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Abstract. For individuals with paraplegia, standing up
requires activation of paralyzed leg muscles by an
artificial functional electrical stimulation (FES) control-
ler and voluntary control of arm forces by the individ-
ual. Any knowledge of such voluntary control,
particularly its prediction, could be used to design more
effective FES controllers. Therefore, artificial neural
network models were developed to predict voluntary
arm forces from measured angular positions of the
ankle, knee, and hip joints during FES-assisted standing
up in paraplegia. The training data were collected from
eight paraplegic subjects in repeated standing-up trials,
and divided into two categories for training and valida-
tion. The predictions of the models closely followed both
the training and validation data, showing good accuracy
and generalization. The comparison of the models
showed that, although there are striking similarities
among the voluntary controls adopted by different
subjects, each subject develops his/her own ‘personal
strategy’ to control the arm forces, which is consistent
from trial to trial. The level of consistency was depen-
dent on the experience in using FES, injury level, body
weight, and other subject-specific parameters.

1 Introduction

Functional electrical stimulation (FES) has been used to
restore the motor functions lost after spinal cord injury
(Graupe 1994; Kralj and Bajd 1989; Phillips 1991). The
restored functions usually utilize two fundamentally
different controls: artificial FES control of the paralyzed
muscles below the lesion, and voluntary control of the
intact muscles above the lesion. For example, both
controllers are important in a common procedure for
FES-assisted standing up (Fig. 1) in which the subject
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voluntarily uses his arms in addition to the electrical
stimulation of his paralyzed knee extensor muscles. The
arms help to balance the body during this maneuver and
can sometimes carry as much as two-thirds of the body
weight (Dolan et al. 1997; Kamnik et al. 1999). There-
fore, the quality of the resulting motion strongly
depends on how the arms’ musculature is controlled
and whether there is an appropriate level of coordina-
tion between the voluntary control of the arms and the
artificial control of the lower extremity muscles. Such
coordination is essential to prevent the independently
designed artificial FES controller from conflicting with
voluntary arm actions (Donaldson and Yu 1996).
Although the importance of voluntary control in
FES-assisted standing up has been known for some
time, more recently there has been a renewed interest in
the subject (Veltink and Donaldson 1998). In a study of
FES control methods by Quintern et al. (1989), the lack
of coordination between natural voluntary control and
artificial FES control was recognized as an essential
problem hindering the development of FES controllers.
To provide such coordination, Donaldson and Yu
(1996, 1998) proposed a method for minimization of the
arm forces during standing up. In their scheme, the arm
forces should be measured and the leg muscles stimu-
lated in a manner that unloads the arms. Other re-
searchers built a complete model of standing up in
paraplegia by combining a model of the paralyzed lower
extremities with a model of voluntary arm control.
These models were then used to evaluate FES controllers
of the lower extremities and their interactions with the
voluntary control of arms. For example, in a three seg-
mental model of standing up, Veltink et al. (1995) sim-
ulated the contributions of the arms with vertical and
horizontal forces in the shoulder joint. These forces were
governed by linear control laws with vertical velocity
and horizontal position as set points. However, no val-
idation of the model was given. In our previous studies
(Davoodi and Andrews 1996, 1998), we used fuzzy-logic
controllers to simulate voluntary control of arms during
standing up. The controllers were based on a set of
general rules defined according to our observations and
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understandings of the motion. For example, the rules of
the fuzzy controller were defined to keep the body’s
center of mass inside the feet support area and move it
upward with a reasonable speed. Although the perfor-
mance of the model was smooth and qualitatively
comparable to the actual observations in paraplegics, it
was general and not representative of an individual
subject’s voluntary control. Similar fuzzy controllers
were also used by Riener and Fuhr (1998) to simulate
the voluntary shoulder forces and moments in an at-
tempt to build a virtual patient for FES controller de-
sign. Unlike our fuzzy control models, which were
qualitative and general, their fuzzy control models were
tuned to force the shoulder joint to follow the reference
trajectories recorded from a paraplegic subject during a
single standing-up trial. This model was later modified
by Bahrami et al. (1999) to minimize the differences
between simulated and recorded movements of the
body’s center of mass. These models assume that the
voluntary arm control is a trajectory-following control-
ler that forces the shoulder joint or the body’s center of
mass to follow the same trajectories irrespective of what
is happening with the rest of the body. However, ac-
cording to Donaldson and Yu (1998), as the situation
changes the voluntary control strategy may remain the
same even if the trajectories change. All of the above
models are based on assumptions about the goal of
voluntary arm control, which need verification.

