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Abstract— This paper presents a sensory fusion method
for estimation of joint angles of serial kinematic chains
with rotational degrees of freedom based on magnetoinertial
measurements—Magnetoinertial tracking based on JAcobian
PseudoInverse (MIJAPI). The concept takes into account the
mechanism kinematic model, and the computation relies on
the differential kinematics inversion (inverse kinematics solution
based on the Jacobian inverse). A Moore–Penrose weighted left
pseudoinverse of the mechanism Jacobian matrix is applied
to solve a (typically) overdetermined system (redundant mea-
surements resulting from constraints related to attachments of
magnetoinertial sensors) in a least-squares approach. Calculation
of a gain matrix for correcting the estimated angles is based
on Kalman-adaptive algorithm. The quality of the proposed
approach was compared to different solutions based on the
Unscented Kalman filter. In terms of computational complexity,
the MIJAPI concept outperforms the Kalman-based approaches.
Better results were also noticed in conditions with significant mea-
surement disturbances and sensor misalignments. The method is
applicable in the fields of human motion tracking/analysis as well
as robotics.

Index Terms— Human–computer interaction, Kalman filter,
kinematics, motion analysis, motion artifacts, motion estimation,
sensor fusion.

I. INTRODUCTION

MOTION tracking and movement analysis are the appli-
cations that typically deal with serial kinematic chains

with the goal of measuring (estimating) joint angles. Magne-
toinertial measurement units (IMUs) are commonly used in
various applications for motion tracking [1]. In this paper,
we focus on serial kinematic chains with rotational degrees of
freedom (DoFs), such as a human body or a serial robot that is
equipped with IMUs. Human motion tracking is being used in
rehabilitation in general, and it is also important in robot-aided
rehabilitation [2]. While in cases where robotic devices are
exoskeletons, user joint angles can be deduced from robot joint
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angles, many simpler robotic devices are endpoint devices,
which require additional motion tracking system to measure
the user joint angles, either for control or assessment. Motion
tracking is also finding use in collaborative robotics. Control
of collaborative robots should include safety strategies that
would guarantee human safety. Researchers have proposed
precollision safety strategies that are based on motion tracking
of the body and limb movements of the worker to determine
restricted space, in which the robot cannot enter [3].

Typical solutions for sensory fusion of magnetoinertial data
is Kalman filter in one of its (nonlinear) formulations, such as
extended [4] or unscented Kalman filter [5]. A computationally
more efficient solution is obtained in the form of a (nonlinear)
complementary filter [6]. In order to reduce the dimension of
the state vector and make the measurement equations linear,
the acceleration and magnetometer measurements can be pre-
processed using the Quest algorithm, resulting in a quaternion
input for the filter [7]. Martin and Salaün [8] developed invari-
ant extended Kalman filter that takes into account geometrical
properties of equations for quaternion-based orientation esti-
mation of a single IMU for aerospace applications. Invariant
extended Kalman filter is variant of the extended Kalman filter
with advantages of invariant filter, which takes into account
natural invariances of the nonlinear operations (e.g., rota-
tion) [9]. In general, extended Kalman filter does not preserve
the invariances, whereas invariant extended Kalman filter does
preserve them [8], and as a consequence, in invariant extended
Kalman filter, the Kalman gain matrix and covariance matrices
converge to constant values. This results in a faster conver-
gence of the estimation and a larger expected domain of con-
vergence. A review of sensor fusion and filtering techniques
proposed for inertial/magnetic orientation tracking can be
found in [1].

Most of the filters are designed for estimation of orientation
based on outputs of a single IMU and do not take into
account kinematic constraints imposed by the joints of the
mechanism [10]. However, there are solutions that require
kinematic model for precise motion tracking. An algorithm
for estimating linear accelerations during walking and run-
ning motions, thus improving the accuracy of inertial motion
capture, is presented in [11]. Seel et al. [12], [13] exploit
the kinematic constraints introduced by hinge and spheroidal
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joints for joint axis and position estimation. A method that
fuses the measured segment’s angular velocity and linear
acceleration via known kinematic relations between segments
is proposed in [14]. In [15], a method that uses Unscented
Kalman filter to fuse angular velocity, linear accelerometer,
and magnetic field data via known kinematic relations between
segments is presented.

Motion tracking and movement analysis applications based
on IMU require attachment of sensing units onto body (human
and robot) segments. When considering only rotational
DoF, these segments can be connected by joints with
one (e.g., pivot or hinge joint), two (e.g., saddle or condyloid
joint), or three (e.g., spheroidal joint) DoF. The problem of cal-
culating mechanism joint angles based on IMU measurements
is an inverse kinematic problem. IMUs typically consist of a
triad of gyroscopes, a triad of accelerometers, and a triad of
magnetometers. Thus, they enable measurement of three-DoF
segment orientation in operational space. When considering
body-segment orientation measurements with IMUs attached
to each segment and segments are linked with joints that
have less than three DoFs, the resulting system becomes
overdetermined at each point in time. Namely, measurements
outnumber the unknown quantities required to describe seg-
ment orientation in space. Only in the case of spheroidal joints,
the number of measurements equals the number of unknown
variables. Such situations (with one, two, or three-DoF joints)
are usual in human motion tracking. The problem may be
solved using weighted least squares to yield estimates of
segment orientations based on IMU data [16]. The estimation
algorithm typically requires the use of the left pseudoinverse
matrix. This choice also allows a reduction of the effects of the
measurement noise. The solution of the presented inverse kine-
matic problem considering the weighted least squares leads
to the implementation of the algorithm based on the Moore–
Penrose weighted left pseudoinverse [17] of the mechanism
Jacobian matrix. The Jacobian pseudoinverse can then be
used in a closed-loop algorithm for calculating mechanism
joint angles from the orientation and angular velocity of IMU
sensors with the same method as for calculating the inverse
kinematics of the robot manipulator with Jacobian inverse.

This paper is structured as follows. Section II introduces
the kinematic-model-based sensory fusion of magnetoin-
ertial data with Jacobian Moore–Penrose weighted-left-
pseudoinverse and Kalman-adaptive gain matrix based on
principles of Invariant Extended Kalman filter. Section III
compares the performance of the Magnetoinertial track-
ing based on JAcobian PseudoInverse (MIJAPI) approach
against well-established sensory fusion concepts based on
the Unscented Kalman filter. Benefits and limitations of the
MIJAPI concept are analyzed in Section IV, and the main
findings are summarized in Section V.

The fundamental idea and novelty of the presented method
is that when there are more measurements available than
there are DoF of the mechanism, redundant measurements
and knowledge of the kinematics of the mechanism can be
used to improve the estimation of joint angles in presence of
measurement noise, artifacts, and disturbances. Main contri-
butions and novelties of this paper are as follows.

1) Motion tracking algorithm based on the Moore–Penrose
weighted left pseudoinverse of the mechanism Jacobian
matrix.

