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Reducing Positioning Uncertainty 
of Objects by Robot Pushing 

Zdravko Balorda and Tadej Bajd 

Abstract-Robotic applications often involve manipulation of objects 
where position and orientation are not perfectly known. Pushing an 
object for instance by a fence, can be employed to accurately align parts, 
reducing uncertainty to only one degree of freedom. In this paper a 
pushing task involving two fingers that completely constrains an object 
in a plane is proposed. The stability of orientation and position of an 
object being pushed is discussed. The solution obtained is unique despite 
the fact that the distribution of forces supporting the object cannot, in 
general, be known. The proposed task of pushing is simple although some 
preliminary information about the initial position and orientation of an 
object is required. An approach to avoid the ambiguity in orientation, 
owing to the effect of friction between the object and the pusher, by 
introducing up and down movement of the pusher is also presented. 

I. INTRODUCTION 
A key problem in robot manipulation is the presence of uncer- 

tainty. Robots must operate in a real environment that is inherently 
uncertain. In most industrial applications objects are handled with 
the help of carefully designed mechanical fixtures that supply parts 
in predetermined orientation and position. In such applications it is 
usually assumed that there is no uncertainty left since the objects, 
tasks. environment. and motions are well known in advance. The cost 
of this approach can be very high: reducing the uncertainty inherent 
in a task itself is difficult, while it is impossible to eliminate it entirely 
[ I ] .  Instead of trying to eliminate the uncertainty from manipulation 
tasks it is our goal to develop robot operations that can tolerate this 
uncertainty. An operation of this kind is a maneuver of pushing an 
object: it can, to a large extent, tolerate inaccuracy in orientation. 
A use of pushing in robot manipulation was demonstrated in the 
literature by a hinge-plate grasping operation descrihed by Paul and 
Mason [2]. Beside providing grasping of a hinge-plate the pushing 
maneuver also eliminated initial variations in the position of a hinge- 
plate without requiring any sensory feedback. Fearing [ 3 ]  examined 
robot grasping and developed an analysis of motion and stability of 
an object being squeezed by two point-fingers. His maneuver did not 
reduce entirely the uncertainty of the object position owing to the 
ambiguity of two-point grasp with friction. Trinkle [4] also discussed 
grasping in the presence of uncertainty by studying the mechanics 
of lifting a slippery two-dimensional object. Brost [ l ]  presented an 
effective method for planning grasping operations in the presence 
of uncertainty. Three types of grasping operations were proposed 
that can successfully remove two degrees of uncertainty from the 
object position. These procedures require certain knowledge about the 
shape and approximate position and orientation of an object prior to 
manipulation. Another example of how to eliminate uncertainty was 
shown by Peshkin and Sanderson [ 5 ]  who designed a part-feeder that 
can correctly orient parts with random initial orientations. A simple 
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and effective technique that accurately orients parts of complex shape 
was presented by Grossman [6]. 

The key issue in this paper is the improvement of accuracy of 
positioning an object in all degrees of freedom in a plane obtained 
by robot pushing. The early stage work on this subject is presented 
in [7]. 

Pushing an object is a complex mechanical process. Frictional 
forces play a dominant role and the forces applied are in general 
unpredictable. To understand this and similar operations, Mason [ 2 ]  
has theoretically described the conditions required for translation, 
clockwise (CW), and counterclockwise (CCW) rotation of a work- 
piece being pushed. The task proposed here involves a two-finger tool 
or a gripper attached to a robot end effector. The object is assumed 
to be a convex polygon. although this assumption can be relaxed. 
Assuming that position and orientation are approximately known prior 
to the operation, the initial position of the tool and the direction of 
movement can be chosen. As the tool advances it would strike the 
object (Fig. 1). If the robot trajectory is chosen correctly, the fingers 
will contact the object with its comer between them. It will be shown 
that in the absence of friction this configuration of contact points 
uniquely constrains the position of an object in all degrees of freedom. 
Nevertheless, there is an ambiguity in orientation of the object being 
pushed due to the friction at the points of contact with the pusher. 
This ambiguity was almost completely eliminated by introducing up 
and down movement of the pusher during the operation. However, 
complete description of the task rises a number of questions. What 
is the optimal finger spread? What is the best finger position? What 
is the range of lateral and orientation positioning uncertainty that 
can be tolerated? What is the pushing distance required? What are 
the conditions under which the operation is guaranteed to succeed'? 
Some of the answers are presented in this paper. while for others 
complete solutions are not clear at the time. 

