mobile-platform-mounted exoskeletons (DMO)
Mobile-platform-mounted exoskeletons are similar to
type VI, with the exoskeleton mounted on a mobile
wheeled platform that supports the weight of the device
[54]. Exoskeletons that completely support their own
weight through their foot segments are also under this
type, as they are mobile by walking ability. An example
of this type is the REX exoskeleton of Rex Bionics [55].
These robots are classified here as distributed-, mobile,

over ground-type (DMO) robots. This type of device can
provide perturbations as well as provide AAN, similar to
type VI.

VIII. Fully wearable exoskeletons, actuated orthoses, or exo-
suits (DWO)
Fully wearable exoskeletons, actuated (multi-joint) orth-
oses, and exo-suits are devices that actuate one or more
leg joints of the user, similar to type V devices, but are
fully body-worn [56]. These robots are classified here as
distributed-, wearable-, over ground-type (DWO) robots.
Currently, the primary use of fully wearable exoskel-

etons is locomotor training or support of patients
with a complete spinal cord injury [57]. Several of
such devices are currently commercially available [55].
The implementation of the assessment of static bal-
ance on patients that are normally wheelchair-bound
should be further explored, as these exoskeleton users
are unlikely to stand or react to perturbations on
their own, even though they could be capable of weak
or diminished responses. Devices of this type are also
proposed for stroke rehabilitation, where they can be
used to provide perturbations as well as AAN for
assessment, similar to type VI and VII devices.
Currently, most commercial exoskeletons are only

able to perform assessment in the anterior-posterior
direction because of their motion capabilities [55].

(See figure on previous page.)
Fig. 3 At the University rehabilitation institute, Ljubljana, Slovenia, we have developed a novel balance assessment robot (BAR). BAR is an admittance-
controlled device that provides three actuated DOFs (sagittal and lateral pelvis displacements and rotation around vertical axis) while the remaining three
DOFs (pelvic tilt, list and vertical displacement) are passive and spring loaded. BAR is placed on a mobile platform for over ground walking but can also be
mounted onto an instrumented treadmill. Further details on BAR can be found in Olenšek et al. [39]. a shows schematics and a photograph of the actual
system with indication of the “outward” perturbation direction. BAR can provide assistive force fields as well as apply perturbing pushes. In b a set of mea-
surements are given illustrating unperturbed walking as well as balancing responses following a force impulse (50 N in duration of 150 ms) to a right-sided
hemiparetic subject walking at 0.3 m/s (b-1). The push was delivered at the beginning of the stance phase of the non-impaired left leg and was directed
to the right, i. e. »outward«. The applied push provoked movement of the COM to the right (b-3) as compared to unperturbed walking (b-2), the duration
of the stance phase was significantly reduced (as indicated by the vertical GRFs – b-4 and 5) while the impaired right leg was placed more to the right (as
compared to unperturbed walking) to enable adequate displacement of the COP in the lateral direction. c shows spatio-temporal characteristics of
unperturbed and perturbed walking. The first bars in each graph sequence belong to a step that was completed prior to perturbation occurrence (from
−1 s – 0 s) while the further five consecutive bars denote values for the steps following the commencement of the perturbation. Unperturbed walking is
characterized by shorter steps that exhibit longer duration on the impaired side (right leg) compared to the unimpaired side (left leg). The perturbation is
handled in the first step by substantially reduced step length and step time and increased step width of the first step. In the remaining steps, parameters
gradually returned to those observed in unperturbed walking. All results show mean values and standard deviations of five individual trials. These results
illustrate that well-defined perturbations and rather repeatable dynamic balancing responses can be obtained in neurologically impaired individuals. Thus,
utilising the presented BAR robot to capture balancing responses in a form of COP, GRF, step lengths, step widths and step times before and after a
therapeutic intervention can give objective assessment of each subject’s performance and efficacy of the applied rehabilitation
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Assessment of balance in the frontal plane is not
possible for current robots, since trying to tilt the
exoskeleton to the left or the right poses a serious
falling hazard due to lack of actuation and motion
possibilities. In contrast to commercially available
exoskeletons, some research exoskeletons, for instance
the Mindwalker [58, 59], have actuation of hip ab/ad-
duction, which allows assisting in weight-shifting and
foot placement; this opens up the possibility for
medial-lateral balance assessment. Fully wearable
exoskeletons can support upright posture, but have
no intrinsic BWS system, and stability and safety are
usually provided by the use of crutches or an over-
head BWS system. Since crutches alter the BOS, it is
recommendable to carry out assessments using a
BWS system without crutches. The actuated joints of
the exoskeleton can be used to apply perturbations.
Due to limited degrees–of-freedom, perturbations in
the current generation of exoskeletons may only be
applicable in the sagittal plane. This is a strong
limitation, since perturbations in everyday life are not
restricted to this plane.