2) Algorithm is presented for a general serial kinematic
chain and is, therefore, applicable for both the human
motion tracking as well as tracking of robotic mecha-
nisms. This paper also presents an example application
for the upper limb.

3) Use of redundant information from IMUs to improve
the estimation of joint angles by reducing the following
effects:

a) measurement noise from sensors;
b) external magnetic disturbances;
c) misalignment of the sensors attached to the

segments.
4) Algorithm utilizes gain matrix for correcting the esti-

mated angles based on the followings:
a) invariant extended Kalman filter scheme that takes

into account geometric properties of the problem;
b) adaptive algorithm that takes into account unmod-

eled disturbances.

II. METHODS

Consider a general serial mechanism with N revolute
(hinge) joints, as shown in Fig. 1. More complex joints
(e.g., spheroidal joint) can be represented as a series of
revolute joints connected by links of zero length. Mechanism
links are selectively equipped with sensors Si that are IMUs
consisting of a triad of accelerometers, a triad of gyroscopes,
and a triad of magnetometers. All sensors form a set S =
{Si : i = 1 . . . M ≤ N}. The base of the mechanism (link
0 with the base coordinate frame O0 − x0 y0z0) can be
stationary or mobile. Sensor S0 is assumed to measure the base
orientation. (If base is stationary, sensor S0 is not necessarily
required; however, a one-time calibration is needed.) The goal
is to compute the joint angles of the mechanism and find the
optimal placement of sensors on the mechanism.

A. Forward Kinematic and Differential Kinematic Model

Considering the Denavit–Hartenberg notation [18], the ori-
entation of the link j relative to the link j − 1 is defined as

R j−1
j (ϑ j ) = Rot(z j−1,ϑ j ) · Rot(x j , α j ) (1)

where Rot(, ) represents a rotation matrix, ϑ j represents the
angle of rotation between the links j and j − 1, which is
measured from x j−1 to x j , about the z j−1 vector, and α j

represents the angle measured about the x j -axis between the
vectors z j−1 and z j . The orientation of the link j relative to
the base frame O0 − x0 y0z0 can be computed as

R j =
j∏

k=1

Rk−1
k (ϑk). (2)

Angular velocity of link j relative to the base and expressed
in the base coordinate frame O0 − x0y0z0 can be computed as
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Fig. 1. General serial mechanism with revolute joints. Mechanism links are
selectively equipped with sensors Si being IMUs.

a function of joint velocities

ω j =
j∑

k=1

zk−1ϑ̇k = [
z0 . . . z j−1 03× (N− j )

]
⎡

⎢⎣
ϑ̇1
...

ϑ̇N

⎤

⎥⎦

= J j ϑ̇ (3)

where z j−1 represents the joint axis vector that is given by
the third column of the rotation matrix R j−1, whereas z0 =[
0 0 1

]T . Matrix J j represents the Jacobian matrix for link j .
All link velocities constitute the set

� = {ω j : j = 1 . . . N} (4)

with cardinality N = |�| (number of joint axes or links). Set
� does not include base-link velocity. A totally ordered set of
indices representing link velocities � can be determined as

N = {1, . . . , N}. (5)

Consider a set of measurable link velocities (i.e., links that
are equipped with sensors Si ) as a subset of all link velocities

�M ⊆ �. (6)

Cardinality M = |�M| defines the number of measurable link
velocities (without taking into account the base-link velocity).
A totally ordered subset of indices defines the measurable link
velocities

N ⊇ M = {mi : i = 1 . . . M}. (7)

Meaning of subset M can be explained as follows: sensor Si

measures rotational velocity of link mi , that is, ωmi .
Considering (3) and the set of measurable velocities (6),

the following matrix equation can be defined:
⎡

⎢⎣
ωm1

...
ωmM

⎤

⎥⎦ =
⎡

⎢⎣
Jm1
...

JmM

⎤

⎥⎦ ϑ̇ (8)

and rewritten in a compact form as

�M = JJJMϑ̇ (9)

where �M represents a vector of all measurable link velocities
and JJJM is a block-triangular Jacobian matrix

JJJM =
⎡

⎢⎣
JJJM11 0 0

...
. . . 0

JJJM11 · · · JJJMM M

⎤

⎥⎦ (10)

related to measurable link velocities. The rectangular (not
necessarily square) submatrix JJJMii of size 3 × (mi − mi−1)
defines the following relation:

ωmi = ωmi−1 +JJJMii

⎡
⎢⎣

ϑ̇mi−1+1
...

ϑ̇mi

⎤
⎥⎦ (11)

where m0 = 0 (ω0 = 0 if stationary base is assumed).

B. Jacobian Pseudoinverse-Based Inverse Kinematics

The inverse kinematics aim at computation of joint veloci-
ties and angles that correspond to the sensors angular velocities
and orientations. Therefore, (9) must be inverted [19],
leading to

ϑ̇ = JJJ †
M�M (12)

where ϑ̇ is the optimal estimation of joint velocities in the
least-square-error sense and JJJ †

M is the Moore–Penrose left
pseudoinverse of the Jacobian matrix JJJM defined as

JJJ †
M = (JJJ T

MJJJM
)−1JJJ T

M. (13)

The matrix JJJM must have a full rank, which equals the
number of joints N . The matrix can be rewritten as a product
of an invertible matrix and a block-diagonal matrix with
elements JJJMii

JJJM =
⎡
⎢⎣

I 0 0
...

. . . 0
I · · · I

⎤
⎥⎦

⎡
⎢⎣
JJJM11 0 0

0
. . . 0

0 · · · JJJMM M

⎤
⎥⎦ (14)

where I is an identity matrix of size 3 × 3. The rank of a
square or rectangular matrix is not affected by left or right
multiplication by an invertible matrix; the rank of a block-
diagonal matrix equals the sum of the ranks of the matrices
that are the main diagonal blocks, thus

rank(JJJM) =
M∑

i=1

rank(JJJMii ). (15)
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The matrix JJJM will have the full rank, if the following
condition is satisfied:

rank(JJJMii ) = mi − mi−1 (16)

namely

M∑

i=1

(mi − mi−1) = N (17)

if we assume a measurable velocity of the last link in the
chain. Condition (16) can only be satisfied by the correct
placement of sensors S. If the condition (16) is not satisfied,
the placement of sensors is inadequate and availability of
measurable link velocities is insufficient to estimate the angles
of joint axes between links mi and mi−1. It is trivial to note
that not more than three joint axes can be covered by a single
sensor; an additional constraint is that the joint axes covered
by a single sensor cannot be parallel. If this is the case, more
sensors need to be added to the mechanism. When mechanism
configuration approaches singularity, a damped least-squares
inverse kinematics can be applied [20].