11. METHODS 
Throughout the paper the following notation is used: iF. G denotes 

coordinate frames, M, N. C are points in a plane, "211 is a vector 
describing point M with respect to 'F, and PP. Y'F are the .I,-. y-axis 
of the coordinate frame F. 

Let T' be a polygonal part that is to be pushed into a desired 
position and orientation. Associated with the part is a coordinate 
system F ,  where the .r.c-axis is aligned with an edge of the part and 
the origin is at the comer. The points of the object F are described 
with respect to this coordinate system (Fig. 2). Let "r' = ( i l l . .  (y. )?' 
be the vector describing the center of mass of the part with respect 
to P and c) be the angle of the corner under consideration. Note that 
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Fig. 2. Definitions of geometrical parameters. 

there are many different objects, not necessarily polygonal, whose 
shape would fit the above description. 

Let G be a two-finger tool attached to the robot end effector. 
Associated with the tool is a coordinate system 6 where the positions 
of contact points (fingers) are defined. There is no motion of the 
contact points relative to 4 during the operation. The coordinate 
system G is oriented in such a way that yG-axis points in the direction 
of motion while its origin is placed arbitrarily. It is considered useful 
to choose the position of the origin so th$t it coincides with the origin 
of the robot's last link. Let M and 1V be the vectors describing 
position of the left and right finger of the tool with respect to 
the coordinate system 4. Thus, the mathematical description of the 
problem must yield a system of eqyations describing the position of 
the center of mass of the object "T with respect to the origin of G 
and the angle d between the edge of the object and the .r,--axis of 
G (the orientation of the object). 

To analyze the mechanics of the pushing operation it is necessary 
to prescribe conditions under which the operation takes place. The 
conditions are: 

The object is considered to be a two dimensional rigid body 
with a finite mass. At least one convex vertex is necessary. 
The friction is Coulomb dry friction. No velocity dependent 
forces are expected as occurring in viscous friction. The 
distribution of both, dynamic and static coefficient of surface 
friction ; i s  must be 

;r ,9(r .y)  = consf. (1) 

The supporting surface is assumed to be smooth and honio- 
geneous. It follows that the center of friction [2], if it exists, 
coincides with the centroid of pressure distribution. 
The support forces due to gravity are distributed over the entire 
contact area between the object and the supporting surface. The 
pressure distribution is unknown, yet all the supporting forces 
point in the same direction. 
Motion is analyzed in terms of quasi-static mechanics. ,411 
forcedtorques owing to moments of inertia are neglected. 
Movement velocities are small enough so that the energy 
accumulated is much smaller then the work needed to overcome 
the friction. 
Contact between a body and fingers is considered to be a 
simple point contact. Fingers are modeled as a line normal 
to the supporting surface which forms point contact with a two 
dimensional body. In the beginning it will be assumed that the 
contact points are frictionless. Thus, the contact forces lie along 
contact normals. No tangential forces are possible. All torques 
around a contact point are equal to zero. 

The progress of the pushing operation through different stages is 
shown in Fig. 1. Starting with no contact (stage I) ,  the tool proceeds 
in the direction shown by an arrow. When the first finger strikes the 
object, the object will start to rotate with respect to the contact point 

Fig. 3. Valid contact configurations at the right finger M. 

(stage 2). The object rotates and eventually the contact is made by 
the second finger at stage 3. During stage 3 the object will rotate 
further until a final orientation is reached. Afterwards, the object will 
purely translate along the direction of movement of the tool. 

The goal of the approaching stage is to provide CW rotation if 
the finger N first strikes the object or CCW rotation for the finger 
M. According to Mason's pushing theory [8] it is sufficient if any 
two of three lines-the pushing line, and the left and right side of 
the friction cone-lies on the appropriate side of the center of mass: 
the left side produces a CW rotation and the right side produces a 
CCW rotation. Secondly, the direction of rotation must be preserved 
throughout stage 2. For sticking contact this condition is always 
satisfied. For sliding contact, violation of this condition depends on 
the direction of sliding. If the direction of sliding is toward the vertex 
C it is possible for the friction cone to pass the center of mass, thus 
reversing the direction of rotation. Assuming the direction of rotation 
is correct for the given finger, the direction of sliding must point 
away from the vertex (Fig. 3). 