IX. Actuated foot plates, or ‘end-effector-connected robots’
(SFP)
Actuated foot plates, or ‘end-effector-connected robots’,
refer to a type of robot that only connects to the user
through the foot soles, and which actuates each foot sep-
arately. Each foot is connected to a haptic contact plate,
which can emulate both stance and swing interaction (in-
cluding other interactions such as slipping), and also sup-
port foot and leg movements, e.g., the Haptic Walker [60].
These robots are classified here as surface-, fixed-,

plates-type (SFP) robots. Intrinsically, these devices meas-
ure the motions of the feet, which allows reconstruction
of the BOS, as well the ground contact forces (or COP).
Depending on the device, perturbations can be pro-

vided in the anterior-posterior or medial-lateral direc-
tions, as well as their combination.

Balance assessments performed with robots are device
type-specific
The different types of rehabilitation robot have specific pos-
sibilities to provide assistance-as-needed (AAN), and/or to
provide specific perturbations. How the robot interacts with
the user directly determines what kind of perturbations can
be implemented for assessment. For example, surface-type
robots (S) can provide moving ground perturbations,
connector-type robots (C) can provide push/pull perturba-
tions, and distributed-type robots (D) can provide joint
perturbations. This classification factor (1) is also related to
the ability to assist-as-needed for assessment of ‘severely
affected’ patients: surface-type robots (S) typically have no
ability, connector-type robots (C) have some ability, for

example to support body weight, and distributed-type
robots (D) have the highest ability to support a patient,
especially for complex tasks such as walking.
Table 3 indicates the suitability of each example type

of device to provide specific types of perturbation, to be
used for different assessment conditions, as well as their
suitability for obtaining different measured parameters.
The content of the table is determined by inspection of
the capacities of the different example systems, such as:
the ability to provide support to patients in standing or
walking, and provide perturbations during these
activities. Additionally, we considered whether there are
limitations in such devices for performing the AAN or
the perturbations, such as limited accelerations, limited
degrees-of-freedom, or complexity of the robot. There-
fore, with further technical developments, these charac-
terizations could be modified to achieve specific goals.
To quantify the performance and reactions of a pa-

tient under AAN and perturbations, different metrics
could be used. Such metrics, paralleling those in
posturography, will typically contain information on
the movement of the COM, COMv or XCOM, and
of the BOS or COP. The sensors embedded in the
robot for its actuation and control could be sufficient
to estimate such parameters, but typically additional
sensors have to be added. These sensors can be wearable,
or also have fixed components in the environment.
Kinematic quantities that are typically measured are

the kinematics of the standing surface, the configuration
of a segmental representation of the human body or the
connection point (s) of the robotic device to the body.
Kinetic quantities that are typically measured are the
forces at the connection point (s) of the device to the
body and the ground interaction forces. Interaction
forces can be measured as force in the main direction of
interaction (1D), as all force components (3D) or also
including the torques (6D); related information can be
obtained by measuring the pressure distribution at the
surface of interaction.
Instruments or sensors that are relevant in this context

are force plates, wearable (e.g., IMU-based) or camera/
marker-based motion capture systems, force shoes [61],
pressure insoles, as well as all robot-embedded sensors
for movement and force measurements.
How the robot interacts with the patient (classification

factor 1) and on which surface the robot is operated
(classification factor 3) will limit the need for (and feasi-
bility of ) combination with different additional measure-
ment systems required for specific assessment metrics.
Surface-type robots (S) often intrinsically measure
ground reaction forces, and may be combined with fixed
or wearable (COM-) motion capture systems; connector-
type robots (C) at most intrinsically measure pelvic
movement, which can be used to determine COM, but
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may require motion capture systems and force plates or
pressure insoles to determine kinetic parameters; and
distributed-type robots (D) typically measure joint mo-
tions, which allow for reconstructing body or COM mo-
tions, but may require force plates or pressure insoles or
ground contact sensors to determine COP- and BOS-
related information.
Robots that are operated overground (O) can be best

combined with wearable or mobile measurement systems
for motion capture or ground interaction measurements;
robots that are operated on a treadmill (T) and robots that
are operated through plates (P) are more easily combined
with fixed measurement systems, such as fixed motion
capture or force plates, or have treadmill-integrated force
measurement.

