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 
Abstract— We evaluated different muscle excitation 

estimation techniques, and their sensitivity to Motor Unit (MU) 
distribution in muscle tissue. For this purpose, the Convolution 
Kernel Compensation (CKC) method was used to identify the 
MU spike trains from High-Density ElectroMyoGrams 
(HDEMG). Afterwards, Cumulative MU Spike Train (CST) was 
calculated by summing up the identified MU spike trains. Muscle 
excitation estimation from CST was compared to the recently 
introduced Cumulative Motor Unit Activity Index (CAI) and 
classically used Root-Mean-Square (RMS) amplitude envelop of 
EMG. To emphasize their dependence on the MU distribution 
further, all three muscle excitation estimates were used to 
calculate the agonist-antagonist co-activation index.   

We showed on synthetic HDEMG that RMS envelopes are the 
most sensitive to MU distribution (10 % dispersion around the 
real value), followed by the CST (7 % dispersion) and CAI (5 % 
dispersion). In experimental HDEMG from wrist extensors and 
flexors of post-stroke subjects, RMS envelopes yielded 
significantly smaller excitations of antagonistic muscles than 
CST and CAI. As a result, RMS-based co-activation estimates 
differed significantly from the ones produced by CST and CAI, 
illuminating the problem of large diversity of muscle excitation 
estimates when multiple muscles are studied in pathological 
conditions. Similar results were also observed in experimental 
HDEMG of six intact young males.  
 

Index Terms — muscle co-activation, motor unit distribution, 
motor unit action potential, high-density surface 
electromyograms 

I. INTRODUCTION 

Estimation of muscle excitation from surface 
electromyograms (EMG) is a long-standing problem that has 
been tackled by many different studies [7][9][12][13][16]. A 
surface EMG is a highly interferential signal, consisting of 
contributions of many Motor Units (MUs). Therefore, its 
exact interpretation is a difficult and not yet fully solved 
problem. Most of the existing studies base the muscle 
excitation estimation on amplitude envelopes of EMG that are 
easy to calculate, but contain two different classes of 
information. The first class comprises neural commands sent 
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by the Central Nervous System (CNS) in the form of binary 
codes. Namely, by building on the all-or-nothing principle of 
motor neuron activation, CNS uses frequency modulation to 
govern the movements of skeletal muscles. In the muscles, 
these binary codes get amplified electrically and filtered by 
the Motor Unit Action Potentials (MUAPs) [3][4], which 
dorm the second class of information in EMG. Namely, 
MUAP shapes depend on many geometrical, anatomical and 
acquisition parameters [7]. Although beneficial when 
determining peripheral nervous system properties like Motor 
Unit Conduction Velocity [15], the MUAP shapes carry no 
information on neural codes and should, thus, be removed 
from the muscle excitation estimates. In other words, the 
MUAPs depend significantly on the MU distribution within 
the muscle tissue, and weight the neural codes with 
substantially different ponders in EMGs. This increases the 
variability of muscle excitation estimates across different 
muscles, subjects or contraction levels. 

The estimated excitation levels are frequently normalized 
by the measurements at Maximum Voluntary Contraction 
(MVC) levels. Although aiming to standardize the relative 
muscle excitation levels in different subjects, this 
normalization may further increase the variability of 
excitation estimations due to the heterogeneous low- and high- 
threshold MU distributions in muscle tissue [2][11][18].    
Moreover, amplitude envelopes have been used extensively in 
determination of muscle co-activation patterns and in studies 
of muscle synergies [17]. When comparing the excitations of 
different muscles, the aforementioned negative impact of 
MUAPs increases, due to the anatomical differences of the 
investigated muscles [19]. This problem increases further in 
different pathologies, such as stroke, where MU sizes, or their 
distribution within the muscle tissue, are altered.   

To the best of our knowledge, these methodological 
limitations of muscle excitation estimation have not been fully 
investigated, mainly due to the lack of methodologies for 
efficient removal of MUAPs from EMG measurements. 
Namely, while the decomposition of EMG signals to 
contributions of different MUs removes the MUAPs 
[6][7][12], it also limits the number of identified MUs, 
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opening the question of their representativeness (Fig. 1). 
Furthermore, full EMG decomposition is a computationally 
intensive procedure.  