Clearly, a better understanding of the voluntary
control of arms during standing up is a first step toward
improving FES controllers for standing up in paraple-
gia. In this study, we model the individual voluntary
control of arms in a group of paraplegic volunteers, and
investigate the similarities and differences among them.
We are also motivated by the findings in a study by
Moynahan (1995), who monitored the electromyo-
graphic activity of the arm muscles during standing in
paraplegia. She suggested that each subject develops
consistent ‘personal strategies’ for postural control that
is different from that of the others. We hypothesize that
similar ‘personal strategies’ exist for control of the arms
during FES-assisted standing up. Therefore, a general
model is inadequate and there is a need for the devel-
opment of individualized voluntary control models for
each subject. We will use artificial neural networks
(ANNSs) to model voluntary control of the arms using
the data measured from repeated standing-up trials.
ANNS are universal function approximators that can be
trained to represent highly complex and nonlinear rela-
tionships (Haykin 1999).

2 The modeling task

Figure 1 shows a popular method of FES-assisted
standing up (left) and its planar representation (right).
The method, introduced first by Bajd et al. (1981), uses
both the arms and the electrical stimulation of the
paralyzed knee extensor muscles for standing up.

In the planar model, the sit-to-stand maneuver is
viewed as a task in which the primary objective is to co-
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Fig. 1. FES-assisted standing up by a paraplegic subject (lef?) and its
simplified model in the sagittal plane (right). Two controllers work in
parallel. The artificial control of the electrical stimulation to the
paralyzed leg muscles extend the knee joint, and the voluntary control
of the arm forces lift the body and provide balance. The reaction
forces and moments at the shoulder joint, Fy, Fy, and My, represent
the overall force actions of the arm musculature at the shoulder joint.
Dotted lines are used as the references for measuring the ankle, knee,
and hip joint angles

ordinate the movements of the three segments; shank,
thigh, and trunk, for successful standing up. Therefore,
the arms are replaced with their resultant forces and mo-
ments in the shoulder joints, because as far as the three-
segment system is concerned, the overall effort of the arms
are seen only in the forces and moments at the shoulder
joint. This view simplifies the model because there is no
need to include arm models, which are rather complex.
This simplified modelis also easier to interpret because the
magnitude and direction of the forces and moments in the
shoulder joint can be directly related to the balance and
rising speed of the sit-to-stand maneuver. Therefore, the
three-segmental system is affected by two actuators:
electrically stimulated knee-joint extensor muscles that
control the angular position of the knee-joint and the
voluntarily controlled shoulder forces, and moments that
control the position of the shoulder joint and angular
orientation of the trunk. The modeling task is to find a
model that, for the given state of the three-segmental
system, could produce shoulder forces and moments
similar to those observed experimentally. To develop such
a model, we need to identify the necessary inputs to the
model. The actual decision-making process employs sen-
sory information from vestibular, visual, proprioceptive,
and exteroceptive systems (Kandel et al. 1991), which are
not available for direct measurement. Therefore, we de-
cided to use a different set of measurable variables that
could partially — but sufficiently for the task at hand —
replace the sensory information accessed by the central
nervous system (CNS). In reality, the visual, vestibular,
and proprioceptive systems may use many different sen-
sory channels but we did not want to model exactly the



same information channels but a minimum set of
practically measurable variables that contain enough
information for the model. The complete state of the
three-segmental system, defined by the angular positions
and angular velocities of the ankle, knee, and hip joints,
were used to resemble the information received from the
visual and vestibular systems. The forces and moments in
the shoulder joint (which are correlated to the forces in the
arm musculature and the hand contact forces) were used
to resemble the proprioceptive and exteroceptive infor-
mation from the intact upper extremities. These variables
proved to be a good substitute to the actual redundant
sensory information used by the CNS (that we could not
practically measure), as they provided enough informa-
tion to the models mimicking the behavior of the actual
voluntary control.

3 Experimental procedures
3.1 Subjects

Eight paraplegic subjects participated in the study,
comprising five men and three women. Their ages
ranged from 19 to 57 years, weights from 53 to 94 kg,
and heights from 159 to 185 cm. The sample group
included subjects with different levels of spinal cord
injury and different experiences with FES usage, as
summarized in Table 1.