Metrics in robotic balance assessment need device type-
specific adaptation
To use robots for assessment, quantitative validated metrics
should be available to measure performance. Related to the

specific properties of the robots, these metrics should re-
flect: a) how much assistance (or resistance) is provided to
the patient during task execution, and/or b) how the patient
reacts to applied perturbations. Metrics that contain such
information inherently allow monitoring the improvement
or deterioration of balance control over time.
The quantification and measurement of the amount of

support depends on the type of robot being used, and
needs to be specific to the system. Therefore, there is a
need for methods and standardized procedures on how
to ‘instruct’ robots to provide just the amount of support
needed for the patient to perform the function, as well
as a metric to quantify the amount of support in that
specific type of device. This is directly related to the
concept of “Assistance-As-Needed” (AAN) that is used
as a training approach [31]. An example is the critical
percentage of Body Weight Support (indicated as a per-
centage of full body weight) that is required for a subject
to stand or to walk (although this reflects several body
functions and not just balance).

Table 3 Suitability of different types of rehabilitation robots for assessment of balance in stroke patients. Classification is based on a
robots’ potential ability to provide balance assessments and deliver perturbations to balance

Example robotic devices Type of assessment
Suitability

Type of perturbation
Suitability

Quantitative measurements
Suitability

Severely
affected
patients

Balance
assessment
in standing

Balance
assessment
in walking

Moving
ground

Horizontal
Pushes

Joint Embedded
sensors

Wearable
sensors

External
sensors

Perturbation platform (SFP) −/+a + − + − − GRF
SK

GRF
BK

BK
SK

Robotic pusher devices (CFT) + + + − + − CIF
CK

GRF
BK

GRF
BK
CK

Active Body Weight Support systems
(CFT/CFP/CFO/CMO)

+ + + − + − CIF
CK

GRF
BK

GRF
BK
CKRobotic BWS systems typically provide AAN, but can be combined with

other robotic devices for providing perturbations.

Mobile self-balancing platforms for
balance training (SMP)

−/+a + − + − − GRF
SK

GRF
BK

GRF
BK
SK

Mobile robotic gait trainers (CMO) + + + − + − CIF
CK

GRF
BK

GRF
BK
CK

Treadmill-mounted exoskeletons (DFT) + + + + + + GRF
CK
(CIF)

GRF
BK

GRF

Mobile-platform-mounted exoskeletons
(DMO)

+ + + − + + CK
(CIF)

GRF
BK

GRF

Fully wearable exoskeletons, actuated
orthoses, or exo-suits (CWO)

+ + + − − + CK
CIF

GRF
BK

GRF

Actuated foot plates, or ‘end-effector
foot-connected robots’ (SFP)

+ + + + − − CK
CIF

(CIF)
BK

BK

SK Surface Kinematics: Inclination or translation from the center of standing surface (position, speed, acceleration), BK Body Kinematics: COM/Sacrum,
configuration of a segmental representation of the body (position, speed, acceleration), CK Connection point (s) kinematics: Points where the robotic device is
connected to the body (position, speed, acceleration), CIF Connection point (s) Interaction Forces: Points where the robotic device is connected (6D, 3D, 1D force
or pressure distribution), GRF, Ground Reaction Forces: Contact between foot and standing surface (6D-, 3D-, 1D–force or pressure distribution)
a Depending on exact configuration
- unsuitable; + suitable
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The reaction of a subject to a perturbation can be
quantified by methods and metrics that have been devel-
oped in posturography and gait analysis, together with
extensions towards generalized perturbation analysis. A
review of posturographic methods and metrics can be
found in [62]. An overview of regularly used metrics is
provided as Appendix to this paper. These metrics typic-
ally contain information on the kinematics of body mo-
tion, especially movement of the total body or its main
segments (more precisely, of their COM), as well as on
the body’s interaction with the ground, e.g., through
ground reaction forces, base of support or COP (for
definitions refer to Fig. 1, and for metrics refer to the
Appendix).
In scientific practice, marker-based motion capture