The solution in (13) assumes that all measurable link
velocities �M are equally weighted, meaning that all measure-
ments are equally reliable. However, in a practical application,
we might assume that certain measurements are less reli-
able than others. Consequently, a weighted left pseudoinverse
Jacobian matrix can be computed as

JJJ †
M = (JJJ T

MW−1
M JJJM

)−1JJJ T
MW−1

M (18)

where WM is a weighting matrix (typically diagonal).
In (12), we assumed that measured link velocities are

expressed in the base coordinate frame O0 −x0 y0z0. However,
this is usually not the case. Measurements are expressed in
the body coordinate frame of the sensor. The orientation of
the sensor Si , which is attached to the link mi , in relation
to the base frame O0 − x0y0z0 is

RSi = Rmi
mi RSi (19)

where rotation matrix mi RSi represents orientation of the
sensor Si relative to the link mi . Relation between the velocity
expressed in the sensor body coordinate frame and the velocity
expressed in the base frame is then

ωmi = RSi ωSi (20)

where ωSi is the rotational velocity as measured by the sensor
Si and expressed in the sensor body coordinate frame (for
simplicity, we will not use the additional superscript Si ).
By rewriting (20) for all measurable velocities in a matrix
form, we obtain

⎡
⎢⎣

ωm1
...

ωmM

⎤
⎥⎦ =

⎡
⎢⎣

RS1 · · · 0

0
. . . 0

0 · · · RSM

⎤
⎥⎦

⎡
⎢⎣

ωS1
...

ωSM

⎤
⎥⎦. (21)

The above-mentioned relation can be compacted to

�M = RRRS�S (22)

where RRRS is a block-diagonal matrix having main diagonal
blocks matrices RSi . By combining (9) and (22), the following
relation can be written

�S = RRRT
SJJJMϑ̇ = JJJS ϑ̇ (23)

where

JJJS = RRRT
SJJJM (24)

is the Jacobian matrix expressed in the sensor body coordinate
frames. Matrix RRRT

S is invertible, thus rank(JJJS ) = rank(JJJM).
The weighting matrix WM defines velocity weights relative

to the base coordinate frame. If measured velocities are
expressed in the sensor body coordinate frame, the following
relation applies:

WM = RRRSWSRRRT
S (25)

where WS is a weighting matrix related to velocities expressed
in the sensor body coordinate frames. By combining (18),
(24), and (25), the weighted left pseudoinverse Jacobian matrix
can be rewritten as

JJJ †
M = (JJJ T

S W−1
S JJJS

)−1JJJ T
S W−1

S RRRT
S . (26)

Equation (12) changes to

ϑ̇ = (JJJ T
S W−1

S JJJS
)−1JJJ T

S W−1
S RRRT

S�M. (27)

By defining the weighted left pseudoinverse Jacobian matrix
related to the sensor body frame velocities as

JJJ †
S = (JJJ T

S W−1
S JJJS

)−1JJJ T
S W−1

S (28)

and considering (22), the following relation holds:
ϑ̇ = JJJ †

S�S . (29)

C. Prediction and Correction of the Estimated Joint Angles

The block scheme of the MIJAPI inverse kinematics
approach is shown in Fig. 2.

The angular velocity measured by the sensor Si (bar over
the variable will be used throughout this paper to indicate
measured quantities) equals

ω̄Si = ωSi + bSi + wωSi
(30)

where ωSi indicates the real sensor angular velocity and bSi

and wωSi
represent the gyroscope bias and noise, respectively.

With all measured velocities ω̄Si combined into vector �̄S ,
joint angular velocities can be computed as

˙̂ϑ = JJJ †
S �̄S . (31)

In theory, by integrating (31), joint angle predictions ϑ̂ can be
computed as

ϑ̂ = ϑ̂0 +
∫ t

0

˙̂ϑdt . (32)

However, due to the measurement noise, in particular, gyro-
scope bias bSi , in practical applications, this would only
work for short time periods and exactly known initial joint
positions ϑ̂0.
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Fig. 2. Jacobian pseudoinverse-based inverse kinematics algorithm. Numbers in brackets denote the corresponding equations described in the text. Inputs into
algorithm are all measured velocities ω̄Si

combined into vector �̄S , all estimated static accelerations ḡSi
[see (37)] combined into vector ḠGGS , all measured

magnetic field vectors m̄Si
combined into vector M̄MMS , and gravity vector ḡS0

and earth magnetic field vector m̄S0
in relation to the base frame O0. Outputs

from the algorithm are estimated joint angles ϑ̂ , which are calculated by integrating estimated joint velocities ˙̂ϑ . Velocities ˙̂ϑ are calculated by using (39),
by multiplying weighted left pseudoinverse Jacobian matrix JJJ †

S and corrected measured velocities (�̄S + KKKE�Ē̄ĒES − B̂BBS ). The term �̄S represents the
feedforward path of the algorithm, and the term KKKE�Ē̄ĒES − B̂BBS represents the feedback path of the algorithms.

The estimated sensor orientation R̂Si = RSi (ϑ̂) in relation
to the base coordinate frame O0 − x0y0z0 can be determined
from (1), (2), and (19) by replacing ϑ j with ϑ̂ j

R̂Si =
⎛

⎝
mi∏

j=1

Rot(z j−1, ϑ̂ j ) · Rot(x j , α j )

⎞

⎠ mi RSi . (33)

The orientation matrix R̂Si can be expressed in terms of a
quaternion Q̂Si as

Q̂Si = Q(R̂Si ). (34)

Based on a triad of accelerometers, the sensor Si measures a
three-axial linear acceleration vector āSi , and based on a triad
of magnetometers, the sensor Si measures a three-axial mag-
netic field vector m̄Si . The two measured vectors, āSi and m̄Si ,
both expressed in the sensor body coordinate frame, provide
an estimate of the absolute sensor orientation in relation
to the earth coordinate frame OEarth − xEarthyEarthzEarth. For
simplicity, we assume that vectors āSi and m̄Si are normalized
to the length 1 in static conditions. The q-method [21], [22]
can be applied to compute the relative sensor orientation in
terms of a quaternion Q(āSi , m̄Si ) representing the orientation
of the earth coordinate frame in relation to the sensor body
coordinate frame. The following sensor orientation in relation
to the base coordinate frame O0−x0 y0z0 can then be obtained:

Q̄Si = Q̄Earth(Q(āSi , m̄Si ))
−1 (35)

where the quaternion

Q̄Earth = Q(RS0)Q(āS0, m̄S0) (36)

represents the orientation of the earth coordinate
frame (defined by the gravity and magnetic field vectors) in
relation to the base frame O0 − x0y0z0. The quaternion Q̄Si

is a measure of the absolute sensor Si orientation and can be
applied to correct the predicted signal ϑ̂ values.

