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(Head-Arms-Trunk) segments in sit-to-stand-motion using low cost inertial sensors. For
this purpose the Extended Kalman filter is applied for fusion of model data and data
acquired through measurements. The simplifications, like motion constraint to sagittal
plane, symmetry of movement and assumption of ideal joints are introduced in the model.
Model validation was performed on simulated data and on measurements data acquired
Human body model with the Optotrak optical motion analysis system. Obtained results are presented and

Inertial sensors discussed.
Standing-up © 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Sit-to-stand movement is a common but demanding activity of daily living which is on average performed four times in
an hour [4]. A standing-up maneuver requires coordination of several muscle groups with special requirements on balance
[13]. This makes standing-up (and sitting down) difficult and challenging for persons who have lost part of lower limb func-
tionality. A number of aiding systems have been developed for the purpose of standing-up support. Recently, robot assistive
devices have been introduced and their benefits demonstrated [12]. In acquisition systems, the kinetic and kinematic param-
eters of the subject are required for operation of the robot control algorithm. Kinematic measurements are usually per-
formed with optical motion analysis systems that are unsuitable for clinical applications. Optical motion analysis
systems, although very accurate, have some drawbacks such as high cost, markers are easily obscured, low portability
due to weight, need for an AC power supply and markers require time-consuming setting up procedure. Therefore, introduc-
tion of miniature, low cost inertial sensors (accelerometers and gyroscopes) as a body mounted sensors, has shown to be
promising [3,11,15,21,23]. Because of their low cost and miniature size they are practical for a wide range of applications
such as biomechanical analysis of human motion [3,7,11,15,23], virtual reality [21], ergonomics, navigation [10], etc. Inertial
sensors are not without errors [3,7,15]: two accelerometer signal components, the dynamic and gravitational, cannot easily
be distinguished during faster movements while drift of the gyroscope output results in large integration errors. The accu-
racy of inertial sensors can be improved by incorporation of additional measurement devices and by application of appro-
priate data fusion algorithms.
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Three different approaches to human motion analysis using inertial sensors can be found in the literature:

(1) systems that use a single type of inertial sensors (either accelerometer or gyroscope) and are used in dedicated appli-
cations often providing more qualitative than quantitative information about human motion,

(2) systems that operate on the basis of a combination of accelerometers and gyroscopes with additional signal processing
algorithms,

(3) systems that operate on a basis of both inertial sensor types in combination with additional sensors (usually magne-
tometers) and data fusion algorithms.

The most accurate measurements in human motion analysis are achieved by the third approach in which inertial sensors
are used in conjunction with magnetometers and Kalman filtering techniques [18,21,23]. However, good measurement re-
sults are obtained under certain restrictions due to magnetometer high sensitivity to magnetic disturbances in Earth’s local
magnetic field [2,18]. The sources of Earth's local magnetic field disturbances can be ferrous materials (e.g. iron, nickel, steel,
cobalt) in the vicinity of the sensor. In his research, Bachmann concluded that potential sources of magnetic disturbances
should be at least 60 cm away from the magnetometers [2]. Since the intended application incorporates a robot assistive
device for standing-up support it is reasonable to expect inertial sensor measurement errors due to corrupted magnetometer
readings.

In the paper we assume that magnetometers can (in certain applications) be substituted by the incorporation of dynamic
human body model. In the proposed approach the Extended Kalman filtering (EKF) technique is used to fuse data acquired
from inertial sensor measurements with data from the dynamic human body model. In this way we believe that better kine-
matic measurements in ambulatory settings, where a number of ferrous material based objects and instruments (with their
electromagnetic fields) exist, are possible. We named the approach Model Based Inertial Sensing — MoBIS.

The paper is organized as follows. In the second section, a three-segment dynamic human body model is constructed and
described. The third section presents the design of the EKF which incorporates all necessary measurement data and data
from the dynamic human body model with emphasis on accelerometer signal decomposition. In the fourth section the val-
idation of constructed dynamic human body model and the proposed EKF structure is presented followed by the application
of the proposed method on actual measurements of sit-to-stand movement. In section five, the discussion of obtained results
is presented, while in the final section some conclusions are drawn based on observed method and model performance.