systems and force plates are the reference tools to
measure COMs and COPs, but both are expensive,
bound to a fixed location, require a lot of time to set
up, calibrate and post-process, and may be problem-
atic in an environment loaded with different reflect-
ive or magnetic equipment, i.e., around robots. Costs
could be better justified in robotic devices used both
for assessment and therapy. Simpler procedures may
be adequate for clinical assessment, as opposed to
scientific measurement. For instance, single IMUs at-
tached to the sacrum of healthy subjects provide
fairly accurate estimates of the COM movement dur-
ing walking, and shoes instrumented with force
sensors, IMUs and ultrasound sensors adequately es-
timate relevant quantities like the COM, COP and
BOS in healthy and stroke gait [23, 63, 64]. Low-cost
consumer motion sensing devices also hold a prom-
ise for adequate estimation of body segment kinemat-
ics from advanced processing algorithms, which can
be used to obtain adequate COM estimates [65, 66].
Different types of robots also intrinsically measure
quantities related to human motion kinetics, and
such information may very well be used to obtain
adequate estimates of the relevant kinematic quan-
tities in order to calculate device-specific metrics.
Considering the huge difference between concepts

and implementations of the different robots, it is ne-
cessary to select device-specific metrics, as well as
implement and validate a reliable acquisition of these
metrics. Preferably, the clinical user community of a
specific device should, together with the developer,
evaluate which metric is best suitable for a specific
device, given its technical feasibility as well as clinical
value.

Normative assessment scores need to be device- and
assessment procedure-specific
Similar to current clinical and research balance assess-
ments, it is critical to establish normative values for

robotic-based assessments to better interpret and use
them. Normative scores in assessment measures are gen-
erally measured with the exact same procedure, device,
and robot settings, in a representative (impaired or age-
matched unimpaired) subject group. For this reason,
generic and device-unspecific datasets are hardly useful
towards the composition of normative scores. Although
many studies use comparable metrics, it is important to
be aware that measures can probably only be compared
when using the same perturbation device (considering
the diverse configurations presented presented above,
see Table 2), the same kind and amount of support, and
with the same procedures, environment and perturba-
tions. For this reason, reference values of assessments
are best provided by the device manufacturers or end-
users (e.g., the clinical community). When developing
new robotic devices for balance assessment, studies are
needed to establish databases of normative values rela-
tive to each particular assessment method. This indica-
tion of reference normality is important to detect
specific abnormalities. Linking such identified compo-
nents of poor balance performance to specific effective
training modalities is a next, largely open field of clinical
research. The body of knowledge from the field of pos-
turography should be used as a starting point and a ref-
erence. To only measure the progress within a specific
user, detailed comparison to an able-bodied reference
group may not be needed.

Examples of balance assessments using robotic devices
In Figs. 2 and 3, we provide two illustrative examples of
robotic devices that are used for assessment of post-
stroke subjects (in research). Both provide quantitative
information on balance performance through measuring
the reaction to perturbations. The robotic devices as well
as illustrative assessment results with one patient are
presented. These robots have been developed to perform
research to understand normal and impaired human bal-
ance, which is related to assessment. In both cases, dif-
ferent perturbations and different metrics were used to
perform the assessment, according to the capabilities of
the robot, as well as to illustrate how different metrics
can provide comparable information. In the classification
described above, these example assessments classify as,
for example I, type II - treadmill-mounted pusher device
(CFT), and for example II, type V - mobile robotic gait
trainer (CMO).
Another example rehabilitation robot used for assess-

ment is the Kine-Assist, a device that was initially devel-
oped as a type V - mobile robotic gait trainer (CMO)
[49], but is also used in an adapted version fixed over a
treadmill (CFT). A device-specific assessment procedure
was developed and validated, called ‘Kine-Assist 9 Task
Balance Test (K-9)’ [67].
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Conclusion and outlook
We have presented an overview of current balance as-
sessment procedures in clinical practice and in research.
Based on this overview, we evaluated the potential use
of rehabilitation robots as tools for such assessment.
The main benefits of using robots for assessment are the
possibility to assess ‘severely affected’ patients by provid-
ing assistance-as-needed (AAN), as well as providing
consistent perturbations during standing and walking
while measuring the patient’s reactions, thus creating an
important extension to ‘classical’ posturography. We
provided a classification of rehabilitation robots in three
aspects, relevant to their potential application for assess-
ment. Nine sample types of state-of-the-art rehabilitation
robots were described in more detail and evaluated for
their suitability for balance assessment. Two example
cases of robotic assessments that apply perturbations
during walking were presented to illustrate the new
possibilities.
We believe that rehabilitation robots are promising,

and can become useful and relevant tools for assessment
of balance in patients with neurological disorders, both
in research and in clinical use. Once their potential for
improved assessment is realized, robotic assessments
may provide sufficient information to allow individual
tailoring of training, which may largely improve training
effectiveness. The two examples provided in this paper
already illustrate that robotic methods may reveal spe-
cific deficiencies underlying poor balance performance,
which can be targeted in specific, individualized train-
ing approaches. In order to realize the potential to
improve assessment and therapy of balance, several im-
provements have to be made to current robotic devices,
and further research is needed on methods of applica-
tion for assessment. Important considerations in this
respect are:

� Use for balance assessment should be taken into
account when developing new rehabilitation robots,
especially in the aspects of: quantification of support
(AAN), perturbations provided in a transparent
control mode (allowing unhindered subject
responses), and sensors to collect relevant data.