The computation of Q̄Si is sensitive to dynamic acceleration
components in āSi and magnetic disturbances in m̄Si . The

effects of dynamic acceleration can be reduced by estimat-
ing the sensor Si dynamic acceleration ¨̂pSi

from the esti-

mated joint positions ϑ̂ , velocities ˙̂ϑ and accelerations ¨̂ϑ ,
and subtracting the estimated dynamic acceleration from the
measured acceleration, thus obtaining only static acceleration
(see Appendix A for more details on estimation of gravity and
magnetic field vectors)

ḡSi = āSi − ¨̂pSi
. (37)

From (34), prediction of sensor orientation Q̂Si can be
obtained from predicted joint angles ϑ̂ . The estimated absolute
sensor orientation Q̄Si is obtained from (35) by replacing āSi

with ḡSi . In ideal conditions, the two orientations would be
equal. However, since this is not the case, the error quaternion
�Q̄Si

Si
= {�η̄Si ,�ε̄Si } can be computed as

�Q̄Si
Si

= Q̂−1
Si

Q̄Si . (38)

The error quaternion �Q̄Si
Si

is expressed in the body coordinate
frame of the estimated sensor orientation, �η̄Si represents the
quaternion scalar part, and �ε̄Si represents its vector part.

By taking into account the orientation estimation error �εSi

and the estimated gyroscope bias b̂Si , (31) can be rewritten as

˙̂ϑ = JJJ †
S (�̄S +KKKE�Ē̄ĒES − B̂BBS ) (39)

where KKKE is a positive-definite gain matrix

�Ē̄ĒES =
⎡
⎢⎣

�ε̄S1
...

�ε̄SM

⎤
⎥⎦ and B̂BBS =

⎡
⎢⎣

b̂S1
...

b̂SM

⎤
⎥⎦. (40)

The gyroscope bias can be estimated from the error vector
�EEES with the following dynamics:

˙̂BBBS = −KKKB�ĒEES . (41)

In this case, we assumed that all sources off error can be
attributed to gyroscope bias. This is not always necessarily



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

the case. Note that in (39)–(41), all values are expressed
in the body coordinate frames of each particular sensor Si .
If mechanism base link is not stationary, the vector �̄S in (39)
must be replaced with

�̄
′
S = �̄S − R̂RRT

S

⎡

⎢⎣
R0ω̄0

...
R0ω̄0

⎤

⎥⎦. (42)

D. Inverse Kinematics Kalman Gain Matrix

The dynamics of the orientation of the sensor Si with noise
entering the system can be described with equations

Q̇Si = 1

2
QSi [ωSi ] = 1

2
QSi [ω̄Si − bSi − wωSi

] (43)

ḃSi = −wbSi
(44)

where QSi is the true orientation of the sensor Si and bSi

is true gyroscope bias. Designation [v] represents a pure
quaternion with a scalar part zero and a vector part v. Vectors
wωSi

and wbSi
are uncorrelated Gaussian random vectors with

zero means with covariance matrices

VωSi
= E

(
wωSi

wT
ωSi

)
(45)

VbSi
= E

(
wbSi

wT
bSi

)
. (46)

Next, we build the nonlinear observer described by the
following dynamics:

˙̂QSi = 1

2
Q̂Si [ω̄Si − b̂Si + KQSi

�ε̄Si ] (47)

˙̂bSi = −KbSi
�ε̄Si (48)

where Q̂Si is the estimated orientation of the sensor Si , b̂Si is
the estimated bias, and �ε̄Si is estimated error vector of the
sensor Si .

Let us now write an error system

�QSi
Si

= Q̂−1
Si

QSi (49)

�bSi = bSi − b̂Si . (50)

After a short derivation given in Appendix B and com-
bining (70) and (71) into matrix form of the system error
dynamics, we arrive to
[
�ε̇Si

�ḃSi

]
= (ASi − KSi C)

[
�εSi

�bSi

]
− wSi −KSi w�εSi

(51)

where

ASi =
[
−S(ω̂Si ) −1

2
I

0 0

]
, C = [

I 0
]

KSi =
[

KQSi−KbSi

]

VSi =
[

VωSi
0

0 VbSi

]
, wSi =

[
wωSi

wbSi

]
. (52)

Equation (51) has the form of a linear equation of the
state estimation error in the Kalman filter scheme, allowing

us to utilize the Kalman filter algorithm to calculate the gain
matrix KSi

KSi = PSi C
T V−1

�εSi
(53)

where PSi is calculated from

ṖSi = ASi PSi + PSi A
T
Si

+ VSi − KSi V�εSi
KT
Si

. (54)

We have arrived to this scheme by first computing the
error term Q̂−1

Si
QSi , which does not violate the geometry of

the quaternion space and quaternion multiplication and also
preserves the unit norm. The error dynamics equations are then
linearized around the equilibrium point, which leads us to the
Kalman filter scheme. This is the typical approach adopted by
the invariant extended Kalman filter scheme [8].

Kalman filter requires complete a priori knowledge about
the measurement noise [23]–[25], which is usually deter-
mined off-line on preliminary measurements. However, if the
noise statistics changes during the estimation, noise covari-
ance matrix needs to be adapted during the estimation [24].
Due to the unmodeled disturbances in the magnetometer
and accelerometer measurements, a model should take into
account the unmodeled disturbances and adapt the covariance
matrix V�εSi

. The covariance matrix V�εSi
depends on the

accelerometer and magnetometer noise covariance matrices
Va and Vm , which can be estimated from the accelerometer
and magnetometer measurement residuals using the maximum
likelihood estimator. Matrix V̂�εSi

is the statistical sample
variance estimate of the V�εSi

[26]

V̂�εSi
= �(�η̄Si ,�ε̄Si ) (V̂a + V̂m) �(�η̄Si ,�ε̄Si )

T . (55)

Equation (53) for calculating the gain KSi can be accord-
ingly updated to form the adaptive version of the algorithm
for calculating the gain KSi

KSi = PCT V̂−1
�εSi

. (56)

Next, gains KQSi
and KbSi

are extracted from the gain
matrix KSi since

KSi =
[

KQSi−KbSi

]
. (57)

Gains KKKE and KKKB, which appear in (40) and (41), are
constructed by constructing block-diagonal matrices that have
on the main diagonal gain matrices KQSi

and KbSi
of all

sensors Si from a set S = {Si : i = 1 . . . M ≤ N}

KKKE =
⎡

⎢⎣

KQS1
· · · 0

0
. . . 0

0 · · · KQSM

⎤

⎥⎦ (58)

KKKB =
⎡

⎢⎣
KbS1

· · · 0

0
. . . 0

0 · · · KbSM

⎤

⎥⎦. (59)
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Fig. 3. Human arm kinematic model. Mechanism links are selectively
equipped with sensors Si being IMUs.