It follows, for the right finger M, both conditions are satisfied if 
the line of pushing always lies to the right of the center of mass and 
if it lies inside or to the right of the friction cone. The same rule can 
be applied to the left finger N if the term right is changed for left. 
To apply this rule two parameters need to be specified. These are 
the contact point along the facet and the pushing direction. For the 
right finger M (Fig. 3) the candidate contact points are denoted by a 
thick line and the candidate pushing directions lie inside the angle 9. 
Pushing directions are bounded by a direction along the facet and the 
left side of the friction cone. The left bound on the range of candidate 
contact points (A.\[) depends on pushing direction, however. In Fig. 3 
for a given pushing direction shown by an arrow, all points to the 
right of the arrow are valid contact points. 

r arct,an(lr,.) ; 19 2 arctan(/r,.) 

The above rule is expressed in terms of an angle 15 

(2) 

within which the left bound in valid contact points changes. The term 
p , .  represents contact friction. The angle 8 is the orientation of object 
as was defined previously (Fig. 2). Equation (2) corresponds to the 
finger M, the left bound A , I ~  being equal to 

(3) 

; -arctan(p,.) < IY < arctan(// ,  ), 
ha1 = 

A i f ( t j )  = r j T  - E T .  taii(h.df).  

For the left finger N. the expressions (2) and (3) are as follows: 

7r- -1) - -0  ; -arct,ari(p,.) < T - I ) - O  < arc.taii(p,.), 
arct ,an(p, .)  ;a- i ) -n  2 arct ,an(p, .)  

where angle vector (G) designates a unit vector ( C O S  a ,  sin o ) ~ ' .  
From the above equations it is possible to calculate bounds 

on theposition of vertex C of object for a given orientation i). 

Approaching the object in a way that vertex C lies inside these 
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Fig. 4. The limits in lateral and orientation positioning error. 
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bounds will produce valid contac_t configurations with either finger. 
Note that only .r coordinate of C is important, as long as we make 
sure the object is in front of the tool (see also Fig. I) .  The leftmost 
and rightmost position of vertex C are 

C,v,.(iJ) = S,. - X , ~ ( i ) ) c o s ( i i  + n ) ,  

C,qrZ(ir:i = ,If, - , \ , I ,( i l)vos(il) ,  ( 6 )  

respectively. The range of available pushing directions in terms of 
object orientation is equal to 

- arctan(/( ,  ) < 0 < JT - n + arctan(/(, ). (7)  

The expressions (6) and (7) form a bounded region in ( C ,  , I J )  

plane (Fig. 4) where all points inside this region correspond to a 
pushing operation producing correct motion of object during stage 
2.  The expressions for C.vJ. C ,U~  in (6) need further modification, 
however. For instance, if 1)  > ~ / 2 ,  the facet the finger M should 
contact, becomes unreachable. The same holds true for the left finger 
N if 11 < 7r/2 - (I. When either of these two conditions becomes 
true, it must be assured that the corresponding finger will at least 
miss the object to avoid pushing at the same facet by both fingers. 
The rightmost limit in vertex position is then equal to :Ifz and 
the leftmost to jVJ. In Fig. 4 the vertical segment in CV,  ( 1 1  :I and 
C.fi<, ( I ) )  represents this case. The region in Fig. 4 outlined by a 
dashed line corresponds to frictionless fingers, while a continuous 
line bounds the region corresponding to p ,  = 0.3. The description of 
the object and the tool is taken from the example shown at the end 
of the paper (Table I, middle row). The contact friction was chosen 
freely to demonstrate its effect on the ability of operation to handle 
uncertainty. Clearly, the friction at fingers helps: the region becomes 
larger if the friction exists. Also, spreading the fingers has the similar 
effect. A wider tool can handle greater uncertainty than a narrower 
one. This discussion implies that the facet length is infinite, however. 
Spreading the fingers will ultimately cause the object to slip through 
the fingers. The recommended distance between the fingers is the least 
one of all the distances obtained from calculating the cross-sections 
of an object in the range of orientations given by expression (7) .  

