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Abstract. Skilled behavior is difficult or impossible to articulate explicitly by the performers. Likewise biomechanical models
of skilled motor actions are often limited by the lack of knowledge of the underlying mechanisms. A ‘behavioral cloning’
technique is described, based on a trained artificial neural network (ANN), that precisely mimics an individual’s learned skill.
In this paper the motor skill considered is that of paraplegics using their upper limbs whilst standing-up with FES. In a group
of eight paraplegics with complete spinal injuries, it was possible to develop clones that followed closely the observed behavior
of the subjects. Each subject used a unique and consistent voluntary control strategy. Subjects with more experience in using
FES were more consistent in the use of their arms from trial to trial. Comparison of the clones revealed features suggestive of
some common underlying voluntary control strategies.

1. Introduction

Functional electrical stimulation (FES) has been used to assist locomotion after spinal injury [9,18,
25]. The restored functions usually involve two fundamentally different kinds of controls; artificial FES
control of the paralyzed extremities and the voluntary control of the intact muscles above the lesion.
As an example, both of these controllers are important in a procedure usually used for FES assisted
standing-up where the subject’s arms are used along with the electrical stimulation of the paralyzed
lower extremity muscles (Fig. 1). The voluntarily controlled arms not only help to balance the body
during the maneuver but also carry a considerable amount of the body weight. According to [5,12], up to
two-thirds of the body weight could be carried by the arms. Therefore, the quality of the resulting motion
depends strongly on how the arms musculature are controlled and if there is an appropriate coordination
between the voluntary control of the arms and the artificial control of the lower extremity muscles.

Researchers from different fields have been interested in modeling human behavior in man–machine
systems. Early models during the World War II were developed to improve the performance of the pi-
lots, gunners and bombardiers in the human-in-the-loop systems [10]. They were linear and inherently
incapable of modeling nonlinear aspects of the human control behavior. Optimal control models were
based on the assumption that the human operator seeks to optimize some objective function of the task at
hand [17,29]. Models based on the actual input–output data of the human measured during the control of
an actual or simulated process ranged from parametric system identification procedures [2] to nonlinear
expert systems based on rule-based systems [1,26], fuzzy logic models [4,19,21] and neural network
models [8].

The first application of machine learning to FES control was reported by Kirkwood et al. [14].
This form of supervised machine learning is now known in AI as ‘behavioral cloning’ follow-
ing the original work of Donald Michie, WWII code-breaker and computer pioneer ([22] and
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Fig. 1. FES assisted standing-up in paraplegia. A sagittal view of the subject is shown on the right. In addition to the electrical
stimulation of the knee joint extensors, the voluntary arm forces help in lifting the body and keeping the balance. The equivalent
forces and moments at the shoulder jointFY , FZ andMX represent the overall force actions of the arms musculature at the
shoulder joint. Dashed lines represent the reference line for measuring the ankle, knee and hip joints. Two control loops affecting
the FES standing-up in paraplegia are shown on the left.

http: //www.aiai.ed.ac.uk/˜dm/dm.html). Michie was in turn inspired by the seminal work of Peter Don-
aldson who is also well known for his work on FES. Donaldson was the first to show that a human motor
skill, a pole balancing task, could be learned and mimicked by an electro-mechanical computing machine
in a technique he called ‘error decorrelation’ [7]. In the FES application a motor skill, learned by a para-
plegic subject whilst operating the manual control switch of the Kralj and Bajd FES walking system, was
‘cloned’ as a set of rules using rule induction based on Quinlan’s ID3 algorithm. Once cloned, this rule
based could thereafter be used to automate the operation of the FES system. This basic cloning technique
has since been more extensively investigated in [15]. Here we extend behavioral cloning to model the
voluntary use of the upper limbs and body by paraplegics during sit–stand maneuvers assisted by FES,
i.e., the two blocks above the dashed line in Fig. 1.