III. RESULTS

The MIJAPI concept was validated on a kinematic model
of a human arm, as shown in Fig. 3. The model consists of
shoulder, elbow, and wrist joints connected by upper, forearm,
and hand segments. The shoulder consists of three orthogonal
revolute axes intersecting at the glenohumeral joint. The elbow
consists of two revolute axes intersecting at the elbow joint.
The wrist consists of two revolute axes intersecting at the wrist
joint. In total, there are seven DoFs.

At least, three correctly placed IMUs are required for
measurement of arm motion. For the particular case, the first
IMU is placed on the upper arm close to the elbow joint
(its displacement depends on all three shoulder DoFs), the sec-
ond IMU is placed on the forearm at the wrist level (its dis-
placement is additionally affected by both elbow DoF), and
the third IMU is attached to the palm of the hand (its dis-
placement depends on all arm DoF). With this configuration,
rank(JJJM11(ϑ2 �= ±90◦)) = 3, rank(JJJM11(ϑ2 = ±90◦)) = 2,
rank(JJJM22) = 2, and rank(JJJM33) = 2. Thus, rank(JJJM(ϑ2 �=
±90◦)) = 7, whereas rank(JJJM(ϑ2 = ±90◦)) = 6 with
ϑ2 = ±90◦ representing singular configuration. Near sin-
gularity, damped least-squares inverse Jacobian matrix was
implemented [20].

The performance of the MIJAPI method with constant (CO)
and Kalman-adapted (KA) gain matrix KKKE was validated in
a simulation study by comparing estimated joint angles to:
1) separate Unscented Kalman filters for each IMU (K3) and
2) a single Unscented Kalman filter incorporating the arm
model with seven DoFs (K1). Simulation signals were
obtained by superimposing noise extracted from real IMUs
on ideal values computed from the kinematic model of the
human arm.

1) Ideal (noiseless) angular velocity, acceleration, and mag-
netic field values were determined from the model
in Fig. 3 with prerecorded joint trajectories.

2) High-frequency noise was added to ideal signals.
3) Gyroscope signals were additionally compromised with

real-sensor bias values and scaling factors on all axes.
4) Accelerometer signals were additionally disturbed with

high-amplitude noise resulting from interactions of real
IMUs with hard surface.

5) Magnetometer signals were manipulated with noise
resulting from external magnetic fields.

Finally, displacement of the upper arm IMU was considered
by rotating the device for 30◦ around the arm segment. Here,
three additional cases were considered: 1) computation of
arm angles based on the Moore–Penrose left pseudoinverse
defined in (12); 2) Weighted left pseudoinverse as in (18);
and 3) by using the error vector �Ē̄ĒES for estimating IMU
displacement. Analysis results are presented in Tables I and II
in terms of signal-to-noise ratios (SNRs) for input and output
signals (bold text indicates outputs with at least 15 dB SNR).
SNR is defined as SNR = 10 log10(A2

signal/A2
noise), where A is

root-mean-square amplitude. Noise is computed as a difference
between ideal and corrupted input signals (angular velocity,
acceleration, and magnetic field) or ideal and estimated (from
corrupted inputs) output joint angles. SNR value is calculated
for each signal. For input signals, mean, minimal, and maximal
SNR values are computed for particular input modality from
nine values (three IMUs with three axes each). SNR is calcu-
lated also for each of the seven joint angles. From this set of
seven SNR values, mean, minimal, and maximal SNR values
for joint angles are determined and shown in Tables I and II.
Mean value of SNR values shows how method performs on
average across a set of signals, minimal SNR value shows how
method performs worst across a set of signals, and maximal
SNR value shows how method performs best across a set of
signals.

Independent Unscented Kalman filters demonstrate the best
performance when noise is limited to individual IMUs. When
disturbances have an affect across joints, the proposed concept
based on the Jacobian pseudoinverse demonstrates the best
performance. The worst performance was observed when
using a single Unscented Kalman filter for the complete arm
kinematics. The MIJAPI method (cases CO and KA) was the
only one that guaranteed at least 15 dB SNR for all input
conditions. In addition, the proposed method with constant
gain matrix is approximately six times computationally more
efficient than K3 method and 50 times more efficient than
K1 method.
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TABLE I

SNRS FOR MEASURED AND ESTIMATED SIGNALS (SNR CO
ϑ̂

—CONSTANT

GAINS, SNR KA
ϑ̂

—KALMAN-ADAPTIVE GAINS, SNR K3
ϑ̂

—THREE

UNSCENTED KALMAN FILTERS, AND SNR K1
ϑ̂

—ONE GENERAL

UNSCENTED KALMAN FILTER) IN THE FORM mean
(min,max)

FOR

THE FOLLOWING CONDITIONS (DISTURBANCES

ACCUMULATE): 1) NOISELESS MEASURED SIGNALS;
2) HIGH-FREQUENCY NOISE ON ALL SIGNALS;

3) GYRO BIAS AND SCALING; 4) DISTURBANCES

ON ACCELEROMETERS (CONTACTS WITH

HARD OBJECTS); AND 5) DISTURBANCES
ON MAGNETOMETER (EXTERNAL

MAGNETIC FIELD)

TABLE II

SNRS FOR INPUT SIGNALS AS IN EXAMPLE 3 FROM TABLE I WITH

ADDITIONAL 30◦ DISPLACEMENT OF THE UPPER ARM IMU
FOR THE FOLLOWING CASES: 6) WM EQUAL TO IDENTITY

MATRIX; 7) OPTIMIZED WEIGHTS WM ; AND

8) ESTIMATION OF IMU DISPLACEMENT FROM
ERROR SIGNAL (NA—NOT APPLICABLE)

Kalman gain matrices for MIJAPI method case KA are
calculated using (53) from a priori state covariance matrix,
measurement model matrix C, and inverse of covariance
matrix of the error term V̂�εSi

, resulting in adaptive algorithm
for the calculation of the Kalman filter gains. Fig. 4(a) shows
absolute value of the error term �εSi and a trace of the
V̂�εSi

matrix. Fig. 4(b) shows the Kalman gain KQS used for
updating the joint angles (see (39)). Fig. 4 shows that: 1) the
Kalman gain matrix does not depend on the trajectory; 2) the
diagonal terms (blue lines) have very similar values during the
estimation; and 3) the off-diagonal terms (green line) are close
to zero. For the first 5 s, the magnetoinertial unit is stationary,
which is seen as phase with low noise. After that the unit
is moved, which can be seen as the phase with increased
noise [see Fig. 4(a)]. The source of the noise is primarily
the translational acceleration. During that time the values of
matrix V̂�εSi

increase according to the increased noise present
in error term and values of Kalman filter decrease. As a
consequence, the noisy measurements have smaller effect on
joint angles. Fig. 4(c) shows Kalman gain KbS for updating
gyroscope biases (see (41)). Kalman gain KbS has large
values in the beginning of the estimation to calculate the
gyroscope biases, whereas during the increased measurement
noise, the gain becomes small and the biases are not updated.
In the last 5 s, the unit is again stationary and the noise level

Fig. 4. (a) Absolute value of the error term �εSi
(blue line) from which the

covariance matrix V̂�εSi
(diagonal terms of matrix are shown in red line) is

calculated. (b) Kalman gain KQS for updating the joint angles. (c) Kalman
gain KbS for updating the gyroscope biases.

becomes small, the values of the Kalman gain KbS again
increase to improve the estimation of gyroscope biases using
the measurements.

