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Abstract. The paper deals with the application of model reference adaptive control to robot im-
pedance control, which is actually a technique of steering the end-effector on a prescribed path and
satisfying a prescribed dynamic relationship between the force and the end-effector position. Due
to unknown parameters of the environment (stiffness, exact position), a model reference algorithm
is proposed which differs from classical algorithms in its method of excitation. The results of the
proposed procedure are illustrated by implementation on the ASEA IRb 6 industrial robot.
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1. Introduction

Model reference adaptive control, an explicit adaptive technique, has been very
attractive from the very beginning of adaptive control era. The basic idea of the
method is to specify a reference model involving the desired performances of the
basic loop consisting of a controlled process and a classical controller. Its main
applications are in the field of the tracking control, where the plant output is sup-
posed to track a reference trajectory. However, in industrial practice, such as robot
control, problems are met which do not correspond to the classical applications
of model reference adaptive control. The purpose of this paper is to describe one
such application, the adaptive control of an industrial robot with the end-effector
contacting the environment.

In the basic control loop represented by animpedance controller, the force
is regulated by controlling the position and its dynamic relationship (mechanical
impedance) with the contact force. The pioneering work on impedance control
was published by Hogan in [4]. In this work a second-order mass-spring-damper
system is used to specify the target dynamics; however, simpler models, such as
pure stiffness or combination of dampening and stiffness, can also be used [1, 11].
In this manner the basic equation of the second-order dynamic relationship between
the end-effector positionX and the contact forceF is given by:

F = M
(
ẌR − Ẍ

)+ B
(
ẊR − Ẋ

)+ K
(
XR −X

)
, (1)
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where the diagonal matricesM ,B andK contain the impedance parameters along
Cartesian axes representing the desired inertia, damping and stiffness of the robot,
respectively. TheXR is the steady state nominal equilibrium position of the end
effector in the absence of any external forces. AsXR is software specified, it may,
during the contact with the environment, reach positions beyond the reachable
workspace or inside the environment.

On the other hand, industrial robots are in general position-controlled with
independent joint controllers and kinematic software joining them into a single
entity. The unavailability of an adequate robot model and, from the hardware point
of view, control system with no access to direct motor current (torque) control,
imply the usage of force feedback to modify the reference position commands.
The resulting position-based impedance control scheme consists of an inner/outer
feedback loop configuration. The inner loop represents the non-modified position
robot controller, while the outer loop uses a force feedback signal to modify the
inputs to the position servo and at the same time to satisfy the impedance dynamic
equation.

Several studies analyzed the performance of position-based impedance con-
trollers [2, 7]. Volpe and Khosla [10] have made a theoretical and experimental
comparison of the explicit force and impedance control methods. They showed
that an impedance controller has an algebraic structure similar to the proportional
gain explicit force controller with feedforward. Furthermore, this correspondence
becomes exact when the position feedback is constant, which occurs when the
robot is contacting a stiff environment. As the industrial robot applications in most
cases involve interactions with rigid objects, the introduction of a reference force
signal into the impedance control scheme is possible. Thus, one of the major short-
comings of the impedance control – indirect specification of the desired contact
force – can be overcome.

The paper is organized as follows: first the classical position-based impedance
control is introduced in Section 2, where the necessity of adaptive control is also
stressed. In Section 3 the adaptive controller is presented and the differential equa-
tion describing the basic loop of the adaptive system is rewritten in a form suitable
for model reference adaptive control. This equation differs from the classical model
reference approach in the fact that there is no reference signal present. The only
excitation of the adaptive system is the initial condition due to zero force prior to
impact. The implementation of the adaptive control system on the ASEA IRb 6
robot is presented in Section 4.

2. The Basic Loop – Position-based Impedance Control

Controlling the robot mechanical impedance by generating the reference position
trajectory of the existing positional controller has been recognized as a practical
approach to industrial robot impedance control. When applying the contact force,
the reference position is to be chosen inside the environment and cannot be reached
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Figure 1. Position-based impedance controller.

by the robot because of the geometrical constraints. The positional controller re-
sponds to the resulting error in position with additional actuator current and exerts
a force to the environment.

The class of position-based impedance controllers is usually focused on the
most frequent robot contact applications, interactions with rigid objects. When the
robot is contacting a stiff environment, the termsẌR and ẊR of the impedance
Equation (1) become approximately zero and, thus, the impedance equation is
reduced to

−F = MẌ + BẊ + K(X −XR). (2)

In this case the termKXR acts simply as a scaled reference position and can be
directly replaced by the reference force signal [10]. Moreover, following the idea
of Seraji and Colbaugh [8], who were using the reference force input for specifying
the desired contact force and the reference position input for improving the con-
troller performance, the position-based impedance controller depicted in Figure 1
can be designed.