� Simplified systems, compared to currently
commercially available rehabilitation robots, could
already provide highly useful tools for assessment
and training. This could also make systems more
affordable for clinical practice.

� The user community of a specific device should,
together with the developer, evaluate which metric
is best suitable for a specific device, such that it is
technically feasible as well as clinically useful.
Consensus across the field for all devices will be
impossible to achieve, considering the lack of

consensus on which metric to use, as well as the
technical differences among robotic devices and
measurement systems. Such consensus may follow
the increased use of robotic devices for assessment
in research and clinical practice.

� For each rehabilitation robot that will be used for
balance assessment, normative reference data should
be collected with unimpaired subjects.

� Better understanding of human balance control
and its underlying functions and mechanisms will
enable improved design of assessment methods,
improved implementation of robotic assessments,
as well as comparability of results obtained with
different rehabilitation robots or assessment
procedures.

� Better understanding of human balance control
should lead to convergence of the multitude of
outcome measures to a core set of essential metrics
that then can be used to define a universal balance
assessment set of metrics.

� Once a core set of methods and metrics is defined,
these metrics should be validated as assessment
metrics by performing longitudinal studies to
establish their validity and sensitivity.

� Ahead of a generally agreed robotic assessment
method, device-specific assessment methods can be
used to monitor progress of individual patients in
parallel to established clinical metrics.

� Each individual suffering from neurological damage
is a case on its own, despite common aspects in
functional limitations. In order to tailor training to
the individual needs, adequate functional diagnostics
is required.

� Research is needed on how in detail such functional
diagnostic information can be used to optimize
outcome results of rehabilitation training for the
individual cases.

� The more complex the robotic device configuration
(e.g., exoskeleton compared to perturbation
platform) the more complex it will be to minimally
interfere with the subjects’ reactions. Realistically, in
order to perform proper assessment of balance
through wearable robots like exoskeletons,
substantial technical improvement on the state-of-
the-art is required, mostly in order to allow
unhindered movement of the patient, both with
respect to degrees of freedom as well as added
inertia and general transparency.

� The volume of soft tissue between a robotic device
and the skeleton can have a considerable effect on
the accuracy and repeatability of the perturbations
that the device can provide as well as the obtained
sensor information, and must be carefully
considered.
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Appendix
Posturographic metrics related to assessment of dynamic
balance
This information is thought to be useful to some readers,
but not of sufficient importance for the main text, hence
we included it as an Appendix

Posturographic metrics
Table 4 provides an overview of common metrics from
posturography and gait analysis used to quantify aspects
of balance. All these metrics contain rich information re-
lated to balance performance in standing or walking,
and can, in principle, be used to quantify a response to a
perturbation during walking. Currently, there is no
scientific consensus on the most suitable metrics for as-
sessment through posturography, which factors should
determine the optimal choice of metrics, or how to in-
terpret different outcomes and relate them to functional
limitations. Different posturographic metrics are likely to
quantify different aspects of balance, and thus may be
complementary.

Many of the metrics of Table 4 have been shown to
correlate with risk of falling or with one or more of the
clinical scales of Table 1, or they are significantly different
between groups or conditions with different levels of bal-
ance performance such as elderly versus young adults,
stroke subjects versus unimpaired age-matched controls,
or eyes opened versus eyes closed conditions. Readers
are referred to the indicated studies for approaches or
methods for calculation and validation studies.
The exact understanding of normality and abnor-

mality of the values of metrics in posturography re-
main a topic of research [19]. The metrics generally
show inter- and intra-subject variability due to use of
different movement strategies depending on age, dis-
ease, test condition and testing equipment [19, 68–70],
preventing straight-forward comparisons of individual
assessments with reference performance values.

