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Feedback Control of Unsupported Standing in
Paraplegia—Part I: Optimal Control Approach

Kenneth J. Hunt, Marko Munih,Member, IEEE,and Nick de N. Donaldson

Abstract—This is the first of a pair of papers which describe an
investigation into the feasibility of providing artificial balance to
paraplegics using electrical stimulation of the paralyzed muscles.
By bracing the body above the shanks, only stimulation of
the plantarflexors is necessary. This arrangement prevents any
influence from the intact neuromuscular system above the spinal
cord lesion. In this paper, we extend the design of the controllers
to a nested-loop LQG (linear quadratic Gaussian) stimulation
controller which has ankle moment feedback (inner loops) and
inverted pendulum angle feedback (outer loop). Each control
loop is tuned by two parameters, the control weighting and an
observer rise-time, which together determine the behavior. The
nested structure was chosen because it is robust, despite changes
in the muscle properties (fatigue) and interference from spasticity.

Index Terms—Artificial balance, feedback control, optical con-
trol, paraplegia, unsupported standing.

I. INTRODUCTION

A. Purpose

OUR objective is to provide paraplegics with systems
which will enable them to stand using functional electri-

cal stimulation (FES). To provide satisfactory systems, one of
the major areas of study must be that of control: how should
the stimulator be modulated so as to optimize performance?
The conventional view of this problem is that the requirement
for the controller will be expressed in terms of the motions
of all the joints: perhaps following trajectories or maintaining
angles.

B. General Framework

When a paraplegic stands, there are three influences which
will together determine the joints’ motion: the effect of the
FES on the leg muscles; the largely unpredictable spasticity,
perhaps resulting in muscle spasms, due to the activity of
the isolated lower spinal cord; and lastly, the actions of the
neurologically intact upper-body. The upper body includes
organs of balance, vision and, presumably, some useful propri-
oceptive and mechano-receptive sensations from the margins
of sensations in the abdomen. Standing can be supported, in
which case one or both hands hold some handle for balance,
for sensory to the intact neuromuscular system (INS), and, if
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Fig. 1. The wobbler apparatus with paraplegic subject.

necessary, help lift the body weight. In this case the influence
of the upper body on the leg joints is due to the fact that
the body is then a closed kinematic chain [1]. Alternatively,
the standing can be unsupported, in which case the kinematic
chain is open and the influence of the upper body will be by
dynamic coupling.

When there is no influence from the INS, the system
can be regarded as a servo-controller problem for which the
purpose is to make the joint angles closely follow some input
trajectories. In its most simplified form, experiments can be
done by stimulating isolated nerve-muscle preparations and
measuring the joint moment or tendon force (e.g., [2]). Even
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such simplified systems are of interest because of the many
well-known properties of the stimulated nerve-muscle-joint
which make control difficult. A partial list is as follows:

• the nonlinear response to recruitment [3];
• the nonlinear response to inter-pulse interval [4], [5];
• the transmission delay for the action potentials to travel

from the electrode to the muscle and the low-pass fre-
quency characteristic of the muscle [6];

• the changes in force and frequency response due to
potentiation [7] and fatigue [8];

• the dependence of the joint moments on the joint angles
(muscle lengths) and joint velocities [9]; and

• the existence of bi-articular muscles.

If a controller can be designed which is satisfactory despite
these difficulties, the effects of spasticity can be thought of as
unpredictable disturbances to the output, due to spasm [10], or
to the joint stiffness, if spasticity is manifested as an increased
rigidity of the joint [11].

In clinical tests of controllers, the INS can influence the
motion of the leg joints, and therefore tests do not show
how well the control mechanisms in the joints perform.
For example, if trajectory-tracking was the goal but a large
mean angular error occurred, without special instrumentation
one can not know whether this is due to poor tracking
performance of the stimulated muscle controller, spasticity,
or a significant effect from the upper body. This problem
will occur whether the controllers are conventional servos,
finite state controllers, fuzzy controllers, or any other type
which only uses feedback from the legs. A fundamental
shortcoming of this type of artificial controller is that it does
not automatically act in a coordinated way with the INS.
Ideally, the artificial controller should behave as an integral
part the natural postural controller.

