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Electrically Stimulated Muscle With Matlab Simulink
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Abstract—This paper first describes a laboratory setup for
biomechanical experiments that runs within the universal simula-
tion environment Matlab Simulink. The overall system comprises a
personal computer, two AMTI (Advanced Mechanical Technology,
Inc., Watertown, MA 02472) force plates, Parotec force-sensor
shoe insoles, Optotrak system for noncontact three-dimensional
(3-D)-position measuring, and a computer-controlled four-channel
electrical stimulator. Conceptually, the most important application
is implementation of closed-loop electrical stimulation of intact
and paralyzed subjects in the laboratory. Second, the system was
tested in real-time muscle model identification procedure during
a standing experiment. The plantarflexors of three nonimpaired
subjects were excited with pseudorandom binary sequences
(PRBSs) with small deviations around selected operating points.
Electrically stimulated muscles were presented with a linear local
dynamic block that was identified with a recursive least-square
method (RARX). RARX block was designed with fundamental
Matlab Simulink blocks that support real-time operation. Intro-
duced was online estimation of model output, which offers a great
manner of instant model validation. Two modes of operation with
online validation were tested. In the first mode, the operating
point for selected excitation level was identified online. In the
second mode, the operating point was measured in preceding
experiments. Both procedures resulted in satisfying second-order
models that will be used in the adaptive controller design.

Index Terms—Least-square method, model identification, neu-
romuscular stimulation, time-varying systems.

NOMENCLATURE

Stimulation pulse amplitude.
Linear model denominator parameter with index.
Linear model numerator parameter with index.
Transfer function of discrete-time systems.
Time.

PW Stimulation pulsewidth.
Stimulation input.
Measured muscle output.
Estimated muscle output.
Variable of the -transformation .
Vector of estimated linear model parameters

.
Vector of delayed inputs and outputs .

Manuscript received December 14, 2000; revised May 10, 2001 and May 30,
2001. This work was supported in part by the Ministry of Science and Tech-
nology of the Republic of Slovenia.

The authors are with the Faculty of Electrical Engineering, University of
Ljubljana, Ljubljana 1000, Slovenia (e-mail: matijap@robo.fe.uni-lj.si).

Publisher Item Identifier S 1534-4320(01)07889-5.

I. INTRODUCTION

ONE of the widely used methods for obtaining body
stability in persons after spinal cord injury is restoration

of motor function to paralyzed limbs with functional neuro-
muscular stimulation (FNS). FNS enables controlled neural
activation through the application of low intensity of electrical
stimulation. While existing simple open-loop FNS systems
demonstrate impressive functions, the ease of use, response
repeatability, and level of fatigue are expected to improve
if closed-loop feedback is incorporated. The entry point for
closed-loop utilization would be the FNS single-joint muscles.
This study focuses on the ankle joint only. Knee and hip joints
can be locked with mechanical orthosis [1]–[3]. An advantage
of applying closed-loop control of the ankle joint during
standing is also the ankle biomechanics. During standing, the
ankle is far from the anatomical limits of extension or flexion.
Also, the dorsiflexor-plantarflexor muscle pair acting at the
ankle joint is not able to stabilize the body under the conditions
of open-loop stimulation [1].

Closed-loop control, in general, allows good disturbance
rejection and reference tracking in applications such as FNS
where sensors are available. The process of building the FNS
closed-loop experimental system involves the following stages.

A. Modeling of the Electrically Stimulated Musculoskeletal
System

Electrically stimulated muscle can be observed as a com-
plex nonlinear time-varying actuator with muscle activation at
the input, generating output muscle force that moves the limb
or segment. The task of modeling, in general, requires both
the determination of a particular model structure, which de-
fines the complexity of the model, and the assignment of model
parameters. Several types of muscle model have been derived
from in vitro studies that are advantageous for general under-
standing of dynamic properties of skeletal muscles [4]–[8]. In
contrast,in vivo recognition of muscle models (e.g., with para-
plegic subjects) can include realistic aspects of spasticity and
remaining neuromuscular influence of the intact upper body.
This text describes a system for real-timein vivo muscle iden-
tification, which is also suitable for implementation in adap-
tive control strategies. Generally, frequency response of various
skeletal muscles under isometric conditions is a linear second-
order system with double real poles and a pure time delay [4].
The static force-activation relation can be described by a non-
linear monotonic isometric recruitment curve. The second-order
transfer function as a linear part of the muscle model follows
the nonlinear block. This form is known as Hammerstein model
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and has been applied to muscle models [2], [8], [9]. In contrast
to the Hammerstein model, local models describe muscle dy-
namic that is specific to selected stimulation region, and enable
the observation of changes of the dynamic properties between
regions.