Assessment of dynamic balance
Dynamic, as opposed to static, posturography includes
reactions to external perturbations applied by movements
of the standing surface, and is related to ‘reactive balance

Table 4 Review of metrics used to quantify balance performance during standing and walking, usable for robotic assessment

Definition of metric Suitability for Walking or Standing References

AREA of COP or COM motion
(e.g., 95% confidence circle or ellipse area)

Standing [17, 86–88]

PATH LENGTH of COP or COM motion Standing [86, 87]

STATISTICS of COP or COM motion
(e.g., centroid, xth percentile, median, dispersion)

Standing [17]

DISPLACEMENT of COP or COM
(e.g., RMS, maximum excursion, range, ratio of AP/ML)

Standing and Walking Based on COP [17, 19, 89–91]
Based on COM [92]

RELATIVE MOTION of COM relative to COP; COM to BOS;
COP to BOS
(e.g euclidian distance, time-to-contact)

Standing and Walking [93–97]

SYMMETRY of COP or COM motion
(e.g., left-right ratio)

Standing and Walking [98–102]

LONG-TERM CORRELATION in COP or COM motions
(e.g., Hurst exponent, Largest Lyapunov Exponent)

Standing and Walking [103–108]

VELOCITY of COP or COM
(e.g., average, range)

Standing and Walking [17, 19, 86, 88, 90, 109]

TOTAL BODY ORIENTATION
(e.g., range of angle or angular velocity)

Standing and Walking [89]

JOINT KINEMATICS - angle or angular velocity of joints
(e.g., RMS, maximum excursion, range, time series)

Standing and Walking [110]

JOINT KINETICS - joint torque, torque rate of change
(e.g., RMS, maximum excursion, range, time series)

Standing and Walking [76]

TEMPORAL-SPATIAL gait parameters
(i.e., step length, stride length, step width, swing duration,
temporal stance-swing ratio)

Walking [76]

The table lists metrics that quantify balance, as used in posturography and gait analysis. Most of the presented metrics have been validated by showing that they
are significantly different among groups or conditions with different balance behaviour such as elderly versus young adults, or eyes-opened versus eyes-closed
conditions. Readers are referred to the indicated studies for approaches or methods for calculation, and for detailed information about which groups or
conditions the methods have been shown to be indicative.
These metrics are all applicable to assess all three types of balance control: steady state, anticipatory, and reactive. It can be expected that descriptive statistics
e.g., average, minimum, or maximum of these metrics are highly influenced by the assessment procedure, especially during reactive balance, when reacting to
device-specific perturbations.
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control’, and therefore of specific interest for robotic
assessments. For dynamic conditions in general, including
walking, the static balance requirement of keeping the
COMv in the BOS is inadequate, as the COMv may tem-
porarily leave the BOS as long as it returns before a fall
occurs. Thus, not only the position of the COM-
projection but also its velocity and acceleration determine
whether or not it is possible to maintain balance without
taking a step or generating inertial moments with the
upper body. To quantify this, the “extrapolated center of
mass” or XCOM was defined [71, 72]; when the vertical
projection of the XCOM does not leave the BOS, balance
can be maintained without making a step. For perturba-
tions where the XCOM cannot be brought back inside the
actual BOS, a fall may still be prevented by making an
adequate step, the stepping strategy, i.e., by adjusting the
BOS so that the COMv can still return into it. To properly
interpret the motions of COP and (X) COM in their inter-
connection, methods applying well-defined perturbations
(external, sensory or motor perturbations) in combination
with closed-loop system identification techniques are
currently explored in research [18, 73]. Such techniques
may either reveal causes of abnormal COP and COM
motion and control, or identify which of the underlying
systems (e.g., vestibular system, muscle force generation,
muscle coordination) are deteriorated, and to which
degree [18, 74].
The same principles apply when maintaining balance

during a dynamic task like walking, where balance can
be understood as ensuring that the XCOM does not
diverge too far away from the BOS and can always be
brought back towards and/or inside the BOS. This ap-
proach has been described under the name ‘capture
point’ in robotics [75]. Gait analysis, as performed in
specialized gait labs, analyses (ab-) normality of walking,
but typically only by comparing spatiotemporal parame-
ters and patterns in kinematic variables, but not by
analysing posturographic parameters or patterns based
on formal balance requirements, nor through measuring
reactions to perturbations [76].
Nevertheless, the quantities measured in gait analysis

can be used to quantify reactions to perturbations. For
walking, especially when it comes to assessing the
response to perturbations in the walking direction, it is
important to consider ‘healthy strategies’, relate them to
concepts like XCOM and capture point, and study what
type of deviations from normality occur in patients. If such
patterns are identified, critical metrics may be related to
them. Initial work in this direction can be found in [47].
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