3.2 Instrumentation

Motion of the body was measured with an OPTOTRAK
optical system (Northern Digital Inc., Canada), which
measures the 3-D positions of active markers (infrared
LEDs). Markers were attached to anatomical landmarks
at the ankle, knee, hip, pelvis, shoulder, elbow, wrist,
and head. The forces on the arm support frame were
measured by a six-axis JR? robot wrist sensor (JR3 Inc.,
USA). Assuming that the human body is symmetrical
during the standing-up motion, measurements were
made only for the patient’s right side, and were
calculated for the left side.

3.3 Protocol

Subjects were seated on the instrumented seat with the
arms resting on the arm support frame. The height of the
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seat coincided with the height of a wheelchair, while the
arm support frame height was adjusted according to the
patient’s preferences. Prior to the measurements three
standing-up trials were performed to relieve spasticity in
the paralyzed extremities and familiarize the subject with
the measuring equipment. In recorded trials, the subjects
were asked to take an initial seated pose and to stand up
in their preferred way and speed, starting approximately
two seconds after the initiation of data collection. The
subjects voluntarily triggered the constant-level stimu-
lation of the quadriceps muscle group via a push-button
mounted on the walker handle. The stimulation intensity
was set to the level that saturated the knee extensors in
the sitting position. At least five standing-up trials, each
lasting 10 s, were recorded for each participant with a
50-Hz sampling rate.

3.4 Data analysis

The data collected from wrist sensor and active markers
were interpolated and low-pass filtered with a fourth-
order, dual-pass Butterworth filter with a 5-Hz cutoff
frequency. To determine the locations of the joint
centers in each extremity, the three markers in the joints
were connected to form a plane as shown in Fig. 2. Each
joint-center location was determined by translation of
the marker in the direction normal to the plane by an
amount equal to one-half the segment diameter (mea-
sured at the marker attachment point). Segmental mass,
mass center, and moments of inertia were estimated
from anthropometric relationships (De Leva 1996).
Positional marker data were differentiated and filtered
to find the marker velocities and accelerations. These
data were then used to calculate the motion of the
segmental mass centers and the angular positions and
angular velocities of the joints. Forces and moments
acting at the joints were calculated recursively using
Newton-Euler inverse dynamic analysis (Spong and
Vidyasagar 1989). Since, the motion of the arms during
standing up is not confined to the sagittal plane, a 3-D
inverse dynamic model of the human right arm was
developed, embodying upper arm, lower arm, and hand.
Each segment had six degrees of freedom and was
considered to be a rigid body. Reaction forces and
moments at the shoulder joint were recursively calcu-
lated, starting from the handle reactions and proceeding
toward the shoulder joint. Sagittal-plane components of
the shoulder joint forces and moments (doubled to
account for the left hand) along with the angular

Table 1. Paraplegic volunteers

who participated in the study Subject MK ZB BJ KA SB MT ™ Z)
Sex (M/F) M M M M M F F F
Age (years) 23 22 23 44 31 28 19 57
Weight (kg) 58 94 85 74 64 75 59 53
Height (cm) 168 184 185 180 183 171 178 159
Injury level T9 T10-11 T9 T10-11 T10-12 T4-5 T34 T11
FES use (months) 2.5 24 5 6 11 60 42 36
Number of trials 8 5 S 8 9 7 11 9
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LOWER EXTREMITY

normal vector of the
normal vector of the
plane formed by points
m#6, m#7 and m#8

m#2, m#3 and m#4

Table 2. Specifications of the final ANN models of voluntary arm
control in eight paraplegic subjects and in a virtual average subject
AVG. All the networks have direct connections, cascaded con-

plane formed by points

UPPER EXTREMITY

m#3 4

Fig. 2. Procedure for locating joint cen-
ters in the extremities using measured
marker positions. See the text for more
detail

nections, and input-layer transformations. Therefore, the number
of input-layer nodes includes the original six inputs and the addi-
tional input transformations

Subject MK ZB BJ KA SB MT ™ VAl AVG
No. of input layer nodes 14 17 20 20 24 16 23 22 19
No. of hidden layer nodes 0 0 0 8 3 0 0 0 0
No. of output layer nodes 3 3 3 3 3 3 3 3 3

positions and angular velocities of the ankle, knee, and
hip joints were used as the training data for the ANN
models.