Let the errors in position and orientation be y J .  ? , j ,  respectively. 
In (C', . 11) plane a pair ( : J  . Z J  ) represents a rectangular area where 
a point inside this area indicates possible position and orientation. 
Let the center point of the rectangle be the nominal position and 
orientation with respect to the fingers. By changing pushing direction 
and starting point this position and orientation also change. Hence, the 
rectangle can be placed arbitrarily in  the plane ( C ,  , I)) by choosing 
a different pushing operation. The pushing operation that can handle 
the uncertainty given by the worst case limits in error (E , .  C J  ) is 
the one that places the rectangle inside the bounded region as is 
shown in Fig. 4. The center point designates the pushing operation 
guaranteeing that during stage 2 the object will move toward the 
other finger reaching stage 3 at some point. Finding the best possible 

\ -b 

Fig. 5.  A mechanism representing an object touching two-tinger tool. 

N 

Fig. 6.  Forces acting on the object being pushed 

operation is a problem of task planning. The early work on this subject 
is presented in [9 ] .  

To understand the situation during the stage 3, one must consider 
the constraints imposed upon the object, and the forces acting on it. 

A rigid body touching a tool at two points can be represented by 
a simple mechanism whose mobility is easier to explore (Fig. 5) .  
The points of contact, namely M and N, have each two degrees 
of freedom: one translation along the edge of the object. and one 
rotation around contact point. 

Altogether there are four DOF's. Taking into account also one 
closed kinematic chain, the mobility is calculated by the Grubler'x 
formula: 

.M = Cf, - 31 = 4 - 3 = 1 ( 8 )  

where i is a joint index. f"< is the number of DOF's for the joint i 
and I is the number of closed kinematic chains. The total mobility 
~2.1 equals to 1, and corresponds to a rotation around the intersecting 
point of the two lines along the contact normals (dashed lines, Fig. 5) .  
At any arbitrary orientation angle I) this point is elsewhere in a plane. 
so it is an instantaneous center ($rotation (ICR) and the mechanism 
is called a transitory suh.stitute-mt,.chanism [ I O ] .  

Supposing the movement of a body is a pure translation, the center 
of friction exists [2], and according to the assumptions about friction 
it coincides with the center of mass. Frictional force due to support 
friction p , ) r t y  is drawn in the opposite direction with respect to-the 
motion velocity (Fig. 6). Taking into account an equal force F in 
the opposite direction and dividing it into two componytsalong the 
contact normals at points M, N, the contact forces F I . F ~  (Fig. 0) 
are obtained. 

The position of the ICR becomes known by constructing the lines 
along both contact normals, so the torques acting on the object can 
be determined. Contact forces r'i and FL do not induce any torques 
around ICR because they are acting along the contact normals: their 
levers are equal to zero. The only torque induced is by the support 
friction force 

( ' 2 )  

L =  I 

- 
I.21, I = / / . / / / g .  r.  
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Fig. 7. The final orientation for two different objects. 

To maintain pure translation an equal torque must be induced 
around ICR in the opposite direction. The only way to induce such 
a torque is by tangential forces at contact points M, N. As these 
are frictionless contacts it follows that the object will rotate in a 
counterclockwise direction. The final orientation is achieved when 
I-\?, I = 0. From (9) it follows that r must be equal to zero. Therefore, 
the center of friction (also the center of mass) must lie somewhere 
on the line along the direction of pushing through the ICR (Fig. 7). 
Note that only the sense of rotation can be described in this way. 
During rotation of the body, the friction force cannot be defined 
easily due to unavailability of the center of friction: the function of 
pressure distribution has to be known to fully describe the friction 
force. However, the conclusion about the final orientation holds true. 

Note also, the analogous behaviour of an object being hung in 
a vertical plane between two horizontal frictionless bars. The body 
rotates due to gravity and reaches the static equilibrium in exactly the 
same orientation as above. It is the orientation satisfying the minimum 
of potential energy. Though it seems obvious that minimizing the 
potential energy would give stable orientation of the object also for 
pushing operation, one should consider the nature of frictional forces 
being a non-conservative system. Only in a special case when a pure 
translation occurs this analogy can be observed. 

Consequently, the criterion of minimal “potential energy” can be 
applied: a body is expected to slip between the fingers as deep as 
possible. This result needs further elaboration, however. As will be 
discussed later, to determine the sense of rotation and whether the 
object will stay in contact with both fingers during stage 3, it is not 
always enough to consider the position of the center of mass with 
respect to ICR, only. 