It is, however, valuable to know how well artificial con-
trollers can work with paraplegics when the INS has no
influence, because of the difficulties of using nerve-muscle-
joint as an actuator. Furthermore, it seems to us to be desirable
that this should be tested with a realistic postural task. In the
work, of which this pair of papers describes part, the task is to
achieve artificial balance by stimulating the plantarflexors. By
strapping the paraplegic volunteer into a brace which extends
from his calves to his head, the knee- and hip-extensors need
not be stimulated but also the upper body is restrained (Fig. 1).
The subjects were asked to keep their arms still (folded across
the chest was one preference) and the body, which can then be
approximated as a single-link inverted pendulum, is prevented
from falling (when the controller fails to maintain balance)
by four slightly slack ropes which run to secure cleats on a
frame below the ceiling [12]. (In Fig. 1, two ropes, which are
dark-colored, can be seen, here taught, running forward and
backward, and each slightly laterally, from the subject’s right
shoulder. A similar pair of ropes in on his left side.)

C. Related Work and Literature

The question of whether the plantarflexors of paraplegics
might be used with servo-controllers to provide artificial
balance has been investigated by Trnkoczyet al. [13] and

Fig. 2. Feedback control of unsupported standing:�: measured ankle angle,
m: measured ankle moment,p: muscle stimulation (constant amplitude
and frequency, variable width pulses),�

ref
: angle set-point,m

ref
: moment

set-point,C� : angle controller, andCm: moment controller.

Fig. 3. Nested control structure for unsupported standing.

by Bajzac and Jaeger [14]. Neither of these groups could
test their controllers with the plant except by what we term
Actual Standing; they could not test the stiffness of the joints
nor could they apply a repeatable displacement to test the
controllers, as is possible with our apparatus. Robinsonet al.
[15] and Sinkjaeret al. [16] did make apparatus for looking at
the stiffness of the ankles of paraplegics, and this allowed
the passive and reflex stiffness effects to be distinguished,
however, it was not used with feedback control. An overview
of closed-loop control in functional electrical stimulation is
given by Chizeck [17].

D. Our Approach and Results

Our approach to the problem began with the realization
that the actuators (muscles) were more variable and have
shorter time constants than the inverted pendulum (body) and
therefore that a more robust controller would use negative
feedback of the joint moments [18]. This led to the three-loop
nested structure described below (Figs. 2 and 3). However,
given the separate loops, the possibility presented itself, that
we could assess the performance of the inner loops in dynamic
tests before embedding them inside the angle-control loop. To
perform these dynamic tests, the “Wobbler” was devised, appa-
ratus which could not only be used in isometric tests but also in
three possible dynamic tests: sinusoidal stiffness measurement
without any feedback to the stimulator; moment control loop
testing with sinusoidal displacement; and Imitation Standing
in which all the control structure is tested but with the outer
loop open and the subject secure.

In previous papers in the series, we have reported on the
Wobbler apparatus [12], the stiffness characteristics of the
ankle [11], the design of optimal controllers for isometric ankle
moment [19] and the shortcomings of using the Hammerstein
structure to represent the isometric muscle [20]. This paper
deals with optimal controller design for balancing the inverted
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Fig. 4. Generic feedback control system,� = 1 � q�1: y: plant output (to be controlled),yref : desired output (reference),u: control signal,d: net
disturbance effect,n: measurement noise.

pendulum. The sequel [21] presents experimental results ob-
tained from an intact and a paraplegic subject in the Wobbler,
in which balance, when it occurred, was largely due to the
action of the artificial controller (see Discussion in Part II of
this paper).