4 The ANN model
4.1 The ANN model topology and training method

Neuralworks Predict software (NeuralWare Inc., USA)
was used to build and train the ANN models. It uses a
basic three-layer fully connected feedforward ANN
(Haykin 1999), with optional features that may be
added if necessary. The network is constructed by a
cascade method and trained by an adaptive gradient
learning rule (Fahlmann and Lebiere 1988). In the
cascade method of network construction, training begins
with no hidden layer nodes. New hidden layer nodes are
added, one at a time, with the purpose of predicting the
current remaining output error. The process of adding
the hidden layer nodes continues until the prediction
error falls below the given threshold. Additional features
may be added to the ANN models to enhance their
performance. The direct connection feature allows the
input layer to be connected to the output layer. Another
feature allows the transformation of the inputs by
common (e.g., linear and exponential) functions to form
new input variables. The cascaded connections feature
allows connections from previously established to more
recently established hidden nodes. To further enhance
the model, the past inputs and outputs are fed to the
input layer to provide the network with the memory
required in modeling the dynamic systems. These
delayed signals have been shown to improve perfor-

mance when applied to the modeling of dynamic
processes (Lang et al. 1990). Detailed specifications of
the final ANN models for each subject are given in
Table 2.

4.2 Training data

As the result of the data analysis, the angular position,
angular velocity, and reaction forces and moments were
calculated for all of the joints. These data were used to
build the training data for the ANN models. Angular
positions and angular velocities of the ankle, knee, and
hip joints were the inputs, and the forces and moments
at the shoulder joint were the outputs. Only a fraction of
the recorded data was from the actual sit-to-stand
maneuver, with an initial preparation (before seat take-
off) and a rather long final stabilization phase. There-
fore, to form the training data, the initial preparation
phase was removed because the subject was still
supported by the seat. Since, the main objective was to
model the voluntary arm forces in sit-to-stand phase, the
final stabilization phase was also partly removed to
prevent it from skewing the model behavior. The data
from the repeated trials of each subject were then
concatenated to form the training data for that subject.
This resulted in eight training data sets for eight subjects
that will be used to develop the ANN models represen-
tative of each subject’s voluntary control. An additional
virtual subject (AVG) was also introduced by concate-
nating the data from eight standing-up trials of eight
different subjects. The ANN model for subject AVG will
be used to represent the average voluntary control of the
group. In each training data set, the last 20% was set



aside for validation of the ANN models. The remaining
data were used in the model building process as the
training (70% by round robin selection) and test data
(the remaining 30%).

4.3 Selection of the input variables

Current and delayed samples (up to 1 s) of the inputs
and outputs in subject MT’s training data set were
considered for variable selection. Examination of the
scatter plots revealed strong nonlinear relationships
between the inputs and outputs. Therefore, linear
correlation techniques were ruled out and a combination
of three techniques was used along with the authors’
judgment to select the most important input variables.
Initially, the scatter plots were examined to find the most
evident correlations between the inputs and outputs.
Then a method was devised to examine the degree of
nonlinear correlation between an input and an output in
isolation. In this method, Matlab’s neural network
toolbox (Mathworks Inc., USA) was used to train a
fully connected feedforward neural network to model
the relationship between an input and an output
variable. For a fair comparison, the size of the neural
network model (one input, one output, and 25 hidden
layer nodes) was kept constant. The higher prediction
accuracy of the developed models was used as an
indication that there is a strong nonlinear correlation
between the two variables. This method examined an
input-output pair in isolation, which may not be
sufficient. Therefore, a genetic algorithm optimization
method (Goldberg 1989) was used to find a subset of
input variables that form an optimal predictor. This
method is one of the features in the software package
Neuralworks Predict that performs an extensive search
to find subsets of the input variables that along with the
ANN model forms an optimal predictor.

5 Results
5.1 Standing-up trials

Trajectories of the joints and arm forces in typical
standing-up trials of the eight paraplegic subjects are
shown in Fig. 3. The duration of the sit-to-stand phase,
rising speed, and the arm forces vary considerably
among the subjects. Fy and My are primarily responsible
for maintaining the body’s center of mass inside the base
of support, and are lower in magnitude than F;. F; is
primarily responsible for pulling the body upward and is
therefore higher in heavier subjects. Interestingly, some
subjects (ZB, TM, and ZJ) maintain a high level of F;
even after assuming the upright posture.

5.2 Selection of the input variables

There was strong nonlinear correlation between the
outputs and the present samples of the angular position
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inputs 0;(¢),0,(¢), and 05(¢). There was also a strong
linear correlation to the most recent samples of the
outputs Fz(t — 1), Fy(t — 1), and My(z — 1). Therefore,
these variables were selected as the inputs to the model.