The importance of the voluntary control in FES assisted standing-up has also been known for some
time. In a study of FES control methods Quintern et al. [27] point out the importance of the co-ordination
between FES and the voluntary control for improvement of the FES standing-up. Donaldson and Yu [6]
proposed a method for minimization of the arm forces by using the measurement of the arm forces
in a scheme to adjust the electrical stimulation of the lower extremity. In a planar model of standing-
up, however, Khang and Zajac [16] assumed that the upper extremity forces are external disturbances.
Although this simplification was necessary for their approach to the design of conventional controllers to
be applicable, we believe that it is not valid in reality. Veltink et al. [28] on the other hand assumed more
intelligent role for the arm forces. In their three-segmental model of standing-up, the arm forces were
modeled by linear proportional control laws with a vertical velocity and a horizontal position setpoints. In
our previous study [3], we developed a qualitative model of the arm forces during the standing-up motion
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using fuzzy logic controllers. The controller was based on a set of general rules defined according to our
observations and understandings of the motion objectives. The model however, was not representative
of an individual subject’s voluntary control actions. In this study, we individualize our models using the
neural networks and the input–output data measured from paraplegic subjects in repeated standing-up
trials.

The main objective of the above studies was to achieve some form of co-ordination between the arti-
ficial FES control and the voluntary control of the subject. However, two main obstacles hindered this.
First, it was difficult to mathematically characterize the voluntary control behavior with acceptable ac-
curacy. Second, the conventional control theory did not have the necessary tools to deal with systems
as complex as the voluntary control. Here, we investigate the first problem and show that the accurate
models of the voluntary control strategy during the FES assisted standing-up can be developed. We also
discuss how these models can be used to design FES controllers that are coordinated with the voluntary
controllers. Sit-to-stand maneuver was chosen because it is a prerequisite for many of the daily life ac-
tivities such as walking and reaching to objects not accessible to the wheelchair. Further, the voluntary
arm forces are integral part of the maneuver and contribute considerably to the quality of the resulting
motion.

1.1. The modeling task

Figure 1 shows a planar model of FES assisted standing-up introduced by Kralj and Bajd [18] and
practiced in many FES laboratories. The FES controllers activate the paralyzed muscles extending the
knee joints and the voluntary control of the subject activates the arms musculature.

In this model, the sit-to-stand maneuver is viewed as a task in which the positions of the three segments
including the shank, thigh and trunk must be co-ordinated to move the subject from sitting to standing
position. The three-segmental system is affected by two actuators. FES actuators position the knee joint
and the arms are viewed as the actuators that by applying the forces and moments position the shoulder
joint and trunk to help in sit-to-stand maneuver. The modeling task is to identify this actuation strategy,
i.e., to find a model that for the given state of the three segmental system could produce the shoulder
forces similar to those observed in the experiments. Therefore, the model will replace the two blocks
above the dashed line in Fig. 1.

To develop such a model, we need to identify the necessary inputs to the model. The actual decision
making process uses different sources of sensory information [13] but we are not able to directly measure
them. Therefore, we decided to use a different set of measurable variables that could partially replace the
sensory information accessed by the central nervous system. The state information of the three-segmental
system defined by the angular positions and angular velocities of the ankle, knee and hip joints were used
to resemble the information received from the visual and vestibular systems. The forces and moments in
the shoulder joint (which are correlated to the forces in the arms musculature and hand contact forces)
were used to resemble the proprioceptive and exteroceptive information from the intact upper extremities.

2. Experimental procedures

2.1. Subjects

Eight paraplegic patients participated in the study, five men and three women. Their ages ranged from
17 to 57 years, weights from 58 to 95 kg and heights from 159 to 185 cm. Sample group included
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Table 1

Paraplegic subjects participating in the study

MK ZB BJ AK SB MT TM ZJ Mean
Sex (M/F) M M M M M F F F –
Age (years) 23 22 23 44 31 28 19 57 32.0
Weight (kg) 58 74 85 74 64 75 59 53 70.3
Height (cm) 168 184 185 180 183 171 178 159 79.3
Injury level T9 T10–11 T9 T10–11 T10–12 T4–5 T3–4 T11 –
FES use (months) 2.5 6 5 6 11 60 42 36 21.1

patients with different levels of spinal cord injury and different experiences of FES usage as summarized
in Table 1.