Fig. 5 presents an example of measured human upper limb
trajectory in terms of seven joint angles (shoulder flexion/
extension, shoulder abduction/adduction, shoulder internal/
external rotation, elbow flexion/extension, wrist pronatoin/
supination, wrist ulnar/radial deviation, and wrist flexion
extension). Joint angles estimated from IMU data are com-
pared to values obtained from an optical tracking system.
In order to demonstrate worst case scenario (condition 8
in Table II), all IMU data were additionally corrupted with
acceleration and magnetic disturbances (extracted from real
IMU data obtained separately), and upper arm sensor was
virtually rotated about its y-axis for 30◦. The MIJAPI method
with constant gains (CO) was used. The system demonstates
the excellent estimation performance also in conditions with
significant disturbances.

IV. DISCUSSION

Results presented in Table I show that methods CO, KA,
and K3 perform comparably in conditions 1 to 4, while in
condition 5 the methods CO and KA perform better than the
methods K3 and K1. Note that SNR of 20 dB corresponds
to 1% of error, and SNR of 15 dB corresponds to 3% of
error. Results presented in Table II imply that K3 performs
best since the average SNR is high (25 dB); however, when
evaluating the performance of the method, both average as
well as minimal SNR need to be taken into account. While
for one method, average SNR can be high, which means that,
in average, estimation of the angles is very good for this
method, one of the estimated angles can be estimated poorly.
This is the case for K3 method since the minimum SNR is
only 1 dB, which means that one of the angles drifts away
considerably from the actual angle values. This is undesirable
performance even though average SNR is high. While for the
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Fig. 5. Estimated trajectories from IMUs and trajectories from optical
tracking system (superimposed black dashed lines) for seven arm angles. For
each pair of estimated and measured trajectories, the error signal is shown.
To demonstrate worst case scenario, IMU signals were additionally corrupted
with acceleration and magnetic disturbances (extracted from real IMU data)
as indicated in the last subplot (normalized amplitude, example for upper
arm IMU).

CO and KA methods in condition 8 in Table II, the average
SNR is slightly lower than for the K3 method, the minimum
SNR is considerably better, and none of the angles drifts away.
In conditions 1–5, the KA method performs slightly worse
than the CO method, whereas in conditions 6–8, it performs
slightly better. However, the differences are minimal, and from
the practical point of view, the performance is the same.

Main causes of uncertainty are sensor noise (high-frequency
noise), sensor bias and drift, scaling errors, human motion
artifacts, magnetic disturbances, and displacement of sensors
in relation to the segment. Condition 1 in Table I shows
the performance results for signals without disturbances.
Disturbances are then added step by step in conditions 2–5.
Sensor noise (condition 2 in Table I) does not degrade the
performance significantly. In addition of gyro bias, drift and
scaling errors significantly affect all methods as shown by
average drop of 12 dB of minimal value of SNR compared to
condition 3. Gyro bias can be easily estimated and removed
prior to joint angle estimation by calibrating the gyro sen-
sor [1], [14], while gyro drift needs to be estimated online
[see (41)]. Addition of disturbances of accelerometers does
not degrade the performance of the methods since they are

short (for example, see bottom figure of disturbances in Fig. 5)
and can be compensated by gyroscope measurements. Biases
and scaling errors of accelerometers can also be reduced by
calibrating the accelerometers [27]. Addition of magnetic dis-
turbances affects the performance of K3 method significantly,
while performance of the K1 has already been significantly
affected by gyro drift and scaling errors. MIJAPI method is
also affected by magnetic disturbances, however, to lesser
degree by about 3 dB, to about same level as an addition
of gyro drift and scaling errors. Magnetic disturbances due
to sources on the IMU unit itself can be reduced signifi-
cantly by proper calibration [28], while magnetic disturbances
coming from the environment can be reduced by estimation
and compensation of the magnetic disturbance during joint
angle estimation [29] or by avoiding the environment with
magnetic disturbances. Table II (condition 6) shows the effect
of displacement of the IMU sensor by 30°. Displacement
affects all methods significantly. With MIJAPI method, this
can be reduced in two ways: first, by giving less weight to
the displaced IMU (see condition 7 in Table II), and second,
by estimating the displacement of the IMU (see condition
8 in Table II). One of the main advantages of the MIJAPI
method is the use of the redundant information from IMUs to
improve the estimation of joint angles by reducing the effect of
misalignment of the sensors attached to the segments. MIJAPI
method uses redundant data to estimate the displacement.
Estimation reduces the effect of displacement significantly (see
condition 8 in Table II). Alternatively, displacement can be
estimated prior the actual experiments by performing prede-
fined calibration motions [30].

UKF Kalman filters in the method K1 and the method
K3 use different processes and measurement models. Method
K3 uses three separate Kalman filters that estimate the orienta-
tion of each IMU independently. The angles are then calculated
from the estimated orientations of arm segments. The Kalman
filter in method K1 includes a complete kinematic model of
the arm and estimates angles directly. The filter K1 performs
worst of the three methods in conditions 1–5 shown in Table I.
It performs better in conditions 6 (see Table II; here, we refer
to minimal SNR not to average SNR), where the advantage of
the full kinematic model is finally seen.

The main reason for poorer performance is that the state
vector of the Kalman filter used in the method K1 consists
of two types of variables: joint angles that are defined in
joint space and gyroscope biases that are defined in body
frame of each magnetoinertial unit. A posteriori state estimate
is calculated from a priori state estimate, Kalman gain, and
measurement model error, and the relation between the error
and the a posteriori state is linear. This mixture of types of
states in one state vector and the fact that the relation between
the state and the error is linear poses a question, in which space
should the error be expressed since it can only be expressed
in one of the two spaces. One of the types of states will
therefore be updated with correction expressed in different
space, and it will be corrected in nonoptimal way. While
the vector part of the error quaternion is related to rotational
velocity and is therefore expressed in the body frame, it can
be mapped into joint space by using the Jacobian matrix.
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The experiments have shown that K1 performs better when
the error is mapped in joint space. This weakness of mixed
types of states in the classical Kalman filter was also one of
the reasons to develop the MIJAPI algorithm that takes into
account the geometrical properties of the serial mechanism
kinematics. In the proposed method based on Invariant filters,
the Kalman gain is multiplied directly with the vector part of
the error quaternion; however, the update for the estimation
of the a posteriori joint angles is then mapped from the body
frame into joint space, where the a priori joint angles states
are updated. As a result, the performance of the CO and KA
methods is considerably better compared to K1 method in
conditions 3–5.