II. CONTROL STRATEGY FOR UNSUPPORTEDSTANDING

A. Measurable Signals and Nested Controllers

The system to be controlled consists of the biomechanical
dynamics of the rigid body, and part of the paralyzed neuro-
muscular system; the muscles serve as actuators for positioning
the body. In the experimental setup, as described in Part II of
this paper, we are able to measure both the muscle-produced
moment and the angle of the body (see Fig. 3). The inner loop
of the nested control structure provides feedback control of
muscle moment, and the outer loop controls the angle. Due
to the time constants involved, the inner loop can have a
much higher bandwidth than the outer loop. This provides
the benefit that the uncertain effects of muscle nonlinearity
and time variation are reduced. The nested control structure is
shown schematically in Fig. 3.1

B. Generic Feedback Loop and Optimal
Control Design Solution

The control design approach involves first designing the
inner loop controllers based upon empirically-derived muscle
models. The outer loop is then designed, taking account both
of the inner closed-loop and the body dynamics in the outer
loop. In this paper, we use linear optimal control theory to
design the controllers. The nonlinear muscle is described in
Hammerstein form with a static input nonlinearity followed

1Note that there are in fact two inner loop moment controllers, one for
each ankle. For the purposes of exposition, we assume here that both sides
are incorporated into the controllerCm.

by a linear transfer function. In the inner-loop controllers the
nonlinearity is approximately cancelled using the inverse of
an estimated static nonlinearity.

The controllers for both loops have an identical two-
degrees-of-freedom feedback structure; a generic two-degrees-
of-freedom feedback structure is depicted in Fig. 4 and the
design procedure for both loops can best be explained with
reference to this. For the inner loop controller the “plant” is
the muscle, while for the outer loop controller the plant is the
combination of inner-loop dynamics and the biomechanical
dynamics.

In the generic structure, the control signal drives the
plant transfer-function Here, the integer

is a discrete input–output time-delay, while and
are polynomials in the delay operator and have the form

(1)

(2)

The net effect of disturbances is represented at the output
by the signal driving the filter
The integrating term is included in the plant’s
disturbance path to model the effect of stepwise-changing
(piecewise-constant) disturbances and offsets, which are typi-
cal due to the muscle physiology, and which also depend on
the operating point.2 The idealized assumption of piecewise-
constant disturbances approximates the true situation where
some of the disturbances and system parameters are slowly
time-varying. A major source of disturbance is due to muscle
stiffness [11], [19]; low-frequency sway in standing appears as
a slowly-varying disturbing moment at the ankle. In addition
to this, the system parameters vary slowly due to fatigue.

2Such nonstationary disturbances can be represented in the stochastic
framework by consideringd to be a compound or generalized Poisson process,
i.e. a sequence consisting of random pulses of variable magnitude occuring at
random times. See [22] for details.
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Here, ‘slowly’ should be interpreted with respect to the system
time-constants.

Generically, the open-loop plant can be represented by the
model

(3)

The output to be controlled is corrupted by a measurement
noise so that the signal

(4)

is available for feedback. In this formulation, the disturbance
and measurement noise signalsand are modeled as mutu-
ally uncorrelated zero-mean stochastic signals with intensities

and respectively.
Since the input–output paths of both the muscle and the

biomechanical dynamics contain no inherent integrating be-
havior, and since the disturbances for both loops contain
approximately piecewise-constant offsets, an integrator must
be incorporated in both the inner and outer-loop controllers.
This is represented by the integrating term in the con-
troller, with in Fig. 4. Each controller has a
two-degrees-of-freedom form, so that the reference tracking
behavior can be influenced independently of the feedback loop
properties, and is described by

(5)

where and are polynomials in the delay operator.
The polynomials and are determined in the optimization
procedure, and correspond to the analytical solution of the
optimal regulator problem (i.e., for the case ). The
choice of for the tracking problem is discussed
below.

The optimization cost-function used for each loop is chosen
to allow a simple tradeoff between output variance and control
variable activity. A suitable way of achieving this aim is to
minimize the LQG3 cost function

(6)

where is the expectation operator and is the tuneable
control weighting. The control weighting is a design parameter
which serves as one of the controller “tuning knobs” (see
Section V). Due to inclusion of integral action via the
term, it is the increments in the control signalwhich are
penalized. This will ensure there is no steady-state tracking
error.

A formal solution to this optimization problem, including
underlying assumptions and solvability conditions, can be
found in the references [23] and [22]; the design equations
resulting from the analytical solution are informally stated
here. First, two polynomials and are computed. These
are the stable solutions to the spectral factorizations4

(7)

(8)
3linear quadratic Gaussian.
4For any polynomialX(q�1) we defineX�(q�1) = X(q):

Stable solutions for and exist when and have no
unstable common factors. The controller polynomialsand

which correspond to the minimal value of the cost-function
(6) are obtained from the solution of the linear polynomial
equation

(9)

subject to the condition

strictly proper (10)

i.e., A sufficient condition to ensure
existence of a unique solution with this property is that the
polynomials and have no common factors.