2.2. Instrumentation

The measuring system used in the analysis consisted of two measuring frames, which were built as
copies of a wheel chair seat and conventional walker. The seating frame was instrumented by the use of
AMTI force plate providing information of the seat support forces, while the forces on the arm support
frame were assessed by the six axis JR3 robot wrist sensor. Additional AMTI force plate was used for
measuring the ground reaction forces under a foot. Kinematics of the body movement was assessed by the
OPTOTRAK contact-less optical system measuring the 3D active markers position. The markers were
attached to the ankle, knee, hip, pelvis, shoulder, elbow, wrist, and head, defining thus thirteen segments
of the human body.

2.3. Protocol

Subjects were seated on the instrumented seat with the arms resting on the arm support frame. The
height of the seat coincided with the height of a wheel chair, while the arm support frame height was
adjusted according to the patient’s preferences. The feet were positioned in such a way that the right foot
was placed flat on the force plate. After approximately two seconds from starting the data collection, the
subject was asked to stand up. The subjects were asked to rise in their preferable way and speed, while
using stimulation of knee extensors and arm support. At least five rising trials were recorded for each
participant with the 50 Hz sample rate, each trial lasting for 10 s.

2.4. Data analysis

The signals collected from active markers, force plates and wrist sensor were interpolated and filtered
by the 4th order Butterworth filter with 5 Hz cut-off frequency. The co-ordinate systems of all sensors
were transformed to coincide with the reference co-ordinate system placed on the floor in the center of
the arm frame. Since the human body symmetry was presumed, all parameters were gathered only for
the patient’s right side and calculated for the left side.

The training data for the model consists of angular positions and angular velocities of the ankle, knee
and hip joints and the forces and moments at the shoulder joint. The kinematics of the markers and
anthropometric data were used to calculate the angular positions of the joints and kinematics of the joint
centers and segmental mass centers. Velocities and accelerations were calculated by differentiating the
positional data. The kinematics of the arms and the force measurements of the arm support were fed to
an inverse dynamic model of the arms to calculate the forces and moments at the shoulder joint.
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Fig. 2. The topology of the neural network models. Present and past state information plus the past samples of the outputs
form the inputs to the model (angular velocity inputs are not shown for clarity). The outputs are the forces and moment at
the shoulder joint. Hidden layer is fully connected to the input and output layer. Each hidden node receives connections from
previously established hidden nodes (hidden nodes are added one at a time by the training procedure). Not shown for clarity are
also the direct connections from the input layer to the output layer.

3. The proposed model

3.1. Topology of the neural network model

The basic structure of the model is a three-layered fully connected feedforward neural network as
depicted in Fig. 2. To further enhance this nonlinear function approximator [11], the past inputs and
outputs are fed to the input layer to provide the network with the memory required in modeling the
dynamic systems. These delayed signals are found to improve performance in the recognition of time
series such as speech signal [20].

3.2. Selection of the input variables

We used the visual inspection of the scatter plots and a nonlinear correlation method to identify the
most important input variables. The nonlinear correlation technique was based on the nonlinear neural
networks. A moderate size neural network was trained to represent the relationship between one of the
inputs and one of the outputs. The root mean square error (RMSE) between the actual output and the
model predicted output was calculated as an indication of how strongly the output is correlated to the
input. The smaller the RMSE the stronger the correlation. The size of the network was kept constant to
make sure that the comparison is valid. The Neural Network Toolbox (The Mathworks Inc., USA) was
used to train these neural networks.
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Fig. 3. The predictions (PrFY , PrFZ and PrMX ) of the neural network model developed for subject MT are compared to his
measured arm forcesFY , FZ andMX .

3.3. Neural network training method

The neural network models were trained using the Neuralwork Predict (NeuralWare Inc., USA). It
uses a cascade method of network construction together with an adaptive gradient learning rule to train
the network. In the cascade method of network construction method, training begins with zero hidden
layer nodes and new hidden layer nodes are added one at a time with the purpose of predicting the current
remaining output error. The process of adding the hidden layer nodes continues until no improvements
can be made. The details of the training procedure can be found in [23,24].

4. Results

4.1. Selection of the input variable

There was strong nonlinear correlation to the present samples of the angular position inputsθ1(t), θ2(t)
andθ3(t) and strong linear correlation to the most recent samples of the outputsFZ(t − 1), FY (t − 1)
andMX(t− 1). Therefore, these variables were selected as the inputs to the model.