V. CONCLUSION

This paper presents the novel algorithm for estimation of
joint angles based on magnetoinertial measurements. The esti-
mation requires the complete kinematic model of the system,
including constraints introduced by various types of rotational
joints. The computation is based on the Moore–Penrose left
pseudoinverse of the system Jacobian matrix that relates
segment angular velocities to joint velocities and presents
the weighted least-squares solution to the problem. Measured
segment angular velocities are used as a feedforward term,
while the estimation error multiplied by a constant or Kalman-
adaptive gain matrix is used in a feedback loop. The estimation
error is represented by the error quaternion computed from
the estimated segment orientation and the segment orientation
determined from acceleration and magnetometer data. The
two measurements are susceptible to various disturbances
(e.g., dynamic accelerations and external magnetic fields),
which can be reduced through signal preprocessing.

The results of the experimental validation demonstrate that
the MIJAPI algorithm is capable to assess joint angles of
the upper limb in the presence of various disturbances. The
output is not susceptible to signal drift. The MIJAPI algo-
rithm is computationally more efficient than the corresponding
solutions based on the Kalman filter. However, the Kalman
filter was found to perform slightly better in conditions
without significant disturbances or kinematic misalignments.
The method with the Kalman-adaptive gains performs better
than the solution with constant gain matrix in the worst case
scenarios in terms of disturbances.

The MIJAPI method is applicable in areas of human motion
tracking and analysis as well as robotics, where orientation
estimation of serially linked segments with rotational joints is
of interest.

APPENDIX A
ESTIMATION OF GRAVITY AND

MAGNETIC FIELD VECTORS

Dynamic acceleration ¨̂pSi
acting on the sensor Si can be

calculated using the following approach. The sensor Si is
attached to the link j = mi

¨̂pSi
= j R̂Si

( ¨̂p j
j + ˙̂ω j

j × r j
j,Si

+ ω̂
j
j × (

ω̂
j
j × r j

j,Si

))
(60)

where r j
j,Si

is the position of the sensor Si relative to the

coordinate frame j attached to the link j , ¨̂p j
j , ˙̂ω j

j , and ω̂
j
j

are dynamic acceleration, angular acceleration, and angular
velocity of the link j relative to the link coordinate frame,
respectively. Angular velocity ω̂ j can be computed directly
using (3)

ω̂ j =
j∑

k=1

zk−1(ϑ̂) ˙̂ϑk = J j (ϑ̂)
˙̂
ϑ . (61)

Angular velocity in (61) is expressed relative to the base frame
and needs to be transformed into the link frame

ω̂
j
j = R̂T

Si
ω̂ j . (62)

Angular acceleration ˙̂ω j
j and dynamic acceleration ¨̂p j

j of the
link j relative to the coordinate frame of the link j can be
computed iteratively using the Newton–Euler approach

˙̂ω j
j = j−1R̂T

j

( ˙̂ω j−1
j−1 + ¨̂ϑ j z0 + ˙̂ϑ j ω̂

j−1
j−1 × z0

)
(63)

¨̂p j
j = j−1R̂T

j
¨̂p j−1

j−1 + ˙̂ω j
j × r j

j−1, j + ω̂
j
j × (

ω̂
j
j × r j

j−1, j

)

(64)

where r j
j−1, j is a vector pointing from the coordinate frame

of link j − 1 to the coordinate frame of link j expressed in
the coordinate frame of link j .

Computationally more efficient is direct approximation of
the static acceleration ḡSi . The updated static acceleration
ḡ+
Si

is obtained by rotating the previous static acceleration
estimate ḡ−

Si
for a small angle ω̄Si dt . The integration drift

can be compensated by taking into account the measured
acceleration vector āSi . The corrected rotation angle is then

dϕ = ω̄Si dt + Kg(‖āSi ‖)
(

āSi

‖āSi ‖
× ḡ−

Si

)
(65)

where Kg(‖āSi ‖) is an adaptive feedback gain value that
reflects quality of the measured acceleration (e.g., acceleration
norm). The new estimated acceleration is then

ḡ +
Si

= (I − S(dϕ))ḡ −
Si

(66)

where I is an identity matrix and S(·) is a skew-symmetric
operator. Similar approach can be applied also for estimation
of the magnetic field vector m̄Si in the case of short-term
disturbances [31]. The adaptive feedback gain Km must reflect
changes in the norm of the measured magnetic field vector
‖m̄Si ‖ and the changes in the magnetic dip angle.

APPENDIX B
DERIVATION OF THE SYSTEM ERROR DYNAMICS

The dynamics of the error system are

�Q̇Si
Si

= d

dt

(Q̂−1
Si

QSi

)
(67)

= −Q̂−1
Si

˙̂QSi �QSi
Si

+ Q̂−1
Si

Q̇Si . (68)
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By combining (43), (47), and (68) and after some tedious
but simple computation, we arrive to the following system:
�Q̇Si

Si
= −(ω̄Si − b̂Si ) × �εSi − 1

2
�QSi

Si
[�bSi ]

− �QSi
Si

[wωSi
] − [KQSi

(�εSi + w�εSi
)]�QSi

Si
.

(69)

We now linearize the error system around �QSi
Si

=
[1, 0, 0, 0]T and �bSi = [0, 0, 0]T and drop the quadratic
terms and infinitesimal state error, which leads to the system

�ε̇Si = −ω̂Si × �εSi − 1

2
�bSi − wωSi

− KQSi
�εSi − KQSi

w�εSi
(70)

�ḃSi = −wbSi
+ KbSi

�εSi + KbSi
w�εSi

(71)

where ω̄Si − b̂Si has been replaced with ω̂Si .

REFERENCES

[1] I. H. López-Nava and A. Muñoz-Meléndez, “Wearable inertial sensors
for human motion analysis: A review,” IEEE Sensors J., vol. 16, no. 22,
pp. 7821–7834, Nov. 2016.

[2] E. Rocon, J. C. Moreno, A. F. Ruiz, F. Brunetti, J. A. Miranda, and
J. L. Pons, “Application of inertial sensors in rehabilitation robotics,” in
Proc. IEEE 10th Int. Conf. Rehabil. Robot., Jun. 2007, pp. 145–150.

[3] J. A. Corrales, G. J. G. Gómez, F. Torres, and V. Perdereau, “Cooperative
tasks between humans and robots in industrial environments,” Int. J. Adv.
Robot. Syst., vol. 9, no. 94, pp. 1–10, 2012.

[4] M. Saha, R. Ghosh, and B. Goswami, “Robustness and sensitivity
metrics for tuning the extended Kalman filter,” IEEE Trans. Instrum.
Meas., vol. 63, no. 4, pp. 964–971, Apr. 2014.