A .  Estimating Final Orientation 
An object in contact with both fingers represents a closed planar 

kinematic chain with one degree of freedom, namely rotation. Such 
a system is fully described by a function of one variable. Final 
orientation is defined in the local coordinate system of the tool 
independently of the actual world coordinates. The transformation 
between the two coordinate systems is trivial and will not be 
considered here. 

The position and orientation of the object are described by two 
lines coinciding with the two edges of the object. According to the 
adopted description of an object we are not concern_ed about the rest 
of the part as long as the coordinates of the point T are known. 

The solution to kinematics of the mechanism (Fig. 5 )  in terms of 
thevertex position = (C,. . C,  ) T  after rearranging yields: 

Fig. 8. The plot of the tip of (a) ”, (b) GTy(z9). 

The position of the center of mass T’ with respect to G [ 111 equals: 

where li’ is the Cartesian unit vector along the z-axis. 
Equation (12) specifies the position of the center of mass of the 

part for any angle 8 and any known position of the fingers. The stable 
position required is derived by minimizing the y coordinate of the ‘T’ 

‘ T ~  ( 1 9 )  = V T  sin ij + cos + C, (IY 1. (13) 

Finding an angle 19, where (13) has a minimum, gives the solution 
to final orientation. The vector function (12) describes the path of the 
center of mass when the body is rotated while maintaining contact at 
both points M, N. To find the minimum, a domain of (12) and (13) 
with respect to the parameter I9 has to be defined. Outside this domain 
the body is in c_ontact with at most one of the two fingers. The plot of 
the function ‘ T  is shown in Fig. 8(a). For each particular orientation 
angle 19 the corresponding position of the center of mass is marked by 
a dot. The plot begins at 19 = 0. Following the graph from the right 
to the left each subsequent dot represents the corresponding position 
of the center of mass when the object is rotated for additional 15” 
angle. In the case shown the plot ends at I )  = 7r /2 .  

Let the starting orientation of the body at the beginning of the plot 
be B, and the one at the end be ~ h .  The range of angles I9 E ( 1 9 1 ,  I 9 h )  

defines the domain of the function (12). The endpoints are, generally, 
expressed as { r t , a n [ ( : t f ,  - X v ) / ( M J  - :V.< ) ]  

$11 = max ~ 1 2  - (L (14) 

T - a + arctan[(:\I, - :Vy)/(MZ - Nr)] 
77)! = min 7r - N ‘ (15) 1 T I 2  

The endpoints I?(, 8,, are obtained by testing all possible orienta- 
tions of the object by taking into account the fact that contact normals 
cannot have any component opposite to the direction of pushing. 
The first row in (14) and (15) defines the limits when either facet 
is aligned with the line joining the fingers, while the last two rows 
assert that the components of the contact normals perpendicular to the 
line of pushing oppose one another, which is a necessary condition 
for attaining a stable equflibrium. 

The y coordinate of ’T (12) with respect to orientation angle 11 is 
presented in (Fig. 8(b)) The function ‘ T U ( i f )  (13) has unique local 
minimum. It can be shown that at most one minimum could occur 
over the interval ( 0 . 7 ~ 1 2 )  along 1)-axis, hence the interval ( i l l .  i l l , )  
being always a subset of (0. n / 2 )  cannot embrace more then a single 
minimum, if any. 

By solving for 8 ,  where function (13) has a minimum, also the 
position of the object with respect to the tool is known. A Brent’s 
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Fig. 9. The case leading to a task failure Fig. 10. Improved stability by a proper configuration of the tool. 

orientation is provided. Thus, the stability in final rest onentation of 
minimization method [ 121 was applied to solve for 1 )  J . It converges object can be improved by applying the following criterion function: 
very quickly, because the minimum behaves parabolically. 

I ' T ~ ( ? ) ~ ~ )  -' ~,( i11 )1  = d = mir i  (16) 

B .  Task Failure which results in a configuration of fingers that minimizes the 

Pushing by a single point can only constrain the object in the 
direction against the contact normal. Only in a special case, when 
pushing a concave object, it may improve the positioning accuracy. 
In the previous section it has been shown that pushing with two point- 
contacts leads to a stable orientation in a wider class of objects. Note 
that the position of the object is also known if the contact normals are 
not parallel: the normals are parallel when both fingers are pushing 
at the same edge (equivalent to pushing by a fence). 