Compared to the selected variables, the correlation to the angular velocities and other delayed samples
were weaker and, therefore, were excluded from the model. The correlation to the angular position had
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Table 2

Statistics comparing the model predictions to the measured data

Subject R RMSE Avg. Max. Conf.
abs. abs. interval
error error (95%)

MT FZ 0.999 3.425 2.297 44.752 6.666
FY 0.992 1.614 1.105 11.867 3.141
MX 0.994 0.982 0.577 12.083 1.911

MK FZ 0.993 7.959 4.508 93.066 15.500
FY 0.974 2.801 1.758 24.243 5.456
MX 0.984 1.447 0.865 13.030 2.819

TM FZ 0.977 17.560 7.291 236.709 34.151
FY 0.980 2.782 1.690 37.570 5.411
MX 0.995 1.404 0.912 20.720 2.731

SB FZ 0.997 5.667 3.947 55.315 11.025
FY 0.981 2.436 1.627 25.939 4.740
MX 0.994 1.012 0.633 12.162 1.970

BJ FZ 0.997 5.105 3.153 61.782 9.934
FY 0.983 2.342 1.512 21.919 4.557
MX 0.997 1.020 0.648 9.617 1.986

ZJ FZ 0.992 10.443 5.256 141.434 20.321
FY 0.984 3.326 2.172 35.732 6.472
MX 0.995 1.401 0.876 12.633 2.727

Correlation (R); root mean square error (RMSE); average absolute error (avg. abs.); maximum
absolute error (max. abs.) and the 95% confidence interval are given.

also peaks at samples 280–400 ms and 700 ms in the past. These variables, however, were not included in
the model because they increased the memory required to store the old samples and they had negligible
effect in improving the model accuracy.

4.2. Model trained for subjects MT

A neural network model was successfully built to predict the voluntary arm forces,FZ , FY andMX

of the subject MT during the standing-up maneuver. The model predictions are compared to the actual
values in Fig. 3. The model performs well not only on the training data but also on the validation data
never used in the training process. The validation data constitutes the last 20% of the data shown in
Fig. 3. Further statistics of the model performance is presented in Table 2.

4.3. Model trained for the rest of the subjects

The performance of the models trained for MK (least experienced), TM (youngest with the highest
level lesion), SB (lowest level lesion), BJ (tallest and heaviest), ZJ (lightest and oldest) and MT (most
experienced) are summarized in Table 2.

4.4. Comparing the voluntary control strategies

Models developed for individual subjects were evaluated on test data consisting of 8 sample standing-
up trials. Each one of the 8 trials belonged to one of the subjects and has never been used in training. The
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Fig. 4. Performance of the model of MT on the data collected from all of the subjects. PrFY , PrFZ and PrMX are the
predictions of MT’s model when fed with the inputs from other subjects’ measurements.FY , FZ andMX are the arm forces
measured from all of the subjects. The portions of the data between the dashed lines belong to one subject as indicated in the
figure.

objective was to investigate the similarities and differences in the voluntary control strategies adopted by
the subjects.

Figure 4 shows how the voluntary control of MT compares to the other subject. This is equivalent
to asking the other subjects to use the control strategy of subject MT to control their arms. Table 3
summarizes the performance of this model and the model of the other subjects on the same test data.
The subject’s control strategy is more similar to the collective behavior when the RMSE is lower or the
correlation is higher.

5. Discussions

Since the system is highly nonlinear, a nonlinear correlation analysis was devised and successfully
used to identify the relevant input variables.