SignalsXR, XC andX are vectors in Cartesian space and represent the ref-
erence, commanded and the actual position trajectories, whileXE belongs to the
location of the environment andE is the error between the reference forceFR and
the measured contact forceF . The impedance filter is a linear second-order system
with the transfer function (3) defining the dynamic relationship between the force
error and the position:

E = FR − F = MẌC + BẊC + K(XC −XR). (3)

The parameters of the diagonal matricesM ,B and K define the desired robot
inertia, damping and stiffness along the particular Cartesian axis.

In order to determine the behavior of the impedance controller when in contact,
the environment is modelled by a linear spring with the stiffnessKE. The measured
contact force can be then calculated as:

F = KE(X −XE). (4)
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When deriving the control laws we assume that the robot is equipped with an
ideal position control system ensuring the commanded positionXC to be reached
with negligible dynamics(X ≈ XC). This assumption allows one to consider
variables of the vectorsX andF independently. The elements of vectorsX and
F are then denoted as scalars by the lower-case lettersx andf . The force tracking
errore is obtained from Figure 1 as:

e = fR − f = fR − kE(x − xE). (5)

Assumptionx = xC in Equation (3) together with Equation (5) yields the equation
of the force error dynamics:

më + bė + (k + kE)e = k(fR + kExE)− kkExR. (6)

It can be noted that the input signalxR can be used to control the force error trajec-
tory. In the steady-state, whenxR is constant, the Laplace transform of Equation (6)
defines the steady-state force tracking error:

ess = lim
s→0

se(s) = k

k + kE
[
(fR + kExE)− kExR

]
. (7)

The steady-state force tracking error will equal zero when the following reference
position trajectory is chosen:

xR = fR

kE
+ xE. (8)

Unfortunately, in practical applications the environmental parameters, stiffnesskE
and locationxE, are almost never known precisely and may change considerably
during the task. To improve the force tracking characteristics one should therefore
employ an adaptive control approach.

3. The Model Reference Controller

In this section the adaptive control algorithm will be introduced in order to cope
with the problems of unknown environmental parameters. The basic loop controller
is given by:

xR = f (t)+ kp(t)e + kd(t)ė, (9)

wherekp(t) andkd(t) are proportional and derivative feedback gains acting on the
force errore(t) and the error ratėe(t). Signalf (t) is an auxiliary signal which
compensates the steady-state error. All three adjustable parameters are generated
by the model reference adaptive algorithm.

Next, the basic equation suitable for the application of the model reference
controller will be derived. SubstitutingxR in the equation of error dynamics (6)
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by Equation (9) yields the equation of the complete adjustable system in the frame
of the model-reference adaptive control (MRAC):

ë +
(
b + kkEkd(t)

m

)
ė +

(
k + kE + kkEkp(t)

m

)
e = k(fR + kExE − kEf (t))

m
.

(10)

The parametersf (t), kp(t) andkd(t) of the adjustable system are varied in order
to minimize the difference between the actual force errore(t) and the desired force
error em(t). The desired force error trajectoryem(t) is determined by the output
of the reference model. The reference model is designed as a second-order linear
system:

ëm + 2ζωėm + ω2em = 0, (11)

with the output representing a response to the initial conditions. The user-specified
parametersζ andω determine the profile of the reference model output trajectory.
When in initial contact with the environment, the value of the reference force falls
to zero. The parametersζ andω represent the undamped natural frequency and the
damping ratio, respectively.

The essential difference between the described approach and the classical ap-
proach lies in the existence of the reference signal. While in the classical model
of reference control the reference signal excites the basic loop and the reference
model, there is no such signal in the application described. The excitation of both
subsystems of the adaptive control is the initial condition. It should be stressed
that the reference signal is absent only in the reformulation of the problem, i.e. in
the equation describing as a model reference control system, but not, however, in
the control problem where the manipulator end-effector is supposed to follow a
prescribed path while tracking a prescribed force.