However, in certain cases the two-point pushing operation may 
fail.An example is w_hen bzth fingers are closely together. In the 
limiting case, when ,If = AY the task becomes single point pushing 
operation. Another case when the task is likely to fail is shown in 
Fig. 9 where the '~(II) and its y coordinate 'TY(O) are presented. 
The plots are obtained in the same way as those in Fig. 8 but for a 
different object. The plots correspond to fingers at positions M and 
N. In that case (fingers at M. N), the curve "T,(1Y) is monotonic 
and does not have a minimum at all. The object will rotate during 
pushing in CCW direction, for any given initial orientation between 
( 0 . ~ / 2 ) .  The object may reach the final orientation which is at 
x /2  but the contact at finger M will be lost under the slightest 
perturbation in CCW direction. Further advancing of the tool will 
push the object away to the left. instead of catching it between the 
fingers. The final rest orientation in this case cannot be referred to as 
a stable one. The final orientation is considered stable if the object 
tends to rotate back to the same orientation after being perturbed 
in any direction during pushing. The above instability can also be 
observed with an object being hung in a vertical plane: the object 
will always fall off to the left of the supporting bars regardless the 
initial orientation. Making the tool wider might be considered to 
be a solution but, ultimately it is an ineffective one, because the 
object would slip between the fingers if the tool is too wide. A more 
appropriate solution is shown in Fig. IO, where the fingers are at 
positions M, N'. 

An important aspect is the symmetry of the object. Here, the 
symmetry of the comer with respect to the mass distribution is 
considered. The object in Fig. 8 whose center of mass lies on the line 
bisecting the comer is characterized by this symmetq. The stability of 
the final orientation is such that it can resist equally to perturbation in 
any direction during pushing. The plot of 'TY(iI) is also symmetric. 
As a measure for this symmetry we adopted the distance d (Fig. 9) 
between both ends i I / , d ~  of the 'Tu(,17). For a symmetric object 
the distance t l  can be set to zero as in Fig. 8 by aligning both fingers 
(M,, = ATy = fl). In the gravitational field this would provide that the 
same potential energy change is needed to perturb the object in either 
direction. At the same time the largest resistance to perturbations in 

distance d .  
Intuitively, we conclude that there are only two dimensions in 

'Tq(il) (13), namely (illz - iVL) and (My - AJy).  The shape of 
the graph (Fig. 10) depends only on the width (AL - AV,.) and the 
height (My - :Try) of the tool. Note that the terms width and height 
are defined with respect to the pushing direction. In our case the 
tool was only able to rotate around the z-axis. The distance between 
the fingers was fixed, hence rotating the tool while preserving the 
pushing direction increased the height at the expense of the width. 
An angle -y was introduced for which the tool was rotated before the 
operation. In the experiments presented in Figs. 13 and 14 the tool 
was rotated for such an angle by applying the criterion (16). As 
may intuitively be expected, the finger that is closer to the center of 
mass is positioned slightly forward giving improved "support" to the 
object during pushing. 

To conclude, the width of the tool should be chosen as large as 
possible, depending on the overall dimensions of the object, while 
the optimal height is found by applying the criterion (16). 

The discussion presented here is applicable to a certain class of 
objects. This class of objects is characterized by the position of the 
center of mass which must lie between the ICR and the fingers: 
it is the area of intersection of the inner halfplanes defined by the 
lines along the contact normals (a shaded region in Fig. 11). For 
this class of objects the discussion regarding the sense of rotation 
is correct. Also, during stage 3 the fingers would push the object 
toward one another holding the object safely in between. Hence, 
the result regarding the final rest orientation and the object stability 
holds true, too. However, it was observed through examples that the 
pushing operation can be applied to even wider class of objects, but 
it cannot be guaranteed to succeed. If the center of mass is outside 
the intersection area, both fingers may push the object in the same 
direction or away from one another. This does not immediately imply 
the task will fail, but rather that it may fail. What are the exact limits 
up to which the pushing operation is guaranteed to succeed remairis 
an open issue. 

C.  Contact with Friction 

Estimation of the results above is valid for frictionless contact 
points M, N. In reality one cannot rely on such an assumption. Fig. 1 I 
shows the forces acting on an object when p ,  > 0. The friction conex 
[2] are drawn around the contact normals. 

Suppose the orientation of the body is far from its final orientation 
IIJ  obtained if the contacts were frictionless. The center of mass is 
to the right of the ICR, causing a clockwise rotation during pushing. 
Thus. the contact forces act along the right side of the friction cones. 
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Fig. 11. 
fingers. 