2. Dynamic human body motion model

The human body motion in sit-to-stand transfer can be approximated by motion of a three segment human body model in
sagittal plane with three degrees of freedom of motion [9,12]. The kinematic variables of segments (angular positions @1, @,
and @3, velocities @;, @, and @5, and accelerations @, @, and @5) uniquely define the sit-to-stand motion. In dynamic anal-
ysis of rigid body motion, the knowledge of translational and angular velocities and accelerations of body center of mass is
crucial [19,20].

The proposed human body model consists of shank, thigh and HAT (Head-Arms-Trunk) segments as presented in Fig. 1.
The segments are assumed to be rigid bodies with their masses contained at center of mass (CoM). Segment masses, lengths,
moments of inertia and CoM positions are defined using anthropometric data [5]. Three joints (ankle, knee and hip) are as-

Fig. 1. Standing up motion and three segment human body model.
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sumed to be ideal pin joints with no added friction during rotation. The model is in contact with its environment only by the
distal end of the shank segment i.e. by subject’s feet. The assumption of symmetry of sit-to-stand motion in respect to sag-
ittal plane [14] was adopted in modeling phase. This assumption enables the measurements to be carried out only on one
side of the body and results projected on the other side. The symmetry assumption does introduce certain error. The error
is sufficiently small in healthy subjects but might have larger values when the method is applied on kinematic data obtained
from measurements on impaired subjects.

Mathematical description of three-segment dynamic human body model in sit-to-stand transfer is based on principles of
Lagrangian dynamics [19,20]. The Lagrangian method reduces the field of dynamics to a set of simple procedures which are
used regardless of the system complexity and relies on a set of independent generalized coordinates. The number of indepen-
dent generalized coordinates must be equal to the number of degrees of freedom of the system. In the developed model the
segment orientations (i.e. segment angles) were chosen in respect to horizontal axis (y-axis) as depicted in Fig. 2. The derived
model in this configuration demonstrated lower mathematical complexity as compared to models derived using other angle
definitions (e.g. angle between two segments).

In the Lagrangian approach the equations of motion for multi-segmental system are derived using

d /oL oL .
ﬁ(?@)*fﬁ_&zq“ i=1,2,3 (1)

where

L is Lagrangian function (L =K — V),

Q; are generalized forces/moments applied on ith segment defined by Q; = % where W is a total work done by applied
moments My, M, and Ms,

K is total kinetic energy of the three-segment system (K = K; + K> + K3),

V is total potential energy of the three-segment system (V=V; +V, + V3),

O; is the segment angle defined as the angle between the ith segment and y-axis of the reference coordinate frame (i.e.
horizontal).

Using Lagrangian dynamics and model notation from Fig. 2 the equations of motion of the proposed model are derived
(see Appendix A). The equations form a non-linear, highly coupled system of differential equations which fully describe
three-segment human body model kinematics in standing-up motion. Outputs from the model are angles, angular velocities
and angular accelerations from which linear accelerations can be calculated. Model inputs are joint moments M;, M, and M3
at ankle, knee and hip joint, respectively. These moments are calculated using Newton-Euler inverse dynamic approach
[12,20] based on obtained kinematic data and force plate measurements. In the proposed method Newton-Euler inverse
dynamic algorithm is positioned inside the EKF iterative loop, but is not part of the EKF algorithm.

Fig. 2. Notation of three segment human body model parameters.
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3. Extended Kalman filter design

In the proposed method Kalman filtering is aimed for fusion of the data acquired through measurements with data ob-
tained from developed dynamic human body model. Kalman filtering is a common approach in multisignal integration tasks
[8,12,18,21] whose fundamental drawback is its limitation to linear systems (both stationary and non-stationary). This
drawback can be avoided by implementation of Extended Kalman filter (EKF) which adjusts linear approximation of the sys-
tem state in every iteration. In the EKF, the model is represented by non-linear state space description incorporating state
and measurement equations

Xk+1 :f(xk'/ukvwk) (2)
Z, = h(Xy, Vi) 3)

In (2) non-linear function f relates the state vector X and the input u at time step k to the state vector at time step k + 1. In (3)
measurement vector h relates the state vector to the measurement vector z,. Vectors wy and v, represent white process and
measurement noise, respectively. It is assumed that these noises are Gaussian distributed, have zero mean and that they are
uncorrelated.