The theory of the direct model reference adaptive control provides the adapta-
tion laws for the variable system parameters (12)–(15). The adaptation ensures the
tendency of the response of system (10) to approach to the response of the reference
model (11). The adaptation laws are derived following the Lyapunov approach to
the nonlinear system control [5].

f (t) = f (0)− a1

∫ t

0
q dt − a2q, (12)

kp(t) = kp(0)+ b1

∫ t

0
qe dt + b2qe, (13)

kd(t) = kd(0)+ c1

∫ t

0
qė dt + c2qė, (14)

q = wp(e − em)+ (ė − ėm). (15)

In the adaptation laws, the parameterwp represents positive weighting factor, while
the parametersai , bi andci are small positive proportional and integral adaptation
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Figure 2. Adaptive impedance control scheme.

gains, andf (0), kp(0), kd(0) represent adaptive parameter initial values. While the
initial proportional and integral gains are selected to be zero, the initial valuef (0)
defines the position trajectory of the robot’s free-space motion. Thus, before the
contact occurred, the trajectoryxR had the same value as the signalf (0), while
after the contact the parameterf (0) holds the value assessed at the instant of
contact.

Figure 2 depicts the control scheme of the impedance controller including the
adaptive algorithm to generate the reference trajectory. The system adaptation is
based on simple expressions (12)–(15) that can be computed on-line in real-time.
The entire procedure for deriving the adaptation laws can be found in the appendix.

4. Implementation of the Model Reference Controller

The model reference adaptive impedance control algorithm was first tested by sim-
ulation inMatlab-SimulinkTM . The control scheme was realized on ideal position
control of the robot, i.e. under ideal circumstances corresponding to the theory
described in Section 3. Thereafter an identified model of the position control sub-
system of the ASEA IRb 6 robot was introduced in order to test the robustness of
the algorithm. The simulation results, presented extensively in [6], proved that the
system is capable of tracking the desired contact force trajectory determined by
the reference model output and of altering the robot arm dynamic characteristics in
terms of the impedance parametersm, b andk.

Furthermore, the present adaptive impedance controller was implemented on a
real industrial ASEA IRb 6 robot. The ASEA robot is a 5 DOF robot driven by DC
motors and gear transmissions. As the original ASEA controller performs only po-
sition control in the joint coordinates, a 486/66 PC computer was added, providing
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Figure 3. Force control system setup.

the computational platform for both the positional control algorithm in the world
coordinates and the impedance control algorithm. Such controller enhancement
would not be required for a modern industrial robot controller, enabling velocity
control in Cartesian coordinates. Figure 3 shows the organizational scheme of the
impedance controller with functional blocks representing the positional and force
control loops.

The contact force is measured by the JR3 four-axis force/torque wrist sensor
mounted at the robot end point. Each of the sensor voltage outputs is digitized by
the A/D converter and after filtering an estimate of the force error rate is obtained
by digital differentiation. The impedance control algorithm calculates the com-
manded position trajectory defined in the Cartesian space on the basis of force feed-
back and by taking account of the adaptive algorithm. Using the inverse Jacobian
matrix and the joints-to-motors transformations, the reference value is transformed
into the motor velocities which are, at the end of the sample cycle, transmitted to
the servo systems through D/A converters at a sample rate of 120 Hz.

The impedance control scheme of the industrial manipulator consists of three
separated adaptive controllers described in the previous sections. Each controller
independently performs the impedance control along a single axis of the Cartesian
coordinate system. To test the effectiveness of the impedance controller, a sim-
ple task was chosen: the robot end-effector was first approaching the constraining
surface (horizontal wooden table) along a straight line in the direction normal to
the surface and after the impact compliant motion in the positivey direction was
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Figure 4. Position and force profiles during impact and sliding over horizontal surface.

Figure 5. Position and force profiles during impact and sliding over inclined surface.
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performed along the surface, while exerting a contact force of –40 N. Robot was
approaching the surface with a velocity of 20 mm/s and was moving at 100 mm/s
when sliding over the surface. The tests were performed by the following adjust-
ments of the controller gains:a1 = 0.11,a2 = 0.011,b1 = 2×10−5, b2 = 5×10−5,
c1 = 10−8, c2 = 10−8 andwp = 5. The performance plots of the described
algorithm are given in Figure 4. On the left side of the figure the actual robot
positions along the particular axis are presented, while the right side describes the
contact forces.

It can be noted that after impact a stable contact is achieved ensuring the desired
contact force in thez direction. The presence of the force in they direction can be
also observed being the consequence of the Coulomb friction due to sliding.