Recently, Cumulative Motor Unit Activity Index (CAI) 
methodology has been introduced [10], supporting the real-
time MUAP compensation in EMG. In this study, we 
evaluated its potential to estimate the muscle co-activations in 
one DOF movements. First, we performed evaluation on 
synthetic High-Density EMG (HDEMG) signals with exactly 
known MU excitation patterns. Next, the CAI performance 
was evaluated on a group of intact and post-stroke subjects 
during robot-assisted wrist rehabilitation.   
      

   
Fig. 1: Schematic comparison of different muscle excitation estimation 
techniques.  

II. MUSCLE CO-ACTIVATION ESTIMATION 

A. HDEMG signals 

In isometric contractions, HDEMG can be modeled by the 
following convolutive model [6]:

 
 

     𝒚(𝑛) = 𝐇𝐭(𝑛) +  𝛚(𝑛),  (1) 

where  

     𝒚(𝑛) = [𝑦ଵ(𝑛) … 𝑦ଵ(𝑛 − 𝐹 − 1) … 𝑦ெ(𝑛 − 𝐹 − 1)]்  

contains the blocks of F consecutive samples of each HDEMG 
channel, 𝛚(𝑛) = [ωଵ(𝑛) … ωெ(𝑛 − 𝐹 − 1)]் is noise vector 
and  

      𝐭(𝑛) = ൣ𝑡ଵ(𝑛) … 𝑡ଵ(𝑛 − 𝐿 − 𝐹 + 1) … 𝑡௃(𝑛 − 𝐿 − 𝐹 + 1)൧
்
  

contains blocks of consecutive L+F samples from all the J 
MU spike trains, where L stands for MUAP length in the 
samples. The j-th MU spike train is defined as: 

      𝑡௝(𝑛) = ∑ 𝛿 ቀ𝑛 − 𝜏௝(𝑘)ቁ௞ ,       j=1,...,J  (2) 

 
where δ(. ) is the unit-sample pulse and the k-th firing of the 
j-th MU appears at time 𝜏௝(𝑘). The mixing matrix  
 

 𝐇 = ቎
𝑯ଵଵ

⋮
𝑯ெଵ

⋯
⋱
⋯

𝑯ଵ୎

⋮
𝑯ெ௃

቏,              (3) 

combines the blocks of MUAPs as detected by the i-th uptake 
electrode: 

𝐇௜௝ = ቎

ℎ௜௝(1) … ℎ௜௝(𝐿)    

⋮ ⋱ ⋱
0 … ℎ௜௝(1)

… 0
⋱ ⋮
… ℎ௜௝(𝐿)

቏ .       (4)  

Extension factor F [6] is usually set to values between 1 and 
15, where higher values improve the conditionality of the 
mixing model (1) and, thus, the compensation of H in 
HDEMG decomposition and CAI (see next subsections), but 
also increase the computational intensity of H compensation. 
Therefore, the compromise between these two factors needs 
to be carefully evaluated.  

B. HDEMG decomposition 

The Convolution Kernel Compensation (CKC) technique 
cancels out the MUAPs in the model (1) and estimates the MU 
spike train as [6]:  

 
 𝑡̂௝(𝑛) = 𝐜௧ೕ𝒚

் 𝐂𝒚
ିଵ𝒚(𝑛) ≈ 𝐜௧ೕ𝐭

் 𝐂𝒕
ିଵ𝐭(𝑛)      (5) 

 
where 𝐂𝒚 = 𝐸(𝒚(𝑛)𝒚்(𝑛)) and 𝐂𝐭(𝑛) = 𝐸(𝐭(𝑛)𝐭்(𝑛)) stand 
for the correlation matrix of HDEMG and MU spike trains, 
respectively, with E(.) denoting mathematical expectation, 
and 𝐜௧ೕ𝒚 = 𝐸൫𝑡௝(𝑛)𝒚்(𝑛)൯

 
and 𝐜௧ೕ𝐭 = 𝐸൫𝑡௝(𝑛)𝐭்(𝑛)൯ are 

cross-correlation vectors.  
The Cumulative Spike Train (CST) is then calculated by 

summing up the spike trains of identified MUs [13]:  

                   𝐶𝑆𝑇(𝑛) = ∑ 𝑡̂௝(𝑛)௝         (6) 

C. Cumulative Activity Index 

The Activity Index (AI) in each sample n is defined as [6]:  