Before the EKF design process, decomposition of accelerometer signal has been performed in order to differentiate grav-
itational and dynamic component of accelerometer measurements. These components can easily be distinguished during
slower movements when the amplitude of gravity vector is significantly larger than the amplitude of true acceleration vec-
tor. During the faster movements, when the motion of the segment to which the accelerometer is attached is not aligned
with sensor sensitive axis, gravitational and dynamic component of acceleration can not be distinguished. The sum of the
two components represents accelerometer output signal for its sensitive axis. The decomposition of accelerometer output
in direction of the z-axis of sensor coordinate frame is presented in Fig. 3.

The sensor angle, which needs to be known for differentiation of two acceleration components, is defined as the angle
between sensor z-axis and y-axis of the reference/world coordinate frame. This angle definition was chosen because of sen-
sor placement on body segments and angle definition in dynamic human body model. Also, because of the inertial nature of
measurements, the dynamic accelerometer output is opposite to the true direction of segment motion. The decomposition of
accelerometer output for z component depicted in Fig. 3 is defined as

= —(Uz, SIN O + g5INO) (4)
—0Qy SINO + g COS O (5)
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During the EKF design process several filter architectures were tested keeping in mind computational efficiency and accuracy
of the estimates. The chosen filter structure incorporates the state and measurement vectors defined as
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where

©1, O,, O3 - shank, thigh and HAT angles in respect to y-axis,

64, O,, O3 - shank, thigh and HAT angular rates of change i.e. angular velocities,

61, ©,, ©5 - shank, thigh and HAT angular accelerations,

My, Ma, M5 - ankle, knee and hip joint moments,

a,; — linear acceleration of the ith segment in direction of y-axis of reference coordinate frame,

a,; - linear acceleration of the ith segment in direction of z-axis of reference coordinate frame.

Variables in state and measurement vectors are selected so that they can be measured indirectly or directly by inertial
sensors. Directly measured variables are angular velocities and linear accelerations (for every segment), while moments
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Fig. 3. Accelerometer signal decomposition in direction of z-axis.
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Fig. 4. Extended Kalman filter algorithm.
M;, M, and M5 are measured indirectly via inverse dynamic calculation using estimated kinematic parameters and measure-
ments from force plate placed under the subject’s foot.
The proposed EKF design (see Appendix A) has the advantage that the state equation is linear, while the measurement

equation is still highly non-linear. The EKF algorithm is implemented in iterative manner according to [12] as shown in Fig. 4.
The filter is initialized with a state estimate X, corresponding to system state vector in the initial phase of standing-up.

4. Results
4.1. Results for simulated data

In order to validate the developed dynamic human body model and EKF design, they were implemented in a Matlab-Sim-
ulink environment and evaluated by simulated data.
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The model (based on (6)-(8) from Appendix A) was constructed in Simulink generating data for description of true model
dynamics. The white noise with zero mean was added to data, simulating noisy sensor readings. In the simulation run the
joint moments M;, M, and M5 were a priori known, thus Newton-Euler inverse dynamic approach for joint moments calcu-
lation was not used. Constructed Simulink model was used in pendulum configuration where the model motion was the re-
sult of applied joint moments M;, M, and M3 and the gravity. The inputs into EKF were simulated sensor readings, while the
data about true model dynamics was used for comparison. The sampling frequency in simulation runs was set to 50 Hz in
order to match the sampling frequency of the real measurements. The results of simulated three segment model motion in
pendulum configuration and corresponding estimated joint angles are presented in Fig. 5.

Estimated and actual segment angles

0, [degrees]

0, [degrees]

93 [degrees]

Time [seconds]

Actual angle
—o— Estimated angle

Fig. 5. Comparison of estimated and actual segment angles for simulated data.

o ey«

Fig. 6a. Measurement setup: (1) linear infrared cameras, (2) HAT inertial sensing unit, (3) thigh inertial sensing unit, (4) shank inertial sensing unit,
(5) AMTI OR6-6-1 force plate, (6) seat, (7) JR3 40E15 force sensor, (8) standing-up robot assistive device.



From presented results it can be seen that constructed three-segment dynamic human body model incorporated in the
EKF performed well on simulated data. Root mean square estimation errors for the shank, thigh and HAT segment orienta-
tions are 1.75°, 1.68° and 2.47°, respectively. It is interesting to note that all estimation errors have mean values close to zero:
—0.41° for the shank, 0.03° for the thigh and —0.35° for the HAT segment. During the simulation trials it was noticed that EKF
performance degraded when pendulum oscillated around its equilibrium point. This was attributed to high non-linearities
present in segment orientation signals at this time instant.