Compared to the selected variables, the correlations
with angular velocities and other delayed samples were
weaker and therefore were excluded from the model.
The correlation to the angular position also had peaks at
samples 280-400 ms and 700 ms in the past. These
variables, however, were not included in the model
because they greatly increased the memory required to
store old samples while providing negligible improve-
ments in the accuracy of the model predictions.

5.3 ANN models

Nine ANN models were successfully built to predict the
voluntary arm forces (Fz, Fy, and My) of eight paraple-
gic subjects and subject AVG during standing up. As a
measure of variability in the voluntary control of arm
forces, the 95% confidence intervals for the models are
shown in Fig. 4. Other model evaluation measures such
as the root-mean-square error or correlation produced
similar results. Therefore, only the 95% confidence
intervals were used for evaluation of the models. A
higher value of the confidence interval (e.g., in subjects
TM and ZB) shows that the voluntary control repre-
sented by the model has more variations and, therefore,
more unpredictable behavior. Conversely, lower values
(e.g., in subjects MT, SB, and BJ) represent a subject’s
consistency in executing predictable voluntary control.
The predictions of the voluntary control of subject ZJ (a
moderate performer in Fig. 4) are shown in Fig. 5. The
models perform well not only on the training data but
also on the validation data (the last 20%) that were
never used in the training process.

5.4 Comparison of the voluntary controls

One way to compare the voluntary control of arms in
two subjects is to ask one subject to try the voluntary
control strategies of another subject to produce his/her
arm forces during standing up. Although impossible in
practice, this can be done very easily with the ANN
models of the subjects’ voluntary controls; feeding data
from one subject into the ANN model of another subject
is equivalent to having the subject try another’s volun-
tary control. The resulting predictions can then be
compared to the measured arm forces when the subject
uses his/her own voluntary control. The results of the
comparison for the lifting force (F7) and balancing force
and moment (Fy and My) are shown in Figs. 6 and 7,
respectively. For example, the first column in the left of
Fig. 6 compares subject MK’s voluntary control of F;
to that of the other subjects. Lower values of the
confidence interval in this column means that the
voluntary control of subject MK has better predictions
of the behavior in the other subject, and therefore they
are more similar. The height of the column, which
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Fig. 3. Trajectories of the joints and voluntary arm forces during standing up in sample trials of the eight paraplegic subjects. The portions of the
data between the dotted lines belong to sample standing-up of one subject

accumulates the confidence intervals of the paired
comparisons, is an overall score that compares subject
MK’s voluntary control to that of the group. Using this
score, the voluntary controls of subjects AVG and KA
have the most and the least similarity to the average
behavior of the group, respectively. The scores for the
rest of the subjects are somewhere in between. For
example, Fig. 8 shows the results of trying subject SB’s
voluntary control, which scores close to the middle in
Figs. 6 and 7, by all other subjects. As shown in the
figure, subject SB’s voluntary control of the lifting force

is most similar to that of subject TM, and least similar to
that of subject ZB. Similar comparison for the balancing
force and moment gives different results.

6 Discussion

The sample standing-up trials in Fig. 3 show consider-
able differences in the trajectories of the joints, speed of
rise, and the level and pattern of arm support forces. By
examining these data, Kamnik et al. (1999) concluded
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Fig. 8. Predictions of the ANN model for subject SB on the data
from sample trials of the eight paraplegic subjects. Pr. Fy, Pr. F; and
Pr.My are the predictions of subject SB’s voluntary control model

versatile, must follow a set of rules to satisfy these
requirements. Also, despite inter-subject variations, each
subject settles for a preferred way of standing up. This
further reduces variability in the required voluntary
control of the arms. These simplifying factors must be
kept in mind when interpreting the results in this study.

In selecting the input variables, we limited ourselves
to a set of measurable variables that completely defined
the state of the controlled system. Despite the fact that
this variable set has smaller dimension and less variety
than the actual sensory information used by the volun-
tary control system (Kandel et al. 1991), it was still a
large set. Therefore, we had to select the most important
input variables to form a ANN model of reasonable size.
Since the system is highly nonlinear, linear correlation
analysis could be misleading. Therefore, a combination
of a nonlinear correlation analysis, an optimization
method, and most importantly, the authors’ judgment
was used to identify the most relevant input variables.
There was stronger correlation to the angular position of
the joints than the angular velocity, which suggests that
the voluntary arm forces during standing up are pri-
marily position dependent. Also, strong correlation to
past samples of the arm forces shows that sensory
feedback of the arm forces (or equivalently the forces in
the arm muscles and hand contact) plays an important
role in the voluntary control of arm forces. In addition
to high correlation of the model outputs to the most

for the measured arm forces Fy, F; and My of the other subjects.
The portions of the data between the dotted lines belong to one
subject

recent inputs, there were also correlation peaks to inputs
delayed by 280-400 ms and 700 ms that may suggest
there are short- and long-delay control loops involved in
this postural adjustment task (Jaeger 1986).