   𝐴𝐼(𝑛) = 𝒚(𝑛)்𝐂𝒚
ି𝟏𝒚(𝑛) ≈

                    𝐭(𝑛)்𝐇்𝐇ି்𝐂𝐭(𝑛)ି𝟏𝐇ିଵ𝐇𝐭(𝑛) =

                     𝐭(𝑛)்𝐂𝐭
ି𝟏𝐭(𝑛) 

     (7) 

By summing up K consecutive AI values, we get the 
Cumulative AI (CAI), which cancels out the MUAP shapes 
and reveals the cumulative MU spike train [10]: 

𝐶𝐴𝐼(𝑛, 𝐾) = ∑ 𝐴𝐼(𝑘)௡
௞ୀ௡ି௄ାଵ              (8) 

D. Spatially averaged RMS of HDEMG signals  

RMS values of all the HDEMG channels were computed 
on the predefined intervals of the length of K samples. 
Afterwards, we computed the spatial average of RMS values 
over all the HDEMG channels.  

Fig. 1 presents a schematic comparison of all three muscle 
excitation estimation techniques. HDEMG decomposition has 
superior quality control, but also the highest selectivity. As a 
result, it provides highly accurate activation estimation for the 
lowest number of MUs. Amplitude envelopes and CAI have 
medium quality control, mainly at the level of EMG signals, 
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and exhibit medium selectivity. However, amplitude 
envelopes are more sensitive to muscle geometry and MUAP 
shapes than CAI.  

III. DATA ACQUISITION AND ANALYSIS 

A. Synthetic HDEMG signals 
We used a multilayer cylindrical volume conductor model 

[4] to simulate the biceps brachii muscle with 500 active MUs 
distributed randomly in an elliptical muscle cross-section. 
Average fiber density was set to 20 fibers/mm2 [1] and  fiber 
length was set to 130 mm. A 25 mm thick bone, 30 mm thick 
muscle, 4 mm thick fat and 1 mm thick skin layer were 
simulated [4]. The MU innervation number ranged from 24 to 
2408 fibers. MUAP conduction velocity was normally 
distributed with the mean value of 4.0 ± 0.3 m/s. 

MU recruitment thresholds and firing rates were computed 
by the model proposed in [5], with the parameters adapted to 
the biceps brachii muscle. MU recruitment thresholds were 
generated randomly from exponential distribution with many 
low-threshold MUs, and the last MU recruited at 80% of 
maximum excitation level [11]. MU firing rates increased 
linearly from 8 pulses per second (pps) at MU recruitment to 
35 pps at 100% excitation. For each MU, a normally 
distributed InterSpike Interval (ISI) was generated with 
Coefficient of Variation (CoV) equal to 20 %. Ten 20 s long 
ramp contractions were simulated, from 0 % to 100 % and 
back to 0% excitation. In each simulated ramp, the MU 
territories were distributed randomly in the muscle, whereas 
the muscle excitation pattern (MU recruitment and firing 
patterns) were kept the same in all the simulated ramps.  

Synthetic HDEMG signals were detected by an array of 9 
×10 electrodes, with a radius of 1 mm and 5 mm inter-
electrode distance. HDEMG signals were computed at 4,096 
samples/s and downsampled to 2,048 samples/s.  

B. Experimental HDEMG signals  
Six intact young males and four post-stroke subjects 

participated in the study, which was performed at the 
University Rehabilitation Institute, Republic of Slovenia - 
Soča. Post-stroke subjects’ characteristics are listed in Table 
I. The experiment was conducted in accordance with the 
Declaration of Helsinki, and was approved by the local Ethics 
Committee. Each participant received a detailed explanation 
of the study and gave written informed consent before his 
participation in the study. 

We fixed two arrays of 5×13 electrodes (diameter of 1 mm, 
interelectrode distance of 8 mm, OT Bioelettronica, Italy) to 
the upper third of the dominant forearm. Electrode columns 
were approximately perpendicular to the muscle fibers, and 
covered about three-quarters of the forearm circumference. 
The recorded HDEMG signals were amplified, band-pass 
filtered (3 dB, 10-900 Hz) and sampled at 2048 Hz, with 12 
bits` resolution (USB EMG 2 amplifier, OT Bioelettronica, 
Italy).  