Note that this optimal control problem has an equivalent
solution in a state-space formulation of the LQG problem [24].
The control spectral factor corresponds to the poles of
the control Ricatti equation, and thefilter spectral factor
corresponds to the observer poles (the Kalman filter poles).

Servo performance (i.e., reference tracking) is defined by
the transfer-function between and denoted as
By considering the structure of Fig. 4 and employing (9) this
transfer function is found to be

(11)

The open-loop zeros appear in this expression since in general
the optimal controller performs no zero cancellation within the
loop5. It is important to introduce the reference signal in such
a way that it does not excite the observer dynamics [25]. This
is achieved by constraining as

(12)

where is a scalar which is set to achieve unity steady-state
gain in this closed-loop transfer-function. Combining (11) and
(12) the closed-loop transfer-function becomes

(13)

and the appropriate value of is therefore

(14)

The reference tracking properties of the system as defined
by are effectively decoupled from measurement noise
effects due to the constraint (12). One further option is to
employ a prefilter which cancels the term in (13)
can be cancelled because it is by definition stable), and
which introduces desirable tracking dynamics. This option
is not pursued in this paper. The disturbance rejection and
measurement noise sensitivity properties of the closed-loop are
discussed later (see Section V), as are the trade-offs involved
in the choice of the control design parameters.

5Cancellation of stable zeros could be arranged if desired by incorporating
the zeros to be cancelled as factors ofT:
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Fig. 5. Multirate sampling of feedback loops,j� and jm are integer indexes. The Fig. shows A/D and D/A converters, zero-order hold (ZOH)
elements, and samplers.

C. Multirate Sampling

For physiological reasons6 the muscle stimulator operates
at a rate of Hz, and the sample period for the inner
loop is therefore ms.

As mentioned above, the muscle dynamics are much faster
than the body dynamics. For this reason, the inner loop for
muscle moment control can have a significantly higher band-
width than the position control loop. This fact has implications
for the choice of sampling rate for the inner and outer loops,
since the sampling rate in a sampled-data control system
should be related to the closed-loop bandwidth. Typically, the
sampling rate should be chosen such that there are around
5–20 samples per closed-loop rise time [25].

Thus, the sampling rate for the muscle moment control
loop can be higher than that for the position loop. Indeed,
we have found that sampling the outer loop at the fast
inner-loop rate leads to numerical sensitivity problems for
position control, for reasons documented in the references
[25], [26] and demonstrated in our experimental results. In
our experimental setup the outer-loop sampling can be slower
than, but is always synchronized with, inner-loop sampling,
i.e., where is an integer. Typically, we have
used giving an outer-loop sample period of
ms (a sample rate of Hz).

A refined version of the nested controller structure of Fig. 3,
in which the multirate sampling arrangement is shown in
detail, is depicted in Fig. 5. The sampling rate for the position
loop is denoted as and that for the moment control loop as

As will be seen in Section IV-C, detailed consideration
of this sampling arrangement is required in the formulation of
the design plant for the outer loop controller, as the plant in
this case consists of the inner closed-loop dynamics combined
with the continuous biomechanical dynamics.

D. Plant Definition for Outer (Position) Controller Design

Account must be taken of the multirate sampling arrange-
ment in the definition of the “plant” seen by the position
controller : this plant consists of all components between the

6Stimulation frequencies at or close to 20 Hz are often used because this rate
is high enough for the contraction to be acceptably smooth. The stimulation
rate cannot however be much higher than this as then the high rate of muscle
fatigue would be exacerbated.

Fig. 6. Definition of the design plant for outer controller design.

Fig. 7. Hammerstein model of muscle, showing structure for trans-
fer-function identification,d0

m
(t) = dm(t)=((1� q�1)Am(q�1)):

position controller output and the body angle This
situation is depicted in Fig. 6. The precise details involved
in computation of the outer-loop design plant are given in
Section IV-C.