J. Music et al./Simulation Modelling Practice and Theory 16 (2008) 933-944

4.2. Results for measurement data

After validation by simulation, the proposed method was applied on real data. The kinematic parameters in standing-up
were measured with the Optotrak 3010 optical motion capture system (Northern Digital Inc., Waterloo, Canada), to which

Fig. 6b. Position of Optotrak infrared markers (markers used for calculation of kinematical parameters are additionally marked by the name of body

landmark to which they are attached to).
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sensor specific noise (e.g. gravitational component of acceleration) was added. Measurements were performed for two dif-
ferent standing up speeds (normal/self-selected and fast/dynamic) with 50 Hz sampling frequency. The sampling frequency
selection was determined by performance limitations of the hardware used during the measurements. Measurement setup
can be seen in Fig. 6a.

Moreover, in Fig. 6b the placement of Optotrak infrared markers is presented. Positional data measured with Optotrak
optical motion analysis system was single and double differentiated to obtain liner velocities and accelerations, respectively
[13,15]. This procedure introduced additional numerical error to the signals. During the measurements subject wore inertial
sensors for 3D kinematic measurements. Sensors were constructed at the Faculty of Electrical Engineering, University of
Ljubljana [11] and were used for verification of sensor specific noises. The AMTI OR6-5-1 force plate (AMTI Inc., Watertown,
USA) was placed beneath subject’s left foot and was used for the measurements of ground reaction forces and moments
acting on the foot during standing-up. The information about external forces and moments is crucial for calculation of joint
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Table 1
RMSE of estimated segment orientation angle for complete data set

Shank RMSE (°) Thigh RMSE (°) HAT RMSE (°)
Normal/self-selected standing-up speed
Measurement 01 6.1 4.1 3.8
Measurement 02 2.1 7.8 6.8
Measurement 03 24 5.2 6.8
Measurement 04 3.7 3.5 5.9
Average 1 3.6 52 5.8
Fast/dynamic standing-up
Measurement 05 14 2.5 3.2
Measurement 06 4.8 2.6 4.7
Measurement 07 4.9 24 5
Measurement 08 3.9 21 5
Average 2 3.8 2.4 4.5

moments. Moments in ankle, knee and hip joint (M, M, and M3) are not known a priori, as in the case of simulated data. They
are calculated using Newton-Euler inverse dynamic algorithm which was incorporated in the EKF iterative loop, but was not
part of the EKF structure itself. Force sensor 40E15 from JR3 Inc., Woodland, USA was mounted beneath the seat and was
used for detection of subject-seat separation. The knowledge of the exact seat-off moment is important because the pro-
posed method is valid only when there is no subject-seat interaction due to model limitations introduced in the modeling
phase. The robot assistive device, to which the seat/force sensor system was attached, was used in passive mode for adjust-
ment of seat height and did not provide any assistive force during standing-up.

The subject was in a seated position when measurement recording was started. After two seconds a short beeping sound
signaled the test subject to commence with standing-up. The recording was stopped when the subject was in standing posi-
tion for about two seconds. In total eight measurements were accomplished: four measurements with normal/self-selected
speed and four measurements for dynamic standing-up (in which the test subject was instructed to accomplish the sit-to-
stand maneuver as fast as possible). The complete calculation procedure for the measurement data is presented in Fig. 7. The
acquired raw positional data of infrared markers (X,,) was examined for possible marker occlusions and interpolated in
MATLAB environment. From the acquired and interpolated data the kinematic parameters of shank, thigh and HAT were cal-
culated and low pass filtered with fourth order Butterworth filter with 5 Hz cut-off frequency in order to reduce the noise
component. In this way, the reference segment angles (©®..f) were obtained as well as reference segment angular velocities
and segment center of mass linear accelerations. To the segmental reference angular velocities signals the simulated gyro-
scope specific noise was added as drift in time (@Sensor), and to the reference accelerations signals of segmental centers of
masses the simulated accelerometer specific noise was added as gravitational component (asensor). The obtained signals were
used in the EKF for calculation of estimated segment angles (@) at those times when there was no subject seat interaction
(i.e. the seat switch was off). Estimated kinematic parameters (Xy), force plate measurements (Fext, Mex;) and estimated joint
moments from the last iteration (M) were used as input to the Newton-Euler inverse dynamic algorithm.

As an example, comparison of estimation results with real data for one measurement trial with normal/self-selected
standing up speed are presented in Fig. 8, while the averaged results for segment orientation estimation expressed by root
mean square errors (RMSE) are presented in Table 1.