Subject’s wrist movements were opposed by a Universal 
Haptic Device (UHD) robot [14]. The same robot measured 
exerted muscle forces and wrist positions at a sampling rate of 
200 Hz and 12-bits` resolution (PCI-6023E, National 
Instruments Inc., USA). The trigger signal recorded by both 

amplifiers was used to synchronize HDEMG and force 
signals.  

All the participants performed 3 s long maximum 
voluntary (MVC) contractions of tested muscles. In post-
stroke subjects, we measured ten repetitions of wrist flexions 
and extensions at ~40-60 % MVC level. In order to increase 
the co-activation of wrist muscles, intact persons performed 
ten repetitions of wrist pronation at 20 % MVC level.  

 
TABLE I 

CHARACTERISTICS OF POST-STROKE SUBJECTS 
 P1 P2 P3 P4 

Age 66 58 53 64 
Sex Male Male Male Male 
Height 175 178 173 180 
Weight 98 105 70 74 

Diagnosis 
Stroke 
/hemi-
plegia 

Stroke 
/hemi-
plegia 

Stroke 
/hemi-
plegia 

Stroke 
/hemi-
plegia 

Affected 
side 

right right right right 

C. Data analysis 
HDEMG signals were extended by factor F=10, and 

decomposed by the CKC technique [6]. Previously introduced 
Pulse-to-Noise Ratio (PNR) [8] was used for quality control 
of identified MUs. Only MUs with PNR > 30 dB (accuracy > 
90% [8]) were kept for further analysis. In each contraction 
their spike trains were summed up to yield CST as defined by 
Eq. (6) and averaged by a window of length of 0.125 s. 

A similar procedure was followed for CAI calculation. 
First, HDEMG signals were extended by extension factor F, 
set to 1, 2, 5 and 10, respectively. Next, Eqs. (7) and (8) were 
used to calculate CAI, with parameter K set to 256 samples 
(0.125 s).  

Spatially averaged RMS values of HDEMG signals were 
low-pass filtered by the window of length of 0.125 s. 

In experimental conditions, calculated CST, CAI and RMS 
values were normalized by their maximal values, calculated 
from MVC recordings, yielding the muscle excitation estimate 
in % of maximal excitation. Afterwards, the coefficient of co-
activation (CoA) was computed by dividing (in element-wise 
fashion) the estimated excitation of the antagonist with the 
estimated excitation of the agonist muscle.  

In synthetic HDEMG, no further normalization was 
required as ramps already contained the 100 % excitation. 
Two different ramps were used as signals from agonist and 
antagonist muscles, whereat the results were averaged over all 
the possible ramp pairs. As exactly the same MU firing 
patterns were used in all the ramps, and only MU distribution 
within the muscle tissue was changed, the CoA should be 
equal to 1 in all the time instants and for all the ramp pairs.  

The performance of CST, CAI and RMS techniques was 
measured by comparing mutually the excitation and CoA 
values. For HDEMG decomposition, we also calculated the 
Number of MUs (No. MUs), Smoothed Discharge Rate 
(SDR), and CoV for interspike interval (CoVISI). The 
Lilliefors test was used to check for normal distribution of 
CoA, No. MUs, SDR and CoVISI values. Normal distribution 
was rejected in all of them, therefore, a non-parametric 
Friedman test (paired comparison) and Kruskal-Wallis test 
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(unpaired comparison) were used for further statistical 
analysis. All the significant effects were corrected by a 
Bonferroni test with significance level set to P < 0.05.  

IV. RESULTS 

A. Synthetic HDEMG signals 

On average, the CKC method identified 28 ± 4 MUs. Fig. 2 
depicts representative examples of muscle excitation 
estimation (right panels) and CoA (left panels), estimated by 
CST, CAI and RMS techniques.  

Statistical comparison of CoA estimations is provided in 
Fig. 3. CAI values for four different extension factors (F=1, 
F=2, F=5 and F=10) are depicted, whereas CST and RMS 
methods were, in all  cases, estimated with the extension factor 
F=10 and F=1, respectively. All three techniques yielded 
approximately the same mean CoA value, but the RMS and 
CST methods exhibited significantly larger variability of CoA 
estimates than CAI (Fig. 3, lower panel). Noteworthy, the 
variability of the CST method depended significantly on the 
number of identified MUs, and SD of CoA estimates increased 
to 13 ± 4 %, 22 ± 13 % and 26 ± 15 % when only 20, 10 and 
5 MUs were used for CST calculation in Eq. (6).  
 