There was strong correlation to the angular position of the joints than the angular velocity that may
suggest the voluntary arm forces during standing-up is primarily position dependent. Also strong corre-
lation to the past samples of the arm forces shows that the proprioceptive feedback plays an important
role in the voluntary control of the arm forces. Correlation peaks at angular position samples delayed by
280–400 ms and 700 ms may be attributed to the different control loops involved in the voluntary control
of the arms.
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Table 3

Statistics comparing the model predictions to the measured data from all of the subjects

Subject R RMSE Avg. Max. Conf.
abs. abs. interval
error error (95%)

MT FZ 0.992 10.549 5.299 177.588 20.526
FY 0.960 4.610 2.837 31.223 8.971
MX 0.947 5.053 2.846 36.561 9.831

MK FZ 0.978 17.645 10.531 133.418 34.333
FY 0.930 6.269 3.775 35.680 12.198
MX 0.961 4.240 2.436 31.821 8.251

TM FZ 0.924 31.834 21.027 143.503 61.942
FY 0.969 4.004 3.014 31.973 7.792
MX 0.953 5.480 3.164 42.685 10.663

SB FZ 0.964 23.023 14.757 130.741 44.798
FY 0.925 6.638 4.496 33.407 12.917
MX 0.947 4.772 2.812 33.738 9.286

BJ FZ 0.955 24.385 12.907 191.774 47.447
FY 0.944 6.852 4.059 41.321 13.334
MX 0.951 4.656 2.623 23.810 9.060

ZJ FZ 0.977 19.885 13.296 172.180 38.690
FY 0.971 4.345 3.170 38.666 8.456
MX 0.966 3.749 1.773 34.336 7.295

Correlation (R); root mean square error (RMSE); average absolute error (avg. abs.); maximum
absolute error (max. abs.) and the 95% confidence interval are given.

The neural network model developed for MT performed well on both the training and the validation
data. Therefore, it is possible to accurately model the voluntary arm forces during standing-up. The good
performance on the validation data shows that the model has generalized well and that the subject’s
control strategy is consistent from trial to trial. Therefore, subject MT has developed a unique control
strategy for the use of her arms and uses it consistently.

Similar models were successfully developed for the other subjects. However, the consistencies in the
use of the adopted control strategies were not the same. The adopted control strategy and consistency in
performing it depends on parameters such as experience of FES use, level of injury, weight, height and
age of the subject. Comparing the data in Table 2 shows that subject MT who was the most experienced
FES user (have been in the program longer), had the highest consistency. This is evident from the very
low confidence interval, lower absolute errors and lower RMSE. The highest inconsistency belonged to
TM who has the highest level lesion (T3–4). This is in contrast with her long history of FES use as shown
in Table 1. The insufficient control over the trunk muscles due to the high level lesion most probably
prevents him from effectively stabilizing her trunk. The unstable trunk could disturb the maneuver and
therefore require more corrective actions from the arms that in turn results in less consistent control
strategy.

In Fig. 4, the control strategy adopted by MT is tested on all other subjects. Although it is more similar
to some subjects than the others, it shares a general trend with all the subjects. This is an expected result
because during the standing-up motion, the arms must play a similar role, i.e., provide balance and help
in rising. Therefore, there may be general rules that govern the control of the arm forces in all of the
subjects. However, there are also rules that are specific to the individual subjects, which is apparent from
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the incompatibilities shown in Fig. 4. The control strategy adopted by MT had striking similarities with
MK and SB but differed in some aspects with the others. Table 3 quantifies the similarity of each subject’s
control strategy to the collective behavior of the group. Here again MT as the most experienced subject
behaves closer to the average behavior of the population. The confidence interval and the RMSE are the
lowest in the table. MT on the other hand has the highest dissimilarity which is again attributable to her
high lesion that forces her to adopt a control strategy that is not only more variant but also different from
others.

6. Conclusion

Apart from some subject specific rules, the voluntary control strategy adopted by the paraplegics fol-
low general principles that may be attributed to the similar objectives the arms have during standing-up.
The control strategy adopted by each individual can be accurately modeled. The models become more
accurate when the subjects behave more consistency due to for example more experience.

Finally, the knowledge of the subject’s voluntary control strategy could be used to design FES con-
trollers that are well coordinated with the intact upper body to achieve similar objectives. The FES con-
trollers can use these models to predict the upper body behavior in advance and therefore choose proper
control actions. These models can also be used along with the musculoskeletal models of the lower ex-
tremities to develop a cybernetic model. This model can then be used in a learning procedure such as
the reinforcement learning or the genetic algorithms to develop optimal FES controllers. The latter is our
method of choice and is currently underway.
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