The forces acting on the object during pushing by non-frictionless 

Fig. 12. The forces at the contact point with friction. 

The static equilibrium (4 = 0) of the torques is reached as soon as 
the center of mass T crosses the line t i ,  the distances being 

T I  = i-2. (17) 

Actually, the equilibrium may be reached at any orientation d 
for which the center of mass lies between the lines u:v because 
the contact forces can be anywhere within the friction cone, yet 
satisfying (17). 

Evidently, this would occur at some other angle IY then i lf for 
which T I  = T Z  = T = 0 (Figs. 6 and 7). The final rest angle 8, 
would be no longer unique and the operation would express certain 
ambiguity in orientation. 

The method proposed to reduce this effect of friction at contact 
points M, N is shown in Fig. 12. The tool is allowed to move up 
and down. As friction forces act in a direction opposite to a relative 
velocity at a contact point, the sum vector of the velocity in z direction 
(tool movement) and the velocity of the body (Tt x B )  is drawn. 

In static equilibrium the tangential force at the contact point has 
only a vertical ( 2 )  component: tangential forces in the plane of 
conqideration become zero when the object stops rotating because 
Ttx 11 = 0. Thus, the contact friction at the final rest orientation cannot 
sustain any tangential force. This is exactly the case as though the 
fingers were frictionless: it can only occur at an angle 19 that satisfies 
TI  = r z  = 0, which is the same condition for the final orientation as 
in the case of frictionless contact. 

The effect of friction is eliminated simply by wiggling the fingers 
perpendicular to the surface during pushing. Such a motion can be 
performed by a robot selecting an appropriate motion trajectory or 
even better, by a vibrating device attached between the robot arm 
and the pushing tool. Notice however, that the pushing force will 
violate the assumption regarding the center of friction coinciding 
with the center of mass. While the forces along contact normals 
move the center of friction straight ahead in the pushing direction 
introducing no error in d f ,  it is not the case with the forces owing to 
wiggling the fingers. These forces are parallel with the gravitational 

+ 

afler 

Fig. 13. Simple pushing operation. 

direction 0 -  

/b of 
pushing 

force. During the upward tool motion the center of friction is shifted 
forward but also to the left or right, while during the downward 
motion the center of friction is shifted in the opposite direction. 
As a consequence the object will alternately rotate in a CW-CCW 
direction about d f  introducing an error in orientation. This error is 
expected to be much smaller then the one introduced by friction at 
fingers as was also confirmed by experiments. One way to still reduce 
this error is by dynamically diminishing the shifting effect using a 
high speed vibrating device as proposed above. There is a design 
requirement that should be met when installing a vibrating device: 
the oscillating motion of the device must be purely vertical or else the 
object may repetitively be bounced of the fingers during pushing. This 
dynamic force would shift the center of friction in an undetermined 
way introducing an unknown error in the final rest orientation, 

111. RESULTS 

The method proposed was tested with different real objects. The 
tool used consisted of two prismatic bars, vertically mounted at the 
end effector of a robot SEIKO RT-2000. The robot has four degrees of 
freedom and cylindrically shaped working space. The objects were 
polygons with comer angles N = GO", 90", 120'. To change the 
position of the center of mass three holes were drilled allowing 
insertion of different weights. The tool and the objects were made 
of Plexiglas. The supporting surface was covered with a paper. Two 
examples of pushing operation are shown in Figs. 13 and 14. The 
initial position of the tool is drawn and the direction of pushing is 
marked by an arrow. Fig. 13 shows an example of simple pushing 
operation without wiggling the tool up and down. The pushing 
direction l i l  was chosen, considering the desired orientation of the 
object after completion of the pushing operation, using the formula 

$! = U) - () "f + x p ,  

where U) is the desired angle of orientation: in the examples 
presented the angle J = 0. The pushing distance of 150 mm 
was determined experimentally. The same operation of pushing 
was repeated three times: each time the initial position of object 
was different and the position and orientation, after the operation 
was completed, were marked by a line along the edge. The initial 
positions are marked by numbers 1,2,3 and the corresponding 
orientations with respect to the tool were 20O.44" and 61", 
respectively. After the pushing operation was finished the final 
orientation was still uncertain because of the friction at the points 
of contact. The measured orientation difference Ai),. was 9". 