 
 
Fig. 2: Muscle excitation and CoA estimated by CST (F=10), CAI (F=5) and 
RMS (F=1) methods. The results are averaged over 10 synthetic HDEMG 
signals.  Mean value is depicted in red, Standard Deviation (SD) in colored 
dashed lines, and minimum and maximum values in black dotted lines. 
 

B. Experimental HDEMG signals 

In intact young males, CKC identified 5.5 ± 3.3 MUs and 
8.5 ± 3.3 MUs from wrist extensors and flexors, respectively. 
The muscle excitation values, as estimated by CST, CAI and 

RMS methods, are depicted in Fig. 4, along with two CoA 
values, namely one for the extensors vs. flexors ratio, and one 
for the flexors vs. extensors ratio. Due to the relatively low 
number of reliably identified MUs, CST-based estimates of 
CoA exhibited relatively large variability. This agrees with 
simulation studies. On the other hand, the excitation levels and 
CoA estimated by CAI demonstrated relatively low intra- and 
inter-subject variability. 
 

  
Fig. 3: Comparison of CAI-based CoA estimation (%) with CST and RMS on 
synthetic HDEMG signals with simulated CoA of 1 (100 %). Mean (upper 
panel) and SD values (lower panel), computed over time for four different 
extension factors F, are depicted. CST and RMS were always estimated with 
the extension factor F=10 and F=1, respectively. Horizontal lines denote 
significant differences (p<0.05). 
 

 
Fig. 4: Excitations of extensors and flexors and corresponding extensors vs. 
flexors and flexors vs. extensors CoA estimated by CST (F=10), CAI (F=10), 
and RMS (F=1) method from experimental HDEMG signals of six intact 
young males. Horizontal black lines denote significant differences (Friedman 
test with Bonferroni correction, P<0.05).  
 

A representative example of MU identification in a post-
stroke subject is presented in Fig. 5. Seven and eleven MUs 
were detected from wrist extensors and flexors, respectively. 
Unstable firing patterns are clearly visible.  
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Fig. 5: MU firings identified from wrist extensors and flexors during wrist 
flexion task in subject P1. Each vertical bar denotes MU firing. Measured 
force signal is depicted by a solid gray line. The upper panel depicts three out 
of 64 EMG channels, recorded from wrist flexors.   
 

Statistical results of MU identification in a post-stroke 
subject are presented in Fig. 6. The number of identified MUs 
was significantly larger in flexors during flexion than in 
extensors during extension. At the same time, the number of 
identified MUs in flexors during extension was significantly 
larger than the number of MUs in extensors during the flexion, 
indicating the larger pathological co-activation in flexors than 
in extensors. In accordance with these results, the SDR of 
extensors in extension was significantly higher than other 
SDRs. Furthermore, in two post-stroke subjects, (P2 and P3), 
SDRs of flexors in flexion and extension were not 
significantly different. MUs in extensors had significantly 
larger CoVISI than MUs in flexors. 

In flexion, MUAPs had consistently larger RMS values in 
flexors than in extensors. On the other hand, during the 
extension, the MUAPs of flexors were significantly smaller 
than MUAPs of extensors in subject P3 only. This is at least 
partially in agreement with the results on MU firing patterns, 
where we observed larger pathological co-activation of 
flexors in extension than extensors in flexion.   

Fig. 7 depicts the CoA values, estimated by CST, RMS and 
CAI from experimental HDEMG signals of post-stroke 
subjects. In extension, RMS yielded significantly lower CoA 
values than the CST and CAI techniques. In flexion, this trend 
was less obvious, and in subject P3, RMS yielded CoA values 
that are comparable to CST and CAI. In three subjects, the 
CST-based CoA values were significantly larger in extension 
than in flexion (Fig. 8). The same was true for CAI-based CoA 
estimates in subjects P1, P2 and P4, whereas for RMS this 
trend was observed in subjects P1 and in P4 only. In 
agreement with simulations, CST-based CoA values 
demonstrated the largest variance, revealing their dependence 
on the number of identified MUs.  

 

 
 
Fig. 6: No. of MUs, SDR, CoVISI, and RMS value of MUAPs identified from 
wrist flexors and extensors in four post-stroke subjects. Horizontal black lines 
denote the statistically significant differences (Kruskal-Wallis test, P<0.05).   
 