5. Discussion

In both the dynamic standing-up and standing-up with normal/self-selected speed, good matching of the actual and esti-
mated segment orientations is observed with the average RMSE values of 3.7° for shank, 3.8° for thigh and 5.2° for HAT seg-
ment. Smaller oscillations in orientation estimation can be observed for the shank segment. These oscillations have small
amplitudes (less than 5°) and are attributed to the selection of covariance matrices R and Q, as well as the structure of
the EKF. Higher estimation error for segment orientation of thigh and HAT in comparison to shank segment is in our opinion
due to higher complexity of dynamic equations that describe the motion of these segments. It should be noted that EKF
parameters were defined at the beginning of the trial experiment and were kept constant for all measurement runs with
the same speed. On this basis, we conclude that the performance of the EKF estimation is influenced by standing-up speed.
Estimation results might be improved if EKF parameters would be automatically adjusted for each particular case. It should
be pointed out that perfect matching can not be expected in the accomplished experiment. This is due to the fact that ref-
erence Optotrak measurements were presented to the EKF as noisy measurements (matrix R).

Estimated angular velocities show good matching with actual values in all instances, while estimated angular accelera-
tions show higher estimation errors compared to other kinematic parameters. We assume that higher angular acceleration
estimation error does not cause system fault due to the fact that segment orientation estimation is not affected and thus
better angular acceleration estimation can be obtained by numerical derivation. Higher angular acceleration estimation error
was attributed to the EKF design, more specifically to the update equation. Better performance of the proposed method in
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terms of angular acceleration estimation might be achieved with selection of different EKF parameters. However changing
parameters deteriorates the orientation estimation which is the main focus of the proposed model and the method.

If estimated joint moments are compared to the reference values obtained based on Optotrak data, good matching for all
joints can be observed. In general, the error in joint moment estimation is largest in the case of knee and hip joints and occurs
at the beginning of the estimation. Higher error values are attributed to the fact that at that time higher joint moments are
generated by the subject performing sit-to-stand movement. It should be noted that joint moments calculated using an in-
verse dynamics approach are sensitive to errors in anthropometric data [6,16,17] and even more to errors in the calculation
of application point of externally applied forces (i.e. ground reaction forces) [17]. In order to minimize the error due to
anthropometric parameters it is suggested that multiple regression body segment parameters of Zatsiorsky and Seluyanov
[22] should be used to assess joint kinetics [16]. In our work anthropometric parameters were based on the work of de Leva
[5], who adjusted Zatsiorsky-Seluyanov’s parameters, thus reducing the influence of the error in anthropometric data on cal-
culated joint moments.

6. Conclusions

The procedure for reconstruction of motion trajectories of shank, thigh and HAT segments in sagittal plane during sit-to-
stand maneuvers using three-segment dynamic human body model and Extended Kalman filter is presented. The method is
validated on both simulated and measured data. The work is a first step towards the development of a kinematic measure-
ment system based on miniature inertial sensors with application to standing-up re-learning by means of a robot assistive
device. For this purpose the dynamic human body model, consisting of three segments (shank, thigh and HAT) connected by
joints in the ankle, knee and hip, was constructed using principles of Lagrangian dynamics. Model complexity was reduced
by introduction of several assumptions during modeling phase. The EKF data fusion algorithm was used to obtain an esti-
mate of kinematic variables of standing-up motion. Segment orientations, angular velocities and angular accelerations were
selected as the EKF system states while the measurement vector consisted of inertial sensor type data and joint moments
obtained via Newton-Euler inverse dynamic approach.

The proposed model and the method were first validated by simulations. The Matlab-Simulink model was constructed
based on obtained model equations and tested in pendulum configuration. Variables representing inertial sensor readings
were extracted from the model and noise added in order to simulate actual sensor measurements. Noisy data represented
the input to the EKF algorithm. Obtained results demonstrated good tracking for all segment angles with RMSE of 1.75° for
shank, 1.68¢ for thigh and 2.47° for HAT segment. It is worth nothing that estimation error oscillates around zero i.e. the error
mean value is close to zero.