III. M USCLE MODELING AND ANKLE MOMENT CONTROL

In this section we present the techniques used for modeling,
identification and control design in the inner loop. A full
presentation of issues relating to ankle muscle modeling and
identification has been given in Huntet al. [20], and ankle
moment control was investigated in Huntet al. [19]. Here, we
outline the structures used, as this is required for the position
loop design of Section IV, and we give some typical results.

A. Muscle Modeling and Identification

The muscle is represented in Hammerstein form as de-
picted in Fig. 7; it consists of a static recruitment nonlin-
earity followed by a discrete-time linear transfer function

The sample period for the muscle
loops is ms. The linear part of the model has the
generic structure given by (3), with and the
subscript specialises the generic situation to the muscle. The
signal is a notional muscle “activation level.” As described
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Fig. 8. Closed-loop system for muscle moment control,� = 1 � q�1. The sampling interval for this loop isTm.

in [20], empirical determination of the Hammerstein model
consists of two steps:

1) the impulse response method [3] is used to determine
the recruitment nonlinearity based on twitch response
data (the responses to well-separated stimulus pulses
from which the muscle contraction or twitch is com-
pleted before the next stimulus pulse);

2) having obtained the recruitment nonlinearity, paramet-
ric identification methods are used to determine the
parameters of the linear transfer-function. Typically,
a pseudo-random binary sequence (PRBS)-stimulation
test is employed to generate identification data. In the
PRBS test, the recruitment nonlinearity is first cancelled
via its inverse using the structure of Fig. 7. The
signal is the desired muscle activation, which is
normalized to the range from 0 to 1000 mAct (we define
1000mAct as full activation of the ankle plantarflexor
muscles).

B. Moment Control

The feedback loop for muscle moment control is based
upon the generic structure defined above. However, the inner
loop takes direct account of the Hammerstein structure of the
muscle model by incorporating an approximate inverse of the
recruitment nonlinearity at the controller output. The muscle
moment control loop is shown in Fig. 8. The subscriptin
the figure specialises the generic control loop of Fig. 4 to the
muscle (with ). The cost function for moment control
is [cf., (6)]

(15)

where is the expectation operator and is the tuneable
control weighting. Due to inclusion of integral action via the

term, it is in fact the increments in activation which are
penalized. The disturbance and noise intensities for this loop
are and

Fig. 9. Biomechanical system. CoG—Center of Gravity.

Computation of the moment controller polynomials
and requires solution of the spectral factor-

izations (7)–(8), with appropriate substitution of the muscle’s
plant and control design parameters. Equation (9) is then
solved for and is obtained from (12) and (14).

The feedback action of the moment controller provides a
certain level of robustness against uncertainty in the muscle
model. Following control design, the stability margins (gain
and phase margins) are checked to ensure a sufficient degree
of robustness.

IV. STABILIZATION OF BODY ANGLE

In contrast to the neuromuscular system, the biomechanical
dynamics can be relatively easily modeled, and we outline
a simple method for experimental determination of the key
variables in the model: the body mass and moment of inertia.
Once measured, these parameters will not vary significantly
during an experimental session provided the arms and head
are not moved; the other body segments are braced. For a
given subject the parameters will vary only slowly over longer
periods of time.
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Fig. 10. Closed-loop system for body angle control. The sampling interval for this loop isT�. The plant in this case consists of the closed loop formed by
the muscle and moment controller, cascaded with the biomechanical dynamics:�

ref
—desired angle (setpoint) andm

ref
—required moment.

A. Biomechanical Model of Standing

The equation of motion of the rigid body dynamics, free
only to move about the ankle, and maintained upright by a
variable moment about the ankle, is (see Fig. 9)

(16)

In this equation, is the mass and is the moment of
inertia. The centre of gravity is assumed to be at length( is
the acceleration due to gravity). For small angles of inclination
we have and the linearized transfer-function of the
body dynamics is

(17)

where is the Laplace-transform complex variable, and capital
letters indicate transformed signals.