 
 
Fig. 7: CoA estimated by CST (F=10), CAI with different extension factors F 
and RMS (F=1) in experimental HDEMG signals from four post-stroke 
subjects. Horizontal black lines denote significant differences (Friedman test 
with Bonferroni correction, P<0.05). In most cases CoA values estimated by 
CAI with different extension factors F do not show significant differences.  
 
 Figs. 9 and 10 depict the muscle excitation levels in 
extension and flexion as estimated by different estimation 
techniques, including measured force. Interestingly, RMS 
yielded significantly lower excitation levels of antagonists 
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(flexors in extension and extensors in flexion) than CST and 
CAI. The results on agonists were more comparable, though 
in most of the cases, significant differences were observed 
between the tested excitation estimation methods.   
 

 
Fig. 8: CoA estimated by CST and CAI (F=10) and RMS (F=1) in 
experimental HDEMG signals from four post-stroke subjects. Horizontal 
black lines denote significant differences (Kruskal-Wallis test, P<0.05).  
 

  
Fig. 9: Muscle excitation estimated by CST (F=10), CAI (F=10) and RMS 
(F=1) in post-stroke subjects during extension. Horizontal black lines denote 
significant differences (Friedman test with Bonferroni correction, P<0.05).  

V. DISCUSSION 

We demonstrated that the amplitude envelopes of 
HDEMG depend significantly on the MUAP shapes and, thus, 
on the muscle geometry and distribution of MUs in the muscle 
tissue. Therefore, the impact of MUAPs needs to be removed 
from muscle excitation estimation. In this study, we tested two 
different MUAP removal techniques, namely full HDEMG 
decomposition to contributions of individual MUs and CAI 
technique proposed in [10]. Full HDEMG decomposition 
supports exact control of the quality, removes all impacts of 
noise and MUAPs from muscle estimation, but is also highly 
selective, as only reliably identified MUs are considered. 
Afterwards, identified MU spike trains are summed up into 

CST and low-pass filtered, to suppress the synaptic noise and 
emphasize the common excitation pattern of the identified 
motor neuron pool. As demonstrated by our simulations, when 
many MUs are identified, CST yields highly accurate 
excitation and co-activation estimates (Figs. 2 and 3), but 
decreases performance significantly with the decrease in the 
number of MUs. Moreover, as only superficial MUs get 
identified from HDEMG, the decomposition is not fully 
independent from MU distribution in the muscle tissue.  

 

 
Fig. 10: Muscle excitation estimated by CST (F=10), CAI (F=10) and RMS 
(F=1) in post-stroke subjects during flexion. Horizontal black lines denote 
significant differences (Friedman test with Bonferroni correction, P<0.05).  
 

On the other hand, CAI compensates the MUAPs and 
estimates CST directly, without any MU preselection. This 
results in a larger number of MUs being considered for muscle 
excitation and co-activation estimation (compared to HDEMG 
decomposition), but at the cost of reduced quality control. 
Indeed, only the quality of HDEMG channels can be currently 
controlled in CAI calculation. Also, CAI performance 
depends on the MU distribution in the muscle tissue, as 
HDEMG detection volume typically occupies only a portion 
of a muscle. However, this detection volume is usually 
significantly larger than the MU identification volume of 
HDEMG decomposition. Therefore, when extended with a 
sufficiently large extension factor F, CAI yields lower 
Standard Deviation (SD) of CoA than CST, with relatively 
many MUs (Figs. 2 and 3). In this study, the Standard 
Deviation of CAI-based CoA decreased consistently with the 
extension factor, though differences between F=2, 5 and 10 
were not statistically significant.  

RMS envelopes yielded significantly larger Standard 
Deviation of CoA (Figs. 2 and 3). The latter was estimated to 
10 %, approximately twice the Standard Deviation of CoA 
values by CAI. In all the tested techniques, the Standard 
Deviation of CoA depended significantly on the level of 
muscle excitation, with the lowest Standard Deviation at the 
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maximal excitation levels. This is a direct consequence of 
CoA calculation, where the excitation level of an antagonistic 
muscle gets divided by the excitation level of an agonistic 
muscle.  