B. Real-Time Feedback Control Applications

Several researchers studied adaptive FNS control algorithms
and recursive muscle model parameter identification that would
efficiently track the changes in muscle properties [9]–[12].
Major property changes are due to fatigue and unexpected
spasticity. In order to implement such a closed-loop controller
on a computer, appropriate computer software is required.
The software must handle complete sensory data, perform
controller calculations, and send the calculated FNS parameters
to one or more electrical stimulators. In our case, we used
Matlab Simulink1 software, primarily designed for modeling,
simulating, and control of dynamic systems.

The introductory part of this paper presents key elements
and a configuration of sensory-actuator system for closed-loop
FNS applications with human subjects. The system was
tested in real-time muscle modeling experiments using Matlab
Simulink. The human ankle plantarflexors were described with
a local muscle model. A hierarchical musculoskeletal model
was then parameterized from the real-time measured subject
input–output data. Following are sample identification results
for discrete descriptions.

II. M ETHODS—SENSORY AND ACTUATOR SYSTEM

The overall system comprises personal computer (PC)-com-
patible computer, Optotrak system for noncontact position
measuring, two force plates, force-sensor shoe insoles, com-
puter-controlled electrical stimulator, and the mechanical
rotating frame (MRF). The essential task was to construct
Matlab Simulink blocks for each measuring device and for the
electrical stimulator in order to describe and run the system.
These blocks are connected to various procedures of the
original Simulink comprehensive library. By following a set of
predefined rules, hardware interface functions in C program-
ming language can be implemented as a Matlab S function. The
S functions are incorporated into Simulink models by using the
S-function blocks, one of the Simulink choices, which allow
custom sampling time and other parameter setting. Further-
more, strict real-time execution is of primary importance for
control systems application. Thus, provisions are also made to
accelerate the execution. S functions for selected hardware are
presented in dual form of target language compiler format to
enable real-time mode operation of designed Simulink models
[13]. The experimental environment components are described
further in text.

A. Computer-Controlled Electrical Stimulator

An FNS system with four stimulation channels and direct
PC control via RS-232 line was utilized. The PC-to-stimulator
communication protocol enables Matlab Simulink to drive
the stimulation parameters. The stimulator and the Simulink

1The MathWorks, Inc., Natick, MA 01760 USA.

presentation with stimulator block are depicted in Fig. 1. The
possible block configuration has two inputs for two-channel
amplitude (A1–A2) and two inputs for pulsewidth modulation
(PW1–PW2). Amplitude inputs to Simulink are binary coded
between 0 (0 mA) and 254 (100 mA). Inputs for impulse
pulsewidths are unsigned binary values ranging from 0 to 129,
which corresponds to 130 values, each representing a 10-s
step. Stimulation frequency is, for ensuring synchronized
real-time execution, defined by Simulink and was, in our
experiments, always set to 20 Hz. For safety reasons, in case of
PC system breakdown, the stimulator itself does not generate
any pulses.

B. Parotec Force-Sensor Shoe Insoles2

Parotec System force-sensor shoe insoles are used for quanti-
tative estimation of loads under subject’s feet [14]. Forty-eight
capacity sensors from the left and right insoles are connected to
a common control unit transmitter. While the subject wears the
shoe insoles, the data collection from sensors is supervised by
dedicated microprocessor. In order to send the measured data in
real time to the PC, a serial RS–232 connection link between
the transmitter and the PC at the standardized speed 57 600 b/s
is utilized. Activity is possible at 10-Hz and 50-Hz sampling fre-
quency. Each sensor value is presented with a pressure value in
range from 0 to 2550 N/cmin steps of 10 N/cm.