B. Identification of Body Parameters

The biomechanical variables and were determined
experimentally while the subject was strapped into the plastic
half-shell which made his body rigid above the ankles [12].
While in the shell, the body was lifted onto weighing scales,
so that it was supported under the legs and trunk. From the
positions of the scales and the measured weights, the mass
and centre of mass were found. The moment of inertia was
calculated from the resonant frequency of the body, while
pivoted at the ankles, and suspended from a long spring,
attached at the chest.

The intact subject in the experiments reported in Part II
was aged 43, had height 170 cm, mass kg and inertia

kgm The paraplegic subject has a complete T5
lesion, is aged 35 years, is 13 years after injury, has height
175 cm, mass kg, and inertia kgm

C. Position Control Design

The multirate sampling structure for the nested control loops
was described in Section II-C (see Fig. 5), and account must
be taken of this in the definition of the ‘plant’ seen by the
position controller (see Fig. 6). Computation of this plant
consists of three steps:

1) the closed-loop transfer-function of the inner loop (con-
sisting of the muscle and the moment controller), given
by (13) as is transformed
to the continuous-time domain using the sample rate

2) the continuous inner-loop transfer-function thus obtained
is cascaded with the continuous body dynamics

from (17);
3) the combined inner loop and body dynamics are

transformed to discrete time using the sample rate
We denote the resulting discrete transfer-function

as this is the plant used for
position-loop design.

Based on these transformations, which are performed automat-
ically using thec2dm andd2cm functions in MATLAB, the
outer loop of Fig. 5 simplifies for the purposes of angle con-
troller design and analysis to the structure shown in Fig. 10.
We assume a similar structure for disturbance and noise effects
as before, with appropriate notational changes, and we choose
the noise polynomial from the generic plant (3) to be

A suitable cost function for angle control is [c.f. (6)]

(18)

In this case the control signal is the desired moment which is
fed to the inner-loop controller. Due to inclusion of integral
action via the term, it is in fact the increments in desired
moment which are penalized. For the angle control
loop the disturbance and noise intensities are denoted as
and
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The generic control design equations can now be readily
specialized to the angle loop. The regulator polynomials
and which correspond to the minimal value of the cost-
function (18) are obtained from the solution of the linear
polynomial equation (9), with appropriate substitution of the
plant’s parameters. The spectral factors in (9) are obtained by
solving (7)–(8). is obtained from (12) and (14).

V. FEEDBACK LOOP PROPERTIES ANDDESIGN PARAMETERS

A. Effect of Design Parameters

The parameters which affect the calculation of the optimal
controllers for inner and outer loops are the control weighting

and the intensities of the disturbance and measurement
noise signals and Since these intensities are difficult
to determine accurately they can be considered, along with
as control design parameters. Since from (8) it is merely the
relative values of and which determine it may be
assumed without loss of generality that Thus, there are
two scalar control design parameters for each moment control
loop and two for the position loop: control weightingand
measurement noise intensity

The effect of varying and can be seen clearly from the
cost-function definitions (15) and (18). Higher values ofwill
penalise changes in the control signal (i.e., muscle activation
or moment reference) more strongly, and the variance of the
output (i.e., muscle moment or angle) will be correspondingly
higher. In frequency domain terms, higherwill reduce the
bandwidth of the closed-loop resulting in poorer disturbance
rejection, but less sensitivity to measurement noise. The quali-
tative effect of changes in on reference tracking is the same,
i.e., faster reference tracking is achieved with lower control
weighting.

The effect of measurement noise intensity can be seen
from the filter spectral factorization (8) for . It should be
noted that the filter spectral factor corresponds to the observer
poles in a state-space formulation of the regulator problem
(see [27], [25]). As the feedback system effectively
has a deadbeat observer since in this case (i.e. with

and On the other hand, as tends toward
a large number, the observer poles tend to the poles of the
open-loop system, which in the case of the ankle muscle has
low-pass characteristics. The effect of increasing the noise
intensity is thus to generate faster roll-off of the loop transfer-
function. This will reduce sensitivity to measurement noise
(for the control signal in particular) while generally leading
to somewhat poorer disturbance rejection. As described in
Section II-B, the controller setup is such that has no effect
on reference tracking speed [see (12)–(14)].