The ANN models performed well on both the train-
ing and the validation data sets. The good performance
on the validation data showed that the models have
generalized well and that the voluntary arm control
consistently follows a set of control rules from trial to
trial. Therefore, each subject develops his/her own un-
ique control law and uses it consistently. This verifies the
development of ‘personal strategies’ by paraplegics to
control their arms during standing up, which is com-
patible with the observations of Moynahan (1995) in
paraplegics during standing. The level of consistency in
executing the ‘personal strategy’ were not the same,
however, and depended on parameters such as experi-
ence in using FES, level of injury, and the subject’s
weight. Subject MT, who had the longest FES training
and therefore was the most experienced subject, had the
least variations in his voluntary control. This is evident
from the very low confidence intervals in Fig. 4. The
highest variations belonged to subject TM, who had the
highest-level lesion, and subject ZB, who was the heav-
iest subject. The insufficient control over the trunk
muscles due to the high-level lesion most likely prevents
subject TM from effectively stabilizing her trunk. The
unstable trunk could disturb the maneuver and therefore
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require more corrective actions from the arms that in
turn result in more variations. The heaviest subject, on
the other hand, loads his arms very heavily (Fig. 3) and
may have more reasons to be afraid of falling, which
may result in more corrective and preventive actions.

Subject AVG is a virtual subject that represents the
average behavior of the group. The ANN model for
subject AVG is therefore, a general model that repre-
sents the common features among the eight subjects. The
successful development of this model proves the exis-
tence of such common features. This is an expected re-
sult because during standing up, the arms must play a
similar role for all paraplegics, which is to provide bal-
ance and help in rising. The existence of general rules
governing the control of arms is compatible with our
previous study (Davoodi and Andrews 1998), where we
developed a fuzzy-control model of the arm forces. As
mentioned above, this model was based on our under-
standing that the arms try to keep the body’s center of
mass inside the feet support area and maintain a mini-
mum upward velocity. The results of the current study
only suggest that there are general rules applicable to all
subjects, but it is not clear whether our interpretations of
these rules in Davoodi and Andrews (1998) were correct.
This needs further investigation.

The voluntary controls of the subjects are compared
in Figs. 6-8. The differences show that there are control
rules that are specific to each individual that make his/
her voluntary control unique. These person-to-person
differences in the adopted voluntary control are com-
patible with the observations of Moynahan (1995) for
the case of standing in paraplegia. Subject KA’s volun-
tary control is most different from the other subjects. In
Kamnik et al. (1999), subject KA is characterized as a
subject who makes better use of the FES by putting
more load on his legs. The large difference between his
strategy and the rest of the subjects indicates that his
strategy is not widely used by the other subjects (i.c.,
they do not trust their electrically stimulated legs to
support their body). This seems to be true, at least for
the dynamic phase of sit-to-stand motion. After as-
suming the standing posture and locking the knee joints,
though, most of the subjects can unload their arms and
transfer most of their body weight to their legs.

The results of this study show the possibility of de-
veloping ANN models capable of cloning the personal
strategies of paraplegics to control their arms during
standing up. Such individualized models can potentially
be useful in tailoring the FES controllers to individual
subjects. The model of the voluntary arm forces may be
combined with the musculoskeletal models of the lower
extremities to develop a realistic cybernetic model of a
paraplegic subject. This model can then be used with a
learning procedure such as reinforcement learning
(Davoodi and Andrews 1998) or genetic algorithms
(Davoodi and Andrews 1999) to develop optimal FES
controllers. An individualized ANN model may also be
used in the procedures described in Donaldson and Yu
(1996, 1998) and Riener and Fuhr (1998) to predict the
arm forces in advance and adjust the stimulation level of
the leg muscles to unload the arms.

Finally, the voluntary control models have potential
applications in a variety of fields such as the analysis of
human control, design of unmanned vehicles, real-time
training, human-robot coordination, and the transfer of
skill from one human to another (Nechyba and Xu
1997).
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