C. Optotrak System for Noncontact Position Measurement3

The Optotrak system is a noncontact high-speed high-accu-
racy three-dimensional (3-D) motion measurement and analysis
system which provides 3-D data in real time. Sensor cameras
track target points defined by up to 256 miniature infrared emit-
ting diodes—markers that can be stuck on the subject. The Op-
totrak system connects to a standard PC platform via an industry
stystem architecture (ISA) card. A C-language application pro-
gram interface (API) is provided with the Optotrak system for
camera calibration and data collection. Our custom written Op-
totrak Simulink block includes those API functions that pro-
vide online acquisition of the 3-D marker data. The number
of Simulink block outputs can easily be changed to the desired
number of markers and measuring frequency.

D. ODAU System for Force Plates’ Signal Acquisition

The AMTI OR 6-5-14 platform simultaneously delivers three
force components along the, , and axes, and three mo-
ment components around the, , and axes, as analog voltage
levels. The ODAU unit used for acquisition of these analog sig-
nals is synchronized with Optotrak 3-D motion measurement
using the Optotrak system hardware clock.

E. MRF

The MRF was built in the laboratory to study human body
stability and its properties in the sagittal plane [3]. The frame
braces the knee, hip, and lumbosacral joints in extended posi-
tions, and both ankle joints are constrained to a limited and safe

2Paromed Medizintechnik GmbH, 83115 Markt Neubern, Germany.
3Northern Digital Inc., Waterloo, ON N2V 1C5, Canada.
4Advanced Mechanical Technology, Inc., Watertown, MA 02472 USA.
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Fig. 1. Simulink scheme with blocks for electrical stimulator, force sensor shoe insoles, Optotrak system, and Optotrak data acquisition unit (ODAU) system for
force plate signal acquisition. The stimulator block has two or more stimulation amplitude inputs (A1, A2) and two pulsewidth inputs (PW1, PW2). Shoeinsoles
block has one multiplexed output for 48 sensor values. The Optotrak block and ODAU block have six marker outputs and six analog channel outputs. In addition
to block presentation are pictures of electrical stimulator (upper left), shoe insoles with controller unit (upper right), Optotrak camera device with three sensors
(lower left), and AMTI force plate (lower right). The signal inputs and outputs are not connected yet.

range of motion. This enables investigations of control strate-
gies with the ankle muscles as actuators in both intact and para-
plegic subjects. Two force plates, independent for left and right
feet, are mounted beneath and are separated from the frame. The
force plate axes are aligned with the MRF rotation axes being
aligned with plantar–dorsiflexion axes of the ankles.

III. M ETHODS—MUSCLE MODEL IDENTIFICATION

If online real-time muscle identification is needed, the model
transfer function must in practice be presented with a discrete
transfer function due to Matlab Simulink real-time mode limi-
tations. A discrete form of a second-order discrete function with
one zero and pure time delay was chosen [2], [6]

(1)

The sampling time was equal to the stimulation rate, i.e.,
0.05 s. Parameters can be estimated on-
line in real time with RARX algorithm, where the old values
are updated for the current sample timeafter the new sample
of input and output are available. When ob-
serving local models, the inputs and represent devi-
ations of the mean values and . Operating point
and can be estimated online with the recursive algorithm
or can be estimated with advance measurements. The operating
point of electrically stimulated muscle represents here a value
that may change with time. The algorithm with online operating

point estimation thus needs to estimate the additional parameter

(2)

Updated parameter approximations
can be generated with a simple recur-

sive method [15], [16]

(3)

(4)

Here,
stands for the data set vector including inputs, outputs, and aux-
iliary constant equal 1, while stands for intermediate ma-
trices and represents the product . The above re-
cursive method minimizes the square of error between the model
estimation and the measured output. The discrete equivalent of
the linear transfer function (1) can be written with the difference
equation

(5)

Based on (3), the recursive algorithm tends to equal the left
(measured output) and right (model estimation) sides of (5). For
implementation of the algorithm (3) and (4) directly in Matlab
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Fig. 2. Matlab Simulink block diagram for recursive identification of muscle
model. A1: activation data for muscle in PRBS form. RARX: block for recursive
identification. Parameters: parameters of discrete transfer function as a result of
the real-time identification procedure. The unconnected outputŷ is the online
model output estimate used for instant model validation.