In post-stroke subjects, the three tested estimation 
techniques yielded significantly different CoA estimates, 
though CAI values were much closer to CST values than RMS 
values (Fig. 7).  Detailed analysis revealed that, in most of the 
cases, the excitation level of antagonistic muscles was largely 
underestimated by RMS (Figs. 9 and 10), whereas larger 
agreement among the tested techniques was observed when 
estimating the excitation of agonists. When comparing the 
individual MU properties as revealed by HDEMG 
decomposition, we observed a relatively small number of 
MUs identified from extensors. When compared to flexors, 
extensors had also relatively small MUAPs. On the other 
hand, CoVISI was significantly larger in extensors than in 
flexors. This suggests larger difficulties in control of wrist 
extensors in stroke, in comparison to flexors. These findings 
agree with the ones reported in [16]. When estimated by 
HDEMG decomposition and CAI, CoA values were 
significantly larger during extension than flexion in three out 
of four subjects, confirming that flexors oppose the wrist 
extension significantly. Interestingly, when using the 
amplitude envelopes (spatially averaged RMS values in this 
study), the ratios between the CoA values in extension and 
flexion were significantly different than in the case of CST 
and CAI techniques (Fig. 8). In two out of the four subjects 
tested, co-activation during the flexion was greater than 
during the extension, whereas, in the remaining two subjects, 
co-activations in extension and flexion were much more 
comparable than in the case of CAI and CST estimates. The 
differences in CoA estimation frequently exceeded 50 %, in 
some cases, even 100 %. This indicates that in pathological 
conditions like stroke, the muscle co-activation patterns need 
to be interpreted with great caution. 

In six intact young males, the excitation levels and CoA 
estimated by CAI demonstrated relatively low intra- and inter-
subject variability, especially when compared to excitation 
levels and CoA estimated by CST and RMS techniques. 
Relatively large variability of values estimated by CST can be 
contributed to the relatively small number of accurately 
identified MUs.  

Indeed, the Standard Deviation of CoA values estimated 
by HDEMG decomposition was much larger in experimental 
than in simulated conditions. This can be explained by at least 
two factors. First, the number of identified MUs was 
significantly larger in synthetic than in experimental 
conditions. Second, the number of identified MUs in the 
selected 0.125 s long window varied significantly in both post-
stroke and intact subjects, but not in simulated conditions. 
Indeed, in post-stroke subjects, an abnormally large variability 
of MU interspike intervals and MU recruitment was observed 
(Figs 5 and 6). In agreement with these explanations, the 
variability of CAI-based estimates was significantly lower in 
both simulated and experimental conditions (Figs. 3, 4, 8, 9 
and 10).  

Both RMS-based and CAI-based estimate calculations are 
computationally attractive. In our tests on an Intel CORE i7 
processor, they required 8.2 ± 9.0 ms and 9.8 ± 7.0 ms of a 

processor time per 1 second of HDEMG signals with 64 
channels, respectively. In the same experimental setup, CKC-
based MU identification required 19.54 ± 8.37 s per one 
second of HDEMG signals. Detailed analysis of the 
computational complexity of CST, CAI and RMS metrics is 
provided in [10].  

In this study, the experimental signals were acquired from 
four post-stroke and six intact subjects only. Wide variety of 
specific impairments exist in each individual post-stroke 
subject. Our analysis was targeted at each individual tested 
subject (healthy and post-stroke) showing subject-specific 
activation and co-contraction patterns, particularly in post-
stroke subjects. Thus, increasing the number of post-stroke 
subjects would likely increase the number of individual case 
studies and would not add to generalization of the results 
presented herein. To our belief, the tested number of post-
stroke subjects has shown feasibility of the proposed approach 
that could be used in subject-specific robot-assisted training 
of isolated wrist movements where the scope and difficulty of 
a training task would be selected based on the outcome of 
EMG signal analysis as proposed in this paper.       

In conclusion, we demonstrated that frequently used 
surface EMG envelopes are sensitive to MU distribution 
within the muscle tissue and can result in significant over- or 
underestimation of muscle co-activation. MU identification 
techniques remove the negative effect of MUAPs, are less 
sensitive to MU distribution, but their muscle excitation 
estimation depends severely on the number of identified MUs 
and stability of MU firing rates. The recently introduced CAI 
metric compensates MUAPs but does not aim to identify 
individual MUs. As such, it yields the lowest variability of 
muscle excitation estimation among the tested metrics, but the 
quality control for CAI-based estimates is yet to be developed.  
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