B. Alternative Selection of Observer Polynomial

An alternative method for the choice of the observer poles
which avoids the spectral factorization (8) is based on the ob-
servation that increasing leads to a low-pass characteristic
with a dominant pair of poles (the muscle transfer-function
is predominantly second order). The alternative is therefore

TABLE I
EFFECT OF VARYING CONTROLLER DESIGN PARAMETERS

to directly specify the observer poles to correspond to a
second-order transfer-function with given time-domain prop-
erties, such as rise-time and damping. This method has been
succesfully implemented for moment control. It is assumed
that the desired damping factor is unity (critical damping)
and only the rise-time, denoted must be specified. This
specification of rise-time and unity damping leads directly to
an equivalent continuous-time transfer-function

(19)

where is the natural frequency associated with specified
rise-time and unity damping factor. From a simple time-
domain analysis of the second order system (19),can be
shown to be related to through is then
given by the denominator of the discretized version of this
transfer-function. Qualitatively, increasing has the same
effect as increasing For the moment and angle control
loops the observer rise-times are denoted, respectively, as
and

The effects of varying the design parameters are summarized
in Table I.

C. Controller Tuning

Tuning of all three controllers in the nested-loop config-
uration proceeds in a number of steps. First, the internal
moment-control loops are adjusted by observing closed-loop
reference tracking, disturbance rejection performance and the
influence of measurement noise. In the moment controllers,
given the muscle polynomials and as the output of
muscle identification [20], the design parameters (control
weighting) and (observer rise-time) represent the “tuning
knobs.” During LQG controller design in MATLAB these
design parameters are used together with the muscleand

polynomials, and the chosen sampling frequency
ms, to obtain the controller polynomials and
These are implemented later in a real-time program. The
details of the moment controller design procedure, tuning,
simulations and experimental results are explained in detail
in reference [19]. From the functional point of view, the
moment controllers in this specific application are required to
give high disturbance rejection and good reference tracking.
Measurement noise immunity, while important and requiring
verification, is of secondary concern. Lowering the values of
both and gives increased rejection of disturbances
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and less phase lag in reference tracking, but simultaneously
increases measurement noise sensitivity. For this reason, mea-
surement sensor resolution, sensor noise level, superimposed
noise on connection and communication wires, and noise
during quantization are all very critical for achieving high
performance control. According to these limitations we found
the range and to
be useful for ankle moment controller application, with the
best performance achieved when usingvalues at the lower
declared margin with a deadbeat observer (i.e.

The position loop controller is the same LQG-type as the
moment controllers, and thus has two tuning knobs, the control
weighting and observer rise-time For the design of the
position controller polynomials and it is possible
either to neglect the inner loop dynamics (since they are much
faster than those of the outer loop) or to directly include
the inner closed-loop dynamics as part of the design “plant”
(as described previously). The latter approach was found to
give better performance. Following design of the position
controller, it is very difficult to do reference tracking and
disturbance rejection tests, and to tune the controller design
parameters on-line. For this reason, rough values forand

are obtained in simulations and then adjusted in “Imitation
Standing” (see Part II), and finally these are used in Actual
Standing experiments. The ranges and

were found to be useful. Tuning was first
done on intact persons and later verified on paraplegics; the
experimental results are fully described in Part II of the paper.

VI. CONCLUSIONS

We have presented a control methodology in which the plant
is treated as two parts:

1) the muscle-actuators which are nonlinear and vary rel-
atively quickly and

2) the inverted pendulum which is well understood and
relatively constant.

Because of the variability of the muscle properties with time,
a nested control structure is used. The high-bandwidth inner-
loop controllers serve to neutralise the nonlinear effects of the
muscles.

In the optimal control approach, two “tuning knobs” are
required for each of the three control loops. The effect of
changes in these Tuning Knobs on closed-loop performance
(reference tracking, disturbance rejection and measurement
noise sensitivity) has been described. Tuning and subsequent
testing is done in the Wobbler apparatus. Computation of
the three control signals at each sample instant has been
experimentally determined to take 6–7 ms; this is negligible
with respect to the stimulation rate of 20 Hz.

Experimental results of unsupported standing trials in intact
and paraplegic subjects are presented in the companion paper
[21].
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