[5] E. Kraft, “A quaternion-based unscented Kalman filter for orientation
tracking,” in Proc. 6th Int. Conf. Inf. Fusion, vol. 1, 2003, pp. 47–54.

[6] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear complementary
filters on the special orthogonal group,” IEEE Trans. Autom. Control,
vol. 53, no. 5, pp. 1203–1218, Jun. 2008.

[7] X. Yun and E. R. Bachmann, “Design, implementation, and exper-
imental results of a quaternion-based Kalman filter for human body
motion tracking,” IEEE Trans. Robot., vol. 22, no. 6, pp. 1216–1227,
Dec. 2006.

[8] P. Martin and E. Salaün, “Generalized multiplicative extended Kalman
filter for aided attitude and heading reference system,” in Proc. AIAA
Guid., Navigat., Control Conf., 2010, p. 8300.

[9] S. Bonnabel, P. Martin, and P. Rouchon, “Non-linear symmetry-
preserving observers on Lie groups,” IEEE Trans. Autom. Control,
vol. 54, no. 7, pp. 1709–1713, Jul. 2009.

[10] H. Zhou and H. Hu, “Reducing drifts in the inertial measurements of
wrist and elbow positions,” IEEE Trans. Instrum. Meas., vol. 59, no. 3,
pp. 575–585, Mar. 2010.

[11] A. Young, “Use of body model constraints to improve accuracy of
inertial motion capture,” in Proc. Int. Conf. Body Sensor Netw. (BSN),
Jun. 2010, pp. 180–186.

[12] T. Seel, T. Schauer, and J. Raisch, “Joint axis and position estimation
from inertial measurement data by exploiting kinematic constraints,” in
Proc. IEEE Int. Conf. Control Appl. (CCA), Oct. 2012, pp. 45–49.

[13] T. Seel, J. Raisch, and T. Schauer, “IMU-based joint angle measurement
for gait analysis,” Sensors, vol. 14, no. 4, pp. 6891–6909, 2014.

[14] S. Šlajpah, R. Kamnik, and M. Munih, “Kinematics based sensory fusion
for wearable motion assessment in human walking,” Comput. Methods
Programs Biomed., vol. 116, no. 2, pp. 131–144, 2014.

[15] Z. Zhang, W. C. Wong, and J. Wu, “Wearable sensors for 3D upper limb
motion modeling and ubiquitous estimation,” J. Control Theory Appl.,
vol. 9, no. 1, pp. 10–17, 2011.

[16] A. Ben-Israel and T. Greville, Generalized Inverses—Theory and Appli-
cations. New York, NY, USA: Springer-Verlag, 2003.

[17] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics—
Modelling, Planning and Control. London, U.K.: Springer-Verlag, 2009,
pp. 575–576.

[18] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-
pair mechanisms based on matrices,” ASME J. Appl. Mech., vol. 23,
pp. 215–221, Jun. 1955.

[19] C. D. Meyer, Jr., “Generalized inverses of block triangular matrices,”
SIAM J. Appl. Math., vol. 19, no. 4, pp. 741–750, 1970.

[20] S. Chiaverini, B. Siciliano, and O. Egeland, “Review of the damped
least-squares inverse kinematics with experiments on an industrial
robot manipulator,” IEEE Trans. Control Syst. Technol., vol. 2, no. 2,
pp. 123–134, Jun. 1994.

[21] P. Davenport, “A vector approach to the algebra of rotations with
applications,” NASA, Washington, DC, USA, Tech. Rep. X-546-65-437,
1965.

[22] F. L. Markley and D. Mortari, “Quaternion attitude estimation using
vector observations,” J. Astron. Sci., vol. 48, no. 2, pp. 359–380, 2000.

[23] R. K. Mehra, “On the identification of variances and adaptive Kalman
filtering,” IEEE Trans. Autom. Control, vol. AC-15, no. 2, pp. 175–184,
Apr. 1970.

[24] R. K. Mehra, “Approaches to adaptive filtering,” IEEE Trans. Autom.
Control, vol. AC-17, no. 5, pp. 693–698, Oct. 1972.

[25] T. Berry and T. Sauer, “Adaptive ensemble Kalman filtering of non-
linear systems,” Tellus A, Dyn. Meteorol. Oceanogr., vol. 65, no. 1, 2013,
Art. no. 20331.

[26] D. Choukroun, I. Bar-Itzhack, and Y. Oshman, “Novel quaternion
Kalman filter,” IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. 1,
pp. 174–190, Jan. 2006.

[27] T. Beravs, J. Podobnik, and M. Munih, “Three-axial accelerometer
calibration using Kalman filter covariance matrix for online estimation
of optimal sensor orientation,” IEEE Trans. Instrum. Meas., vol. 61,
no. 9, pp. 2501–2511, Oct. 2012.

[28] T. Beravs, S. Begus, J. Podobnik, and M. Munih, “Magnetometer
calibration using Kalman filter covariance matrix for online estimation of
magnetic field orientation,” IEEE Trans. Instrum. Meas., vol. 63, no. 8,
pp. 2013–2020, Aug. 2014.

[29] S. Šlajpah, R. Kamnik, and M. Munih, “Compensation for magnetic
disturbances in motion estimation to provide feedback to wearable
robotic systems,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 12,
pp. 2398–2406, Dec. 2017.

[30] J. Favre, B. M. Jolles, R. Aissaoui, and K. Aminian, “Ambulatory
measurement of 3D knee joint angle,” J. Biomech., vol. 41, no. 5,
pp. 1029–1035, 2008.

[31] D. Roetenberg, H. J. Luinge, C. T. M. Baten, and P. H. Veltink,
“Compensation of magnetic disturbances improves inertial and magnetic
sensing of human body segment orientation,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 13, no. 3, pp. 395–405, Sep. 2005.

Matjaž Mihelj (M’10) received the B.Sc., M.Sc.,
and Ph.D. degrees in electrical engineering from
the University of Ljubljana, Ljubljana, Slovenia,
in 1996, 1999, and 2002, respectively.

Since 2014, he has been a Full Professor with
the Faculty of Electrical Engineering, University of
Ljubljana.

Janez Podobnik received the B.Sc. and Ph.D.
degrees in electrical engineering from the University
of Ljubljana, Ljubljana, Slovenia, in 2004 and 2009,
respectively.

He is currently a Researcher with the University
of Ljubljana. His current research interests include
haptic interfaces, real-time control of robots for
virtual-reality-supported rehabilitation, and sensory
fusion techniques.

Marko Munih (M’88) received the Ph.D. degree in
electrical engineering from the University of Ljubl-
jana (UL), Ljubljana, Slovenia.

From 2004 to 2006, he was the Head of the
Department for Measurements and Process Control,
Faculty of Electrical Engineering, UL, where he
is currently a Full Professor and the Head of the
Laboratory of Robotics.