Simulink, we used six blocks for matrix multiplications, one
block for computation of the matrix transpose, and more signal
time delays. These blocks belong to fundamental Matlab dig-
ital signal processor library and are coded in real-time work-
shop (RTW) format to support efficient real-time operation [13].
The RARX block receives required muscle input (the stimula-
tion level) and muscle output (muscle-generated moments), as is
shown in Fig. 2, (block RARX). Simultaneously, as parameter
estimation , we may also predict the model generated output

online and instantly validate the model quality. This can
be done with a discrete transfer function with adjustable nu-
merator and denominator parameters. We designed such Matlab
Simulink block with adjustable parameters using programming
language C descriptions of (1).

Theexperimentsproceededasfollows.Thesubjectstood in the
MRF,whichwasfixedforisometricalconditionsintheuprightpo-
sition with four strings in forward and backward directions. Each
foot acted directly on one of two force plates. Force sensor shoe
insoles were placed in the casual shoes. In this particular experi-
ment, the subject cannot move in the frame, meaning that the Op-
totrak is not necessary. However, we still collected Optotrak data
for verification purposes. The Optotrak system operated at either
100-Hzor20-Hzsamplingfrequencies.Thecomputer-controlled
electrical stimulator delivered pulses at 20 Hz. The self-adhesive
50 mm 90 mm Axelgaard electrodes5 were placed on the mid-
linesof theplantarflexormusclesof thesubject.Transfer function
parameter test inputs in thisstudywere trainsofpulses,amplitude
modulated with pseudorandom binary sequences (PRBSs). Each
pulse took one of two possible amplitudes. The pulsewidth was
set constant at 400s. Test random sequences of 30 s each were
computer generated. PRBSs are necessary to ensure persistent
excitation for the muscle dynamics and parameter identifiability.
Maximal muscle joint generated moment at maximal stimulation
amplitude (50 mA in our trials) was measured prior to identifica-
tion procedures. PRBS sequences were then generated to excite
musclearoundtheoperatingpointof62.5%ofmaximalactivation

5Axelgaard Manufacturing Company, Fallbrook, CA 92028 USA.

with amplitude deviations of 12%. The selected PRBS amplitude
level was used for comparison reasons to other studies [2].

IV. EXPERIMANTAL RESULTS

Three intact subjects, ages 24, 27, and 37, participated in
all measurements. Samples of the acquired muscle joint mo-
ment and the parameters of muscle model are presented here.
Parameters of electrically stimulated muscle are presented as
outcome of the online real-time identification procedure. The
muscle response to 20-Hz stimulation with PRBS activation en-
velope show significant moment deviation for two activation
levels (Fig. 3). The muscle generated moment was measured
with force plates. The upper chart in Fig. 3 shows the measured
moment and the estimated model output.

The lower chart in Fig. 3 compares the moment value with
the model estimate where constantfrom (2) was not iden-
tified online. Both the measured moment curve and modeled
output are detrended, which means that offset values are sub-
stracted from signals. In this case, both the stimulator input
and measured moment were detrended online, which requires
better knowledge about the operating point. Good overlap of
both curves indicates that the mean output moment corresponds
to the predicted operating point. The operating point was de-
fined in the stimulation sequence one minute before the iden-
tification. Comparison of both identification modes (with and
without recursive online operating point estimation, upper and
lower Fig. 3) demonstrates slower parameter convergence when
the model operating point is identified. Online model output es-
timations are, in both cases, distorted as a result of worse esti-
mation of model states for past sample times.

The offline simulation of models captured in some particular
moment of time offers better model validation. Simulation of
the discussed model with operating point estimation taken after
0.5 s and 5 s time of identification periods is presented in Fig. 4.
Slowly converging parameter adapts after approximately 5 s
to a correct model output level.