Another example task presented in Figure 5 is aimed at showing the capability
of the system to comply with an environment represented by an uneven surface.
Figure 5 demonstrates the system performance when the robot with the same con-
trol parameters contacts and slides over the surface inclined at an angle of three
degrees. The stable contact is again achieved with the constant force error during
sliding over the surface. The impedance controller is a Type 1 system, as is apparent
from the zero steady state error to the step input and the constant error to the ramp
input.

5. Conclusions

The paper has presented the application of the model reference adaptive control
to the impedance control of a robot end-effector contacting a rigid environment.
The present control approach employs the original industrial manipulator position
control system with no demands for controller hardware reconstruction. The added
force control algorithm makes use of adaptive terms for the system adaptation to
unknown environmental and robot dynamic parameters. The basic difference be-
tween the classical model reference control and the given algorithm is the method
of adaptive system excitation. The reference signal used in classical MRAC is
replaced by the nonzero initial condition of the system.

Laboratory simulation and experimental tests on the ASEA IRb 6 robot have
shown that the system remains stable throughout all phases of the task, both con-
strained and unconstrained, regardless of the high environment stiffness. Further-
more, the robot is able to exert the desired forces at the end-effector and simulta-
neously achieve the desired end effector impedance characteristics.

Using the reference model in the control scheme has introduced a step toward
impact control. Continuous and stable transition from the unconstrained into con-
strained motion and the possibility of preshaping the force trajectory are achieved.
However, the problems of the brief impulsive collision force due to the end-effector
inertia and the rigid surface still remain to be investigated. Further study is also
needed to confirm the applicability of the impedance controller developed in the
tasks, such as robot grinding or polishing.
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Appendix

This appendix derives the adaptation control laws in the frame of the Lyapunov
based model reference adaptive control (MRAC) theory. Let us rewrite the equation
of the adjustable system (10) in a more compact form:

ë + α1ė + α2e = β0, (16)

and define the differences between particular parameters of the above equation and
Equation (11):

δb0 = β0, δa1 = α1− 2ζω, δa2 = α2− ω2. (17)

By subtracting Equations (16) and (11) we obtain:

(ë − ëm)+ α1ė − 2ζωėm + α2e − ω2em = β0, (18)

which can be transformed by the definition of the error between the actual and
desired force error (ε = e − em) into the form:

ε̈ = −2ζωε̇ − ω2ε − δa1ė − δa2e + δb0. (19)

Let us now propose a scalar Lyapunov functionV :

V = (
ω2+ 2wpζω−w2

p

)
ε2+ q2 + 1

γ0

[
δb0 + γ ′0q

]2 +
+ 1

γ1

[−δa1 + γ ′1qė
]2+ 1

γ2

[−δa2 + γ ′2qe
]2
, (20)

whereq defines a linear combination ofε andε̇ (q = wpε+ ε̇), while the parame-
tersγi andγ ′i are positive constants. The proposed Lyapunov function is positive
definite when the parameterwp is chosen to satisfy the inequality:

06 wp < 2ζω. (21)

The time derivative ofV , after applying (19) and after addition and substraction of
terms 2γ ′0(q)

2, 2γ ′1(qė)
2, 2γ ′2(qe)

2, takes the form of:

V̇ = 2ε̇2(wp − 2ζω)− 2wpω
2ε2− 2γ ′0q

2 − 2γ ′1(qė)
2− 2γ ′2(qe)

2 +
+2(δb0 + γ ′0q)

{
q + 1

γ0

(
δ̇b0 + γ ′0

d

dt
(q)

)}
+

+2(−δa1 + γ ′1qė)
{
qė + 1

γ1

(
−δ̇a1 + γ ′1

d

dt
(qė)

)}
+

+2(−δa2 + γ ′2qe)
{
qe + 1

γ2

(
−δ̇a2 + γ ′2

d

dt
(qe)

)}
. (22)



MODEL REFERENCE ADAPTIVE ROBOT IMPEDANCE CONTROL 163

Now, according to the Lyapunov theory, for the response errorε to vanish
asymptotically,V̇ must be negative-definite. For this purpose, we set the terms
{ } equal to zero, while the parameterwp is chosen according to inequality (21).
Integrating the resulting equations yields the adaptive controller terms:

f (t) = f (0)− γ
′
0m

kkE
q − γ0m

kkE

∫ t

0
q dt, (23)

kp(t) = kp(0)+ γ
′
2m

kkE
qe + γ2m

kkE

∫ t

0
qe dt, (24)

kd(t) = kd(0)+ γ
′
1m

kkE
qė + γ1m

kkE

∫ t

0
qė dt, (25)

which are apparently slightly extended terms of the adaptation laws (12)–(14).
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