The tracking performance on the measurement data is encouraging, however less accurate than in the case of simulated
data with average RMSE of 3.7° for shank, 3.8° for thigh and 5.2° for HAT segments. The reasons for these errors are attrib-
uted to: (a) numerical error during Optotrak signal processing, (b) model simplifications, (c) errors in indirectly measured
joint moments and (d) not ideal measurement setup (e.g. movement is not restricted to sagittal plane). Method performance
in terms of angular velocity estimation is good, but is less accurate in case of angular acceleration which is largely attributed
to the proposed EKF structure. The performance of the EKF was dependent on standing-up speed, thus its parameters had to
be adjusted accordingly. The EKF parameters were manually adjusted what proved to be time consuming and without guar-
antee for optimal parameter setting. This emphasized the need for introduction of algorithms for automatic adjustments of
EKF parameters [1].

The presented results show that Model Based Inertial Sensing (MoBIS) in robot assisted standing-up is a reliable alterna-
tive to optical measurements systems for motion kinematics assessment. To improve method performance in terms of accu-
racy and reliability, further development (e.g. extensive testing on a group of healthy and impaired subjects, usage of actual
inertial sensor measurement signals) is suggested.
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Appendix A

The appendix contains equations of motion of the body segments (Egs. (6)-(8)) derived from Eq. (1) and model notation
from Fig. 2. It also contains the state and measurement equation (Egs. (9) and (10), respectively) of the EKF which are based
on Egs. (2) and (3).

The equations of motion for the shank, thigh and HAT segments are:

O1(m 2y + myl} +msly + L) + @2 (myLil + m3hib)c(01 — ©2) + O3mshilcsc(@r — ©3)
+ @%(mzhlcz + m3l112)5(@1 — @2) —+ @§m311153$(@1 — @3) + +g(m11C1 + mzl1 + m3ll)C@1 = M] — Mz (6)



for the shank,

for the thigh and

+gm3lc3C@3 = M3

for the HAT, where

S =sin,
C = Cos,

I; - segment length,
I¢; — position of segment CoM in respect to distal joint,
I; - segment moment of inertia,
m; — segment mass.

The state equation of the proposed EKF design is as follows
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while measurement equations is defined as

"hy T
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Oy(myl2, + M3 + L) + @1 (maliley + m3lih)c(01 — 03) + @3msblesc(@; — O3) — O (malyley + mshil)s(O1 — O3)
+ O2m3bless(0; — O3) 4+ +g(Maley + m3h)cO; = My — M (7)
@3("131%3 + Ix3) + @1m3l1lcgc(@1 — @3) + @2m3lzlc3c(@2 — @3) — @%mg,lllgs(@] — @3) — @%mglzlcgs((“?z — @3)
(8)
0 00 0 07 16017
0000O0| |6
000O0O| |6
1 00 00O 0,
01000 0, 9)
0000 O0| |6
00010 05
0000 1 63
0000 0] Lol
@1 ]
6,
O3
(C] @15@1C1@%C@1)5@1 +gC@1
—(C1@1C@1 —C @%S@] )S@] —gs@1
(11 @15@1 + 11 @%C@] + Czézs@z + Cz(’.‘)%C@z)S@z -‘rgC@z
—(l1@1C@1 — l1 @%S@] + C2@2C@2 — Cz@%S@z)S@z —gSQQ
(11@1591 + l] @%C@] + 12@25@2 + lz@%(f@z + C3@35@3 + C3@§C@3)S@3 +gC@3
—(11@1C@1 — 11 @%581 + lz@zc@z — lz@%S@z + C3@3C@3 —C3 @%S@g)s@1 —gs@1
M; + K1101 + K120,¢(01 — 03) + K1303¢(01 — 03) + K14035(01 — 0,) + K15035(01 — O3) + K160
M3 + K205 + K21 01¢(01 — 03) + K2303¢(0; — O3) — K24035(01 — 03) + K35025(0; — O3) + K26cO;
K3303 4+ K3101¢(01 — O3) + K3,0,0(0; — O3) — K3,025(01 — O3) — K35025(03 — O3) + K36cO3
(10)

In (10) meaning of the parameters is as follows

s=sin
¢ = cos

K1 =my lgl + mzl? + m3l? +La

K1z = Kia = K1 = Kos = malile + mshily
Ki3 = Ky5 = mslilcs

Kig :g(m1lc1 +myly + m311)

Ky = mzlgz + mgli + Iy

Ky = Kys = K35 = K35 = m3bles
Kz = g(myley + msly)

K31 = K34 = m3ll lC3
I<33 = mglg3 + IX3
K35 = msgle;
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