The changes of denominator parameters of model, with oper-
ating point estimation time according to (3) and (4), are depicted
in Fig. 5. Initial parameter values were set to 0. This presumes
that the strength and dynamic response of muscle to electrical
stimulation are unknown. Identified values were then used to
calculate new estimated output. In the first second of stimula-
tion sequence, the identified parameters varied due to high gra-
dient adaptation values from (4). This affected the estimate of
model output, which varied synchronously.

Very similar courses, as shown in Figs. 3–5 for particular sub-
jects, were acquired with other two measured subjects. For all
three, the method was found to be convergent. Minor differences
encountered within subjects and in day-to-day trials, might be
contributed to particular electrode placement and muscle prop-
erties. These were not examined in greater detail here because
a much larger experimental group would be required to compe-
tently discuss the results.

V. DISCUSSION ANDCONCLUSION

A nonlinear continuous process sampled at a fixed sampling
interval was identified as an equivalent discrete time model.
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Fig. 3. Upper graph compares measured muscle outputy and online estimatêy for the identification procedure with operating point identification. Lower graph
compares detrended muscle outputy with estimateŷ with advance operating point measurement and no online operating point estimation. Model output mean
level is close to 0 and indicates correct expectation of the operating point.

Fig. 4. Subsequent comparison of measured moment and estimated moments for two recursive models with operating point estimation. For the first are taken
parameter values as were captured at 0.5 s of previous experimental trial.

This common identification approach has been applied in linear,
nonlinear, and adaptive muscle model identification by several
authors [2], [5], [6], [11], [12]. We have implemented adap-
tive parameter identification using a RARX Matlab Simulink
subsystem that appeared to behave satisfactorily in an online
real-time identification procedure at a sampling frequency of
20 Hz. The subsystem was designed from blocks intended for
matrix and signal operations. Introducing block presentation of
RARX identification method makes advantageous starting point
for modified methods and uses the well-tested real-time code de-
scriptions of Matlab Simulink library blocks. The proven least-

squares method was chosen as the cost function because it of-
fers good numerical properties and low computational burden.
A very welcome quality of least-squares method is that applying
new parameters as additional states can extend the formulation
of our models. Based on this and on the flexibility of Matlab
Simulink subsystem, we designed two varieties of a classical
RARX algorithm. This commonly used algorithm was extended
in order to estimate model operating point online. The identifi-
cation procedure spent approximately 5 s to estimate the oper-
ating point of the sample case correctly. The operating point esti-
mation times were similar for all three stimulated subjects. The
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Fig. 5. Denominator(a ; a ) and numerator(b ; b ) parameter courses of discrete linear transfer function with operating point estimation.

dynamic properties were estimated faster, as can be seen both
in settled parameter values (Fig. 5) and model output course
(Fig. 4) after 0.5 s. Assuming that fatigue is a relatively slow
process, the RARX method may, thus, be used for efficient iden-
tification of local muscle models. If identification procedure
is used for short time sequences, the operating point may be
estimated with the preceding experiment, which improves the
model parameter convergence. The models for various oper-
ating points of activation levels for all subjects show that re-
cursive identification may be used in local adaptive controller
design. The main disadvantage of all local models are the ini-
tial oscillations of parameter values, caused by unknown model
states. These can be can be reduced with correct model initial
states and can be considered later in the controller design. If the
muscle activation changes essentially and the nonlinear muscle
properties are emphasized, additional methods of model adap-
tation must be applied, such as gain scheduling or fuzzy logic
switching between many local models.

In futurework,musclemodelswithnonlineardynamicswillbe
examined and an adaptive muscle moment controller will be de-
signed by using and upgrading the equipment and results that are
presented here. The future experiments using described models
in closed loop will be able to answer the following questions.

• Are second-order local models accurate enough for con-
trol applications?

• Are linearized local models adequate for use in nonlinear
control, which may require fast and large changes of
muscle activation?

• Is the identification of operating point fast enough for sat-
isfying control with such muscle activation changes?
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