Fig. 14 shows the results of the pushing operation when the effect 
of friction was minimized by introducing the up and down movement 
of the tool. Again, the pushing operation was tested on three rather 
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Fig. 14. Improving positioning accuracy by pushing with wiggling 

TABLE I 
THE RESULTS OF THE EXPERIMENTS 

71.8 43.8 
60’ 63.9 30.1 

86.2 30.2 
39.4 44.7 

90° 39.6 30.2 
60.8 30.4 
16.0 59.2 

11.7 39.9 
1200 0.2 59.1 

0.4’ 
--OS0 
-I0 

I . 6 O  

0.2O 
-0.4’ 

-1.4O 
0.3’ 

--2.s0 

0.4O 
0 . 2 O  
I.S0 

0 . v  
0.6O 
0.9O 
I . 3 O  

0 . 9 O  
l o  

-2.34O 
5.73O 
17.3’ 
-7.Y 
14.8’ 
37.9O 

0 . 8 O  
- 6 . 3 O  
4 . 1 °  

random initial positions ( 1 . 2 3  and orientations (23” .  G ? ” ,  and 87”, 
respectively). The final orientations obtained after the completion of 
pushing operations were more accurate then those from Fig. 13. This 
time the difference in orientations A I ~ J  was O.Go, only. 

The results of pushing operations performed on other objects are 
presented in Table 1. 

The object being pushed is characterized by the vertex angle o and 
by the coordinates of the center of mass. A 50 g weight was inserted 
into different holes resulting in the change of the coordinates of the 
center of mass ~ 1 ~ .  <?.. The fourth and the fifth column show the 
mean value of the orientation obtained and the absolute dispersion 
observed after three trials. The lasc column indicates the angle of 
rotation of the fingers before the operation. The second row at the 
90” vertex angle applies to Fig. 14. The improved repeatability can 
be observed for objects whose center of mass is closer to the vertex 
and for those whose vertex angle is sharp. It may be that the effect 
of shifting the center of friction by vertical wiggling the fingers was 
the main source of dispersion of the results. The error in the desired 
value occurred probably owing to the inaccuracies in models of 
the objects and because of violating the assumptions to some extent. 

Iv. CONCI.USION 

Application of pushing with single point pusher was in details 
discussed by Mason [SI. Here, we propose accurate orienting and 
positioning of a part to be performed by a robot-pushing operation 
which employs a two-finger gripper or a special tool. The fingers 
are used to push an object along a straight line. Alter the pushing 
maneuver is completed, the ob-ject can be grasped by reorienting 

the gripper and closing the fingers. The error evaluated in terms 
of part entropy [13] showed significant improvement of positioning 
accuracy-as much as 20 bits. The effect of the friction at the contact 
points was greatly reduced by wiggling the fingers perpendicular to 
the surface. The operation is extremely simple and improves the 
positioning capability of previously-reported operations. But, there 
are questions about the nature of this operation that have not yet 
been answered. The discussion presented remains to be extended to a 
wider class of objects. Nonetheless, the pushing operation proposed 
may be of practical importance in a number of robot applications. 

The task can be implemented for various shapes and sizes of a 
workpiece. Economical justification of the task can be estimated 
by considering the cost of the operation due to slowing down 
of the robot performance as compared to the cost of sensors 
required for the same reduction in part entropy. In applications 
such as grasping a glass, accurate positioning of a glass is most 
effectively performed by the pushing operation proposed. The 
task of aligning a block in a comer, where there may be no room 
for the fingers, may successfully be performed only by using this 
pushing operation as a manipulating maneuver. 

Further investigation is required, both theoretical and applied. 
to improve the approach described. The non-trivial problem of 
estimation of the pushing distance has to be solved. The worst case 
pushing distance can be estimated by extending the discussion in 
[ 141 where Peshkin presented a method based on a minimum power 
principle. However. the result would be valid only if the frictional 
forces at the fingers are neglected: the up and down wiggling of the 
tool introduces a viscous-like friction that may violate the minimum 
power principle, the pushing force being dependent on the angular 
velocity of the object. 

Beside the problem of improving the positioning accuracy of an 
object, manipulating the object by a non-straight line pushing seems 
interesting. In a real application the working area available for the 
operation of pushing might be limited, so the trajectories of the tool 
must be planned considering other parameters in addition to the shape 